Водно электролитный обмен биохимия. Водно-солевой обмен. Биохимия почек и мочи. Органы, регулирующие водно-солевой обмен

Кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 25

Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Водно-солевой обмен – обмен воды и основных электролитов организма (Na + , K + , Ca 2+ , Mg 2+ , Cl - , HCO 3 - , H 3 PO 4).

Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.

Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.

Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.

Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

  1. Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.
  2. Вода и растворенные в ней вещества создают внутреннюю среду организма.
  3. Вода обеспечивает транспорт веществ и тепловой энергии по организму.
  4. Значительная часть химических реакций организма протекает в водной фазе.
  5. Вода участвует в реакциях гидролиза, гидратации, дегидратации.
  6. Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.
  7. В комплексе с ГАГ вода выполняет структурную функцию.

ОБЩИЕ СВОЙСТВА ЖИДКОСТЕЙ ОРГАНИЗМА

Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.

Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.



При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.

Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.

Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:

1. Внутрисосудистой жидкости;

2. Интерстициальной жидкости (межклеточная);

3. Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).

Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.

Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрацией NaCl.

Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.

рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.

В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.

РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА

В организме водно-солевой баланс внутриклеточной среды поддерживается постоянством внеклеточной жидкости. В свою очередь, водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами.

Органы, регулирующие водно-солевой обмен

Поступление воды и солей в организм происходит через ЖКТ, этот процесс контролируется чувством жажды и солевым аппетитом. Выведение излишков воды и солей из организма осуществляют почки. Кроме того, воду из организма выводят кожа, легкие и ЖКТ.

Баланс воды в организме

Для ЖКТ, кожи и легких выведение воды является побочным процессом, который происходит в результате выполнения ими своих основных функций. Например, ЖКТ теряет воду, при выделении из организма непереваренных веществ, продуктов метаболизма и ксенобиотиков. Легкие теряют воду при дыхании, а кожа при терморегуляции.

Изменения в работе почек, кожи, легких и ЖКТ может привести к нарушению водно-солевого гомеостаза. Например, в жарком климате, для поддержания температуры тела, кожа усиливает потовыделение, а при отравлениях, со стороны ЖКТ возникает рвота или диарея. В результате усиленной дегидратации и потери солей в организме возникает нарушение водно-солевого баланса.

Гормоны, регулирующие водно-солевой обмен

Вазопрессин

Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным мостиком.

АДГ синтезируется в нейронах гипоталамуса, переносится в нервные окончания задней доли гипофиза (нейрогипофиз).

Высокое осмотическое давление внеклеточной жидкости активирует осморецепторы гипоталамуса, в результате возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ в кровоток.

АДГ действует через 2 типа рецепторов: V 1 , и V 2 .

Главный физиологический эффект гормона, реализуется V 2 рецепторы, которые находятся на клетках дистальных канальцев и собирательных трубочек, которые относительно непроницаемы для молекул воды.

АДГ через V 2 рецепторы стимулирует аденилатциклазную систему, в результате фосфорилируются белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2 . Аквапорин-2 встраивается в апикальную мембрану клеток, образуя в ней водные каналы. По этим каналам вода пассивной диффузией реабсорбируется из мочи в интерстициальное пространство и моча концентрируется.

В отсутствие АДГ моча не концентрируется (плотность <1010г/л) и может выделяться в очень больших количествах (>20л/сут), что приводит к дегидратации организма. Это состояние называется несахарный диабет .

Причиной дефицита АДГ и несахарного диабета являются: генетические дефекты синтеза препро-АДГ в гипоталамусе, дефекты процессинга и транспорта проАДГ, повреждения гипоталамуса или нейрогипофиза (например, в результате черепно-мозговой травмы, опухоли, ишемии). Нефрогенный несахарный диабет возникает вследствие мутации гена рецептора АДГ типа V 2 .

Рецепторы V 1 локализованы в мембранах ГМК сосудов. АДГ через рецепторы V 1 активирует инозитолтрифосфатную систему и стимулирует высвобождение Са 2+ из ЭР, что стимулирует сокращение ГМК сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях АДГ.

В функциональном отношении принято выделять свободную и связанную воду. Транспортная функция которую вода выполняет как универсальный растворитель Определяет диссоциацию солей будучи диэлектриком Участие в различных химических реакциях: гидратация гидролиз окислительно - востановительные реакции например β - окисление жирных кислот. Движение воды в организме осуществляется при участии ряда факторов к которым относятся: осмотическое давление создаваемое различной концентрацией солей вода движется в сторону более высокой...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 1

Реферат

ВОДНО–СОЛЕВОЙ ОБМЕН

Водный обмен

Общее содержание воды в организме взрослого человека составляет 60 – 65% (около 40 л). Наиболее гидратированы головной мозг, почки. Жировая, костная ткань, наоборот, содержат небольшое количество воды.

Вода в организме распределена в разных отделах (компартментах, бассейнах): в клетках, в межклеточном пространстве, внутри сосудов.

Особенностью химического состава внутриклеточной жидкости является высокое содержание калия и белков. Внеклеточная жидкость содержит более высокие концентрации натрия. Значения рН внеклеточной и внутриклеточной жидкости не различаются. В функциональном отношении принято выделять свободную и связанную воду. Связанная вода – та её часть, которая входит в состав гидратных оболочек биополимеров. Количество связанной воды характеризует интенсивность обменных процессов.

Биологическая роль воды в организме.

  • Транспортная функция, которую вода выполняет как универсальный растворитель
  • Определяет диссоциацию солей, будучи диэлектриком
  • Участие в различных химических реакциях: гидратация, гидролиз, окислительно - востановительные реакции (например, β - окисление жирных кислот).

Обмен воды .

Общий объём обмениваемой жидкости для взрослого человека равен 2-2,5 литра в сутки. Для взрослого человека характерен водный баланс, т.е. поступление жидкости равно её выведению.

Вода поступает в организм в виде жидких напитков (около 50% потребляемой жидкости), в составе твёрдых продуктов. 500 мл составляет эндогенная вода, образующаяся в результате окислительных процессов в тканях,

Выведение воды из организма происходит через почки (1,5 л – диурез), путём испарения с поверхности кожи, лёгких (около 1 л), через кишечник (около 100 мл).

Факторы движения воды в организме .

Вода в организме постоянно перераспределяется между различными отсеками. Движение воды в организме осуществляется при участии ряда факторов, к которым относятся:

  • осмотическое давление, создаваемое различной концентрацией солей (вода движется в сторону более высокой концентрации соли),
  • онкотическое давление, создаваемое перепадом концентрации белков (вода движется в сторону более высокой концентрации белка)
  • гидростатическое давление, создаваемое работой сердца

Обмен воды тесно связан с обменом Na и К.

Обмен натрия и калия

Общее содержание натрия в организме составляет 100 г . При этом 50% приходится на внеклеточный натрий, 45% - на натрий, содержащийся в костях, 5% - на внутриклеточный натрий. Содержание натрия в плазме крови равно 130-150 ммоль/л, в клетках крови - 4-10 ммоль/л. Потребность в натрии для взрослого человека составляет около 4-6 г/ сутки.

Общее содержание калия в организме взрослого составляет 160 г. 90% этого количества содержится внутриклеточно, 10% распределяется во внеклеточном пространстве. В плазме крови содержится 4 - 5 ммоль/л, внутри клеток - 110 ммоль/л. Суточная потребность в калии для взрослого человекасоставляет 2-4 г.

Биологическая роль натрия и калия :

  • определяют осмотическое давление
  • определяют распределение воды
  • создают артериальное давление
  • участвуют (Na ) во всасывании аминокислот, моносахаров
  • калий необходим для биосинтетических процессов.

Всасывания натрия и калия происходит в желудке и в кишечнике. Натрий может незначительно депонироваться в печени. Из организма натрий и калий выводятся в основном через почки, в меньшей степени через потовые железы и через кишечник.

В перераспределении натрия и калия между клетками и внеклеточной жидкостью участвует натрий - калиевая АТФ-аза - мембранный фермент, который за счёт энергии АТФ перемещает ионы натрия и калия против градиента концентрации. Создаваемый перепад концентрации натрия и калия обеспечивает процесс возбуждения ткани.

Регуляция водно-солевого обмена .

Регуляция обмена воды и солей осуществляется при участии центральной нервной системы, вегетативной нервной системы и эндокринной системы.

В центральной нервной системе при уменьшении количества жидкости в организме формируется чувство жажды. Возбуждение питьевого центра, находящегося в гипоталамусе, приводит к потреблению воды и восстановлению её количества в организме.

Вегетативная нервная система участвует в регуляции водного обмена путём регуляции процесса потоотделения.

К гормонам, участвующим в регуляции водно–солевого обмена, относятся антидиуретический гормон, минералокортикоиды, натрийуретический гормон.

Антидиуретический гормон синтезируется в гипоталамусе, перемещается в заднюю долю гипофиза, откуда выделяется в кровь. Данный гормон задерживает воду в организме путём усиления обратной реабсорбции воды в почках, за счёт активации синтеза в них белка аквапорина.

Альдостерон способствует задержке натрия в организме и потере ионов калия через почки. Считается, что данный гормон способствует синтезу белков натриевых каналов, определяющих обратную реабсорбцию натрия. Он также активирует цикл Кребса и синтез АТФ, необходимого для процессов реабсорбции натрия. Альдостерон активирует синтез белков - транспортёров калия, что сопровождается повышенным выведением калия из организма.

Функция и антидиуретического гормона и альдостерона тесно взаимосвязана с ренин - ангиотензиновой системой крови.

Ренин-ангиотензивная система крови .

При уменьшении кровотока через почки при обезвоживании организма в почках вырабатывается протеолитический фермент ренин, который переводит ангиотензиноген (α 2 -глобулин) в ангиотензин I - пептид, состоящий из 10 аминокислот. Ангиотензин I под действием ангиотезинпревращающего фермента (АПФ) подвергается дальнейшему протеолизу и переходит в ангиотензин II , включающий 8 аминокислот, Ангиотензин II суживает сосуды, стимулирует выработку антидиуретического гормона и альдостерона, которые и увеличивают объем жидкости в организме.

Натрийуретический пептид вырабатывается в предсердиях в ответ на увеличение объёма воды в организме и на растяжения предсердий. Он состоит из 28 аминокислот, представляет собой циклический пептид с дисульфидными мостиками. Натрийуретический пептид способствует выведению натрия и воды из организма.

Нарушение водно-солевого обмена .

К нарушениям водно–солевого обмена относятся обезвоживание, гипергидратация, отклонения концентрации натрия и калия в плазме крови.

Обезвоживание (дегидратация) сопровождается тяжёлыми нарушениями функции центральной нервной системы. Причинами обезвоживания организм могут являться:

  • водный голод,
  • расстройства функции кишечника (диарея),
  • увеличение потери через лёгкие (одышка, гипертермия),
  • усиленное потоотделение,
  • сахарный и несахарный диабет.

Гипергидратация – увеличение количества воды в организме может наблюдаться при ряде патологических состояний:

  • повышенное поступление жидкости в организм,
  • почечная недостаточность,
  • нарушение кровообращения,
  • заболевания печени

Местным проявлением накопления жидкости в организме являются отёки .

«Голодные» отёки наблюдаются вследствие гипопротеинемии при белковом голодании, заболеваниях печени. «Сердечные» отёки возникают при нарушении гидростатического давления при заболеваниях сердца. «Почечные» отёки развиваются при изменении осмотического и онкотического давления плазмы крови при болезнях почек

Гипонатриемия, гипокалиемия проявляются нарушением возбудимости, поражением нервной системы, нарушением ритма сердца. Эти состояния могут возникать при различных патологических состояниях:

  • нарушение функции почек
  • многократная рвота
  • диарея
  • нарушение выработки альдостерона, натрийуретического гормона.

Роль почек в водно-солевом обмене .

В почках происходит фильтрация, реабсорбции, секреция натрия, калия. На почки оказывает регулирующее влияние альдостерон, антидиуретический гормон. В почках вырабатывается ренин – пусковой фермент ренин – ангиотензиновой системы. Почки осуществляют выделение протонов, и тем самым регулирует рН.

Особенности водного обмена у детей.

У детей повышено общее содержание воды, которое у новорожденных достигает 75%. В детском возрасте отмечается иное распределение воды в организме: снижено количество внутриклеточной воды до 30%, что обусловлено пониженным содержанием внутриклеточных белков. В то же время повышено содержание внеклеточной воды до 45%, что связано более высоким содержанием гидрофильных гликозаминогликанов в межклеточном веществе соединительной ткани.

Водный обмен в детском организме протекает более интенсивно. Потребность в воде у детей в 2-3 раза выше, чем у взрослых. Для детей характерно выделение в составе пищеварительных соков большого количества воды, которая быстро подвергается обратному всасыванию. У детей раннего возраста иное соотношение потерь воды из организма: больше доля воды, выделяемой через лёгкие и кожу. Для детей характерна задержка воды в организме (положительный водный баланс)

В детском возрасте наблюдается неустойчивая регуляция водного обмена, не сформировано чувство жажды, вследствие чего выражена склонность к обезвоживанию.

В течение первых лет жизни преобладает выведение калия над выведением натрия.

Кальций - фосфорный обмен

Общее содержание кальция составляет 2% от массы тела (около 1,5 кг). 99% его сосредоточено в костях, 1% составляет внеклеточный кальций. Содержание кальция в плазме крови равняется 2,3-2,8 ммоль/л, 50% этого количества приходится на ионизированный кальций и 50% - на белковосвязанный кальций.

Функции кальция:

  • пластический материал
  • участвует в мышечном сокращении
  • участвует в свёртывании крови
  • регулятор активности многих ферментов (играет роль вторичного посредника)

Суточная потребность в кальции для взрослого человека составляет 1,5 г . Всасывание кальция в желудочно – кишечном тракте лимитировано. Всасывается примерно 50% кальция пищевых продуктов при участии кальцийсвязывающего белка . Будучи внеклеточных катионом, кальций поступает в клетки через кальциевые каналы, депонируется в клетках в саркоплазматическом ретикулуме и митохондриях.

Общее содержание фосфора в организме составляет 1% от массы тела (около 700 г). 90% фосфора содержится в костях, 10% приходится на внутриклеточный фосфор. В плазме крови содержание фосфора равно 1 -2 ммоль/л

Функции фосфора:

  • пластическая функция
  • входит в состав макроэргов (АТФ)
  • компонент нуклеиновых кислот, липопротеидов, нуклеотидов, солей
  • входит в состав фосфатного буфера
  • регулятор активности многих ферментов (фосфорилирование – дефосфорилирование ферментов)

Суточная потребность в фосфоре для взрослого человека составляет около 1,5 г. В желудочно–кишечном тракте фосфор всасывается при участии щелочной фосфатазы .

Кальций и фосфор выводятся из организма в основном через почки, незначительное количество теряется через кишечник.

Регуляция кальций – фосфорного обмена.

В регуляции обмена кальция и фосфора участвуют паратгормон, кальцитонин, витамин Д.

Паратгормон повышает уровень кальция в крови и одновременно снижет уровень фосфора. Повышение содержания кальция связано с активацией фосфатазы, коллагеназы остеокластов, в результате чего при обновлении костной ткани происходит «вымывание» кальция в кровь. Кроме того паратгормон активирует всасывание кальция в желудочно – кишечном тракте при участии кальцийсвязывающего белка и уменьшает выведение кальция через почки. Фосфаты под действием паратгоромна, наоборот, усиленно выводятся через почки.

Кальцитонин снижает уровень кальция и фосфора в крови. Кальцитонин уменьшает активность остеокластов и, тем самым, снижает выделение кальция из костной ткани.

Витамин D , холекальциферол , антирахитический витамин .

Витамин D относится к жирорастворимым витаминам. Суточная потребность в витамине составляет 25 мкг . Витамин D под действием УФ - лучей синтезируется в коже из его предшественника 7-дегидрохолестерина, который в комплексе с белком поступает в печень. В печени при участии микросомальной системы оксигеназ происходит окисление в 25 положении с образованием 25 -гидрокисихолекальциферола. Этот предшественник витамина при участии специфического транспортного белка переносится в почки, где подвергается второй реакции гидроксилирования в первом положении с образованием активной формы витамина D 3 - 1,25-дигидрохолекальциферола (или кальцитриола) . . Реакция гидроксилирования в почках активируется паратгормоном при снижении уровня кальция в крови. При достаточном содержании кальция в организме в почках образуется неактивный метаболит 24,25 (ОН). В реакциях гидроксилирования принимает участие витамин С.

1,25 (ОН) 2 D 3 действует аналогично стероидным гормонам. Проникая в клетки – мишени, он взаимодействует с рецепторами, которые мигрируют в ядро клетки. В энтероцитах этот гормон – рецепторный комплекс стимулирует транскрипцию иРНК, отвечающую за синтез белка – переносчика кальция. В кишечнике усиливается всасывание кальция при участии кальцийсвязывающего белка и Са 2+ - АТФ-азы. В костной ткани витамин D 3 стимулирует процесс деминерализации. В почках активация витамином D 3 кальциевой АТФ-азы сопровождается увеличением реабсорбции ионов кальция и фосфатов. Кальцитриол участвует в регуляции процессов роста и дифференцировки клеток костного мозга. Он обладает антиоксидантным и противоопухолевым действием.

Гиповитаминоз приводит к заболеванию рахитом.

Гипервитаминоз приводит к выраженной деминерализации костей, кальцификацией мягких тканей.

Нарушение кальций – фосфорного обмена

Рахит проявляется нарушением минерализации костной ткани. Заболевание может быть следствием гиповитаминоза D 3. , отсутствием солнечных лучей, недостаточной чувствительностью организма к витамину. Биохимическими симптомами рахита являются снижение уровня кальция и фосфора в крови и снижение активности щелочной фосфатазы. У детей рахит проявляется нарушением остегенеза, деформаций костей, гипотонией мышц, повышенной нервно-мышечной возбудимостью. У взрослых гиповитаминоз приводит к кариесу и остеомаляции, у пожилых людей – к остеопорозу.

У новорожденных может развиваться транзиторная гипокальциемия , поскольку прекращается поступления кальция из организма матери и наблюдается гипопаратиреоз.

Гипокальцемия, гипофосфатемия могут встречаться при нарушении выработки паратгормона, кальцитонина, нарушении функции желудочно – кишечного тракта (рвота, диарея), почек, при механической желтухе, в период заживления переломов.

Обмен железа.

Общее содержание железа в организме взрослого человека составляет 5 г. Железо распределяется в основном внутриклеточно, где преобладает гемовое железо: гемоглобин, миоглобин, цитохромы. Внеклеточное железо представлено белком трансферрином. В плазме крови содержание железа равно 16-19 мкмоль/ л , в эритроцитах - 19 ммоль/л . О бмен железа у взрослых людей составляет 20-25 мг/сутки . Основная часть этого количества (90%) составляет эндогенное железо, освобождающееся при распаде эритроцитов, 10% - экзогенное железо, поступающее в составе пищевых продуктов.

Биологические функции железа:

  • обязательный компонент окислительно - восстановительных процессов в организме
  • транспорт кислорода (в составе гемоглобина)
  • депонирование кислорода (в составе миоглобина)
  • антиоксидантная функция (в составе каталазы и пероксидаз)
  • стимулирует иммунные реакции в организме

Всасывание железа происходит в кишечнике и является лимитированным процессом. Считается, что всасывается 1/10 часть железа пищевых продуктов. В пищевых продуктах содержится окисленное 3-х валентное железо, которое в кислой среде желудка переходит в F е 2+ . Всасывание железа происходит в несколько этапов: поступление в энтероциты при участии муцина слизистой оболочки, внутриклеточный транспорт ферментами энтероцитов, переход железа в плазму крови. Во всасывании железа участвует белок апоферритин, который связывает железо и остаётся в слизистой кишечника, создавая депо железа. Эта стадия обмена железа является регуляторной: синтез апоферритина уменьшается при недостатке железа в организме.

Всосавшееся железо транспортируется в составе белка трансферрина, где окисляется церулоплазмином до F е 3+ , в результате чего возрастает растворимость железа. Трансферрин взаимодействует с тканевыми рецепторами, количество которых очень вариабельно. Этот этап обмена также является регуляторным.

Железо может депонироваться в форме ферритина и гемосидерина. Ферритин печени – водорастворимый белок, содержащий до 20% F е 2+ в виде фосфата или гидроксида. Гемосидерин – нерастворимый белок, содержит до 30% F е 3+ , включает в свой состав полисахариды, нуклеотиды, липиды..

Выведение железа из организма происходит в составе слущивающегося эпителия кожи, кишечника. Незначительное количество железа теряется через почки с жёлчью и слюной.

К наиболее часто встречающейся патологии обмена железа отностся железодефицитная анемия. Однако возможно и перенасыщение организма железом с накоплением гемосидерина и развитием гемохроматоза .

ТКАНЕВАЯ БИОХИМИЯ

Биохимия соединительной ткани .

Разнообразные виды соединительной ткани построены по единому принципу: в большой массе межклеточного основного вещества (протеогликаны и сетчатые гликопротеиды) распределены волокна (коллагеновые, эластиновые, ретикулиновые) и разнообразные клетки (макрофаги, фибробласты, и другие клетки).

Соединительная ткань выполняет разнообразные функции:

  • опорная функция (костный скелет),
  • барьерная функция,
  • метаболическая функция (синтез в фибробластах химических компонентов ткани),
  • депонирующая функция (накопление меланина в меланоцитах),
  • репаративная функция (участие в заживлении ран),
  • участие в водно-солевом обмене (протеогликаны связывают внеклеточную воду)

Состав и обмен основного межклеточного вещества .

Протеогликаны (смотри химию углеводов) и гликопротеиды (там же).

Синтез гликопротеидов и протеогликанов .

Углеводный компонент протеогликанов представлен гликозаминогликанами (ГАГ), включающими в свой состав ацетиламиносахара и уроновые кислоты. Исходным веществом для их синтеза служит глюкоза

  1. глюкозо- 6 - фосфат → фруктозо-6-фосфат глютамин → глюкозамин .
  2. глюкоза → УДФ-глюкоза → УДФ - глюкуроновая кислота
  3. глюкозамин + УДФ-глюкуроновая кислота + ФАФС → ГАГ
  4. ГАГ + белок → протеогликан

Распад протеогликанов, гликопротеидов о существляется различными ферментами: гиалуронидазой, идуронидазой, гексаминидазами, сульфатазами .

Обмен белков соединительной ткани.

Обмен коллагена

Основным белком соединительной ткани является коллаген (структуру смотри в разделе «Химия белков»). Коллаген - это полиморфный белок с различными вариантами сочетания полипептидных цепей в его составе. В организме человека преобладают фибриллообразующие формы коллагена 1,2,3 типа.

Синтез коллагена.

Синтез коллагена происходит в фиробластах и во внеклеточном пространстве, включает несколько стадий. На первых стадиях синтезируется проколлаген (представлен 3 полипептидными цепями, имеющими в своём составе дополнительные N и С концевые фрагменты). Затем происходит посттрансляционная модификация проколлагена двумя способами: путем окисления (гидроксилирование) и путём гликозилирования.

  1. окислению подвергается аминокислоты лизин и пролин при участии ферментов лизиноксигеназы, пролиноксигеназы, ионов железа и витамина С. Образовавшиеся гидроксилизин, гидроксипролин, участвуют в формировании поперечных связей в коллагене
  2. присоединение углеводного компонента осуществляется при участии ферментов гликозилтрансфераз .

Модифицированный проколлаген поступает в межклеточное пространство, где подвергается частичному протеолизу путём отщепления концевых N и С фрагментов. В результате проколлаген переходит в тропоколлаген - структурный блок коллагенового волокна.

Распад коллагена .

Коллаген - медленно обменивающийся белок. Распад коллагена осуществляется ферментом коллагеназой. Он является цинксодержащим ферментом, который синтезируется в виде проколлагеназы. Проколлагеназа активируется трипсином, плазмином, калликреином путём частичного протеолиза. Коллагеназа расщепляет коллаген в середине молекулы на большие фрагменты, которые далее расщепляются цинксодержащими ферментами желатиназами .

Витамин «С», аскорбиновая кислота, антицинготный витамин

В обмене коллагена очень важную роль играет витамин «С». По химической природе он является лактоном кислоты, по структуре близкой глюкозе. Суточная потребность в аскорбиновой кислоте для взрослого человека составляет 50 – 100 мг. Витамин «С» распространён в фруктах, овощах. Роль витамина «С» заключается в следующем:

  • участвует в синтезе коллагена,
  • участвует в обмене тирозина,
  • участвует в переходе фолиевой кислоты в ТГФК,
  • является антиоксидантом

Авитаминоз «С» проявляется цингой (гингивит, анемия, кровоточивость).

Обмен эластина .

Обмен эластина изучен недостаточно. Считается, что синтез эластина в виде проэластина происходит только в эмбриональном периоде. Распад эластина осуществляется ферментом нейтрофилов эластазой , который синтезируется в виде неактивной проэластазы.

Особенности состав и обмена соединительной ткани в детском возрасте.

  • Выше содержание протеогликанов,
  • Иное соотношение ГАГ: больше гиалуроновой кислоты, меньше хондроттинсульфатов и кератансульфатов.
  • Преобладает коллаген 3 типа, менее устойчивый и более быстро обменивающийся.
  • Более интенсивный обмен компонентов соединительной ткани.

Нарушения обмена соединительной ткани.

Возможны врождённые нарушения обмена гликозаминогликанов и протеогликанов – мукополисахаридозы. Вторую группу заболеваний соединительной ткани составляют коллагенозы, в частности, ревматизм. При коллагенозах наблюдается деструктция коллагена, одним из симптомов которой является гидроксипролинурия

Биохимия поперечно - полосатой мышечной ткани

Химический состав мышц: 80-82% составляет вода, 20% приходится на сухой остаток. 18% сухого остатка приходится на белки, остальная часть его представлена азотистыми небелковыми веществами, липидами, углеводами, минеральными веществами.

Белки мышц .

Белки мышц делятся на 3 вида:

  1. саркоплазматические (водорастворимые) белки, составляют 30% всех белков мышц
  2. миофибриллярные (солерастворимые) белки, составляют 50% всех белков мышц
  3. стромальные (водонерастворимые) белки, составляют 20% всех мышечных белков

Миофибриллярные белки представлены миозином, актином, (основные белки) тропомиозином и тропонином (минорные белки).

Миозин - белок толстых нитей миофибрилл, имеет молекулярную массу около 500 000 д, состоит из двух тяжёлых цепей и 4 легких цепей. Миозин относится к группе глобулярно - фибрилярных белков. В нём чередуются глобулярные «головки» из лёгких цепей и фибриллярные «хвосты» из тяжёлых цепей. «Головка» миозина обладает ферментативной АТФ-азной активностью. На миозин приходится 50% миофибриллярных белков.

Актин представлен двумя формами глобулярной (G -форма ), фибриллярной (F -форма). G - форма имеет молекулярную массу 43 000 д. F -форма актина имеет вид закрученных нитей из шаровидных G -форм. На этот белок приходится 20-30% миофибриллярных белков.

Тропомиозин - минорный белок с молекулярной массой 65 000 д. Он имеет овальную палочковидную форму, укладывается в углублениях активной нити, и выполняет функцию «изолятора» между активной и миозиновой нитью.

Тропонин – Са - зависимый белок, который меняет свою структуру при взаимодействии с ионами кальция.

Саркоплазматитческие белки представлены миоглобином, ферментами, компонентами дыхательной цепи.

Стромальные белки - коллаген, эластин.

Азотистые экстрактивные вещества мышц.

К азотистым небелковым веществам относятся нуклеотиды (АТФ), аминокислоты (в частности, глютамат), дипептиды мышц (карнозин и ансерин). Данные дипептиды влияют на работу натриевых, кальциевых насосов, активируют работу мышц, регулируют апопоптоз, являются антиоксидантами. К азотистым веществам относится креатин, фосфокреатин и креатинин. Креатин синтезируется в печени и транспортируется в мышцы.

Органические безазотистые вещества

В мышцах содержатся все классы липидов . Углеводы представлены глюкозой, гликогеном и продуктами углеводного обмена (лактат, пируват).

Минеральные вещества

В мышцах содержится набор многих минеральных веществ. Наиболее высока концентрация кальция, натрия, калия, фосфора.

Химизм мышечного сокращения и расслабления.

При возбуждении поперечно – полосатых мышц происходит выход ионов кальция из саркоплазматического ретикулума в цитоплазму, где концентрация Са 2+ увеличивается до 10 -3 моля. Ионы кальция взаимодействует с регуляторным белком тропонином, изменяя его конформацию. В результате этого происходит смещение регуляторного белка тропомиозина вдоль актинового волокна и освобождение участков взаимодействия актина и миозина. Активируется АТФ-азная активность миозина. За счёт энергии АТФ изменяется угол наклона «головки» миозина по отношению к «хвосту», и в результате происходит скольжение актиновых нитей относительно миозиновых, наблюдается сокращение мышц.

По прекращении поступления импульсов ионы кальция «закачивается» в саркоплазматический ретикулум при участии Са - АТФ-азы за счёт энергии АТФ. Концентрация Са 2+ в цитоплазме снижается до 10 -7 моля, что ведёт к освобождению тропонина от ионов кальция. Это, в свою очередь, сопровождается изоляцией сократительных белков актина и миозина белком тропомиозином, происходит расслабление мышц .

Для мышечного сокращения последовательно используются следующие источники энергии :

  1. ограниченный запас эндогенного АТФ
  2. незначительный фонд креатинфосфата
  3. образование АТФ за счёт 2 молекул АДФ при участии фермента миокиназы

(2 АДФ → АМФ + АТФ)

  1. анаэробное окисление глюкозы
  2. аэробные процессы окисления глюкозы, жирных кислот, ацетоновых тел

В детском возрасте в мышцах повышено содержание воды, меньше доля миофибриллярных белков, выше уровень стромальных белков.

К нарушениям химического состава и функции поперечно - полосатых мышц относятся миопатии, при которых наблюдается нарушение энергетического обмена в мышцах и снижение содержания миофибриллярных сократительных белков.

Биохимия нервной ткани .

Серое вещество головного мозга (тела нейронов) и белое вещество (аксоны) отличаются содержанием воды и липидов. Химический состав серого и белого вещества:

Белки головного мозга

Белки головного мозга различаются по растворимости. Выделяют водорастворимые (солерастворимые) белки нервной ткани, к которым относятся нейроальбумины, нейроглобулины, гистоны, нуклеопротеиды, фосфопротеиды, и водонерастворимые (соленерастворимые), к которым относятся нейроколлаген, нейроэластин, нейростромин.

Азотистые небелковые вещества

Небелковые азотсодержащие вещества мозгапредставлены аминокислотами, пуринами, мочевой кислотой, дипептидом карнозином, нейропептидами, нейромедиаторами. Среди аминокислот в большей концентрации содержатся глютамат и аспатрат, относящиеся к возбуждающим аминокислотам головного мозга.

Нейропептиды (нейроэнкефалины, нейроэндорфины) – это пептиды, обладающие морфиноподобным обезболивающим эффектом. Они являются иммуномодуляторами, выполняют нейромедиаторную функцию. Нейромедиаторы норадреналин и ацетилхолин являются биогенными аминами.

Липиды головного мозга

Липиды составляют 5% сырой массы серого вещества и 17% сырой массы белого вещества, соответственно 30 - 70% от сухой массы мозга. Липиды нервной ткани представлены:

  • свободными жирными кислотами (арахидоновая, цереброновая, нервоновая)
  • фосфолипидами (ацетальфосфатиды, сфингомиелины, холинфосфатиды, холестерин)
  • сфинголипидами (ганглиозиды, цереброзиды)

Распределение жиров в сером и белом веществе неравномерно. В сером веществе отмечается более низкое содержание холестерина, высокое содержание цереброзидов. В белом веществе выше доля холестерина и ганглиозидов.

Углеводы головного мозга

Углеводы содержатся в ткани мозга в очень низкой концентрации, что является следствием активного использования глюкозы в нервной ткани. Углеводы представлены глюкозой в концентрации 0,05%, метаболитами углеводного обмена.

Минеральные вещества

Натрий, кальций, магний, распределены в сером и белом веществе довольно равномерно. В белом веществе отмечается повышенная концентрация фосфора.

Основная функция нервной ткани заключается в проведении и передаче нервного импульса.

Проведение нервного импульса

Проведение нервного импульса связано с изменением концентрации натрия и калия внутри и вне клеток. При возбуждении нервного волокна резко увеличивается проницаемость нейронов и их отростков для натрия. Натрий из внеклеточного пространства поступает внутрь клеток. Выход калия из клеток задерживается. В результате происходит возникновение заряда на мембране: наружная поверхность приобретает отрицательный заряд, а внутренняя положительный заряд - возникает потенциал действия . По окончании возбуждения ионы натрия «выкачиваются» во внеклеточное пространство при участии К, Na -АТФ-азы, и мембрана перезаряжается. Снаружи возникает положительный заряд, а внутри - отрицательный заряд - возникает потенциал покоя .

Передача нервного импульса

Передача нервного импульса в синапсахпроисходит в синапсах осуществляется с помощью нейромедиаторов. Классическими нейромедиаторами являются ацетилхолин и норадреналин.

Ацетилхолин синтезируется их ацетил-КоА и холина при участии фермента ацетилхолинтрансферазы , накапливается в синаптических пузырьках, выделяется в синаптическую щель и взаимодействует с рецепторами постсинаптической мембраны. Ацетилхолин разрушается ферментом холинэстеразой .

Норадреналин синтезируется из тирозина, разрушается ферментом моноаминоксидазой .

В качестве медиаторов могут выступать также ГАМК (гамма-аминомасляная кислота), серотонин, глицин.

Особенности метаболизма нервной ткани заключаются в следующем:

  • наличие гематоэнцефалического барьера ограничивает проницаемость мозга для многих веществ,
  • преобладают аэробные процессы
  • основным энергетическим субстратом является глюкоза

У детей к моменту рождения сформировано 2/3 нейронов, остальная часть их формируется в течение первого года. Масса мозга у годовалого ребёнка составляет около 80% от массы мозга взрослого человека. В процессе созревания мозга резко увеличивается содержание липидов, активно протекают процессы миелинизации.

Биохимия печени.

Химический состав ткани печени: 80% вода, 20% сухой остаток (белки, азотистые вещества, липиды, углеводы, минеральные вещества).

Печень участвует во всех видах обмена организма человека.

Углеводный обмен

В печени активно протекает синтез и распад гликогена, глюконеогенез, происходит усвоение галактозы и фруктозы, активен пентозофосфатный путь.

Липидный обмен

В печени происходит синтез триацилглицеринов, фосфолипидов, холестерина, синтез липопротеидов (ЛПОНП, ЛПВП), синтез жёлчных кислот из холестерина, синтез ацетоновых тел, которые затем транспортируются в ткани,

Азотистый обмен

Для печени характерен активный обмен белков. В ней происходит синтез всех альбуминов и большинства глобулинов плазмы крови, факторов свёртывания крови. В печени также определённый создаётся резерв белков организма. В печени активно протекает катаболизм аминокислот – дезаминирование, трансаминирование, синтез мочевины. В гепатоцитах происходит распад пуринов с образованием мочевой кислоты, синтез азотистых веществ - холина, креатина.

Антитоксическая функция

Печень является важнейшим органом обезвреживания как экзогенных (лекарственных веществ), так и эндогенных токсических веществ (билирубин, продукты гниения белков аммиак). Детоксикация ядовитых веществ в печени происходит в несколько этапов:

  1. повышается полярность и гидрофильность обезвреживаемых веществ путём окисления (индол в индоксил), гидролиза (ацетилсалициловая → уксусная + салициловая кислоты), восстановления и т. д.
  2. конъюгирование с глюкуроновой кислотой, серной кислотой, гликоколом, глютатионом, металотионеином (для солей тяжелых металлов)

В результате биотрансформации токсичность, как правило, заметно снижается.

Пигментный обмен

Участие печени в обмене жёлчных пигментов состоит в обезвреживании билирубина, разрушении уробилиногена

Порфириновый обмен :

В печени происходит синтез порфобилиногена, уропорфириногена, копропорфириногена, протопорфирина и гема.

Обмен гормонов

Печень активно осуществляет инактивацию адреналина, стероидов (конъюгирование, окисление), серотонина, других биогенных аминов.

Водно-солевой обмен

Печень косвенно участвует в водно-солевом обмене путём синтеза белков плазмы крови, определяющих онкотическое давление, синтеза ангиотензиногена – предшественника ангиотензина II .

Минеральный обмен

: В печени происходит депонирование железа, меди, синтез транспортных белков церулоплазмина и трансферрина, экскреция минеральных веществ в составе жёлчи..

В раннем детском возрасте функции печени находятся в стадии становления, возможно их нарушение.

Литература

Баркер Р.: Наглядная неврология. - М.: ГЭОТАР-Медиа, 2005

И.П. Ашмарин, Е.П. Каразеева, М.А. Карабасова и др.: Патологическая физиология и биохимия. - М.: Экзамен, 2005

Кветная Т.В.: Мелатонин - нейроиммуноэндокринный маркер возрастной патологии. - СПб.: ДЕАН, 2005

Павлов А.Н.: Экология: рациональное природопользование и безопасность жизнедеятельности. - М.: Высшая школа, 2005

Печерский А.В.: Частичный возрастной андрогенный дефицит. - СПб.: СПбМАПО, 2005

Под ред. Ю.А. Ершова; Рец. Н.Е. Кузьменко: Общая химия. Биофизическая химия. Химия биогенных элементов. - М.: Высшая школа, 2005

Т.Л. Алейникова и др. ; Под ред. Е.С. Северина; Рец.: Д.М. Никулина, З.И. Микашенович, Л.М. Пустовалова: Биохимия. - М.: ГЭОТАР-МЕД, 2005

Тюкавкина Н.А.: Биоорганическая химия. - М.: Дрофа, 2005

Жижин Г.В.: Саморегулируемые волны химических реакций и биологических популяций. - СПб.: Наука, 2004

Иванов В.П.: Белки клеточных мембран и сосудистые дистонии у человека. - Курск: КГМУ КМИ, 2004

Ин-т физиологии растений им. К.А. Тимирязева РАН; Отв. ред. В.В. Кузнецов: Андрей Львович Курсанов: Жизнь и творчество. - М.: Наука, 2004

Комов В.П.: Биохимия. - М.: Дрофа, 2004

Другие похожие работы, которые могут вас заинтересовать.вшм>

21479. ОБМЕН БЕЛКОВ 150.03 KB
Различают три вида азотистого баланса: азотистое равновесие положительный азотистый баланс отрицательный азотистый баланс При положительном азотистом балансе поступление азота преобладает над его выделением. При заболевании почек возможен ложный положительный азотистый баланс при котором происходит задержка в организме конечных продуктов азотистого обмена. При отрицательном азотистом балансе преобладает выделение азота над его поступлением. Это состояние возможно при таких заболеваниях как туберкулез ревматизм онкологические...
21481. ОБМЕН И ФУНКЦИИ ЛИПИДОВ 194.66 KB
Жиры включают в свой состав различные спирты и жирные кислоты. Спирты представлены глицерином сфингозином холестерином В тканях человека преобладают длинноцепочечные жирные кислоты с чётным числом углеродных атомов. Различают насыщенные и ненасыщенные жирные кислоты...
385. СТРОЕНИЕ И ОБМЕН УГЛЕВОДОВ 148.99 KB
Строение и биологическая роль глюкозы и гликогена. Гексозодифосфатный путь расщепления глюкозы. Открытая цепь и циклические формы углеводов на рисунке молекула глюкозы представлена в виде открытой цепи и в виде циклической структуры. У гексоз типа глюкозы первый атом углерода соединяется с кислородом при пятом углеродном атоме что приводит к образованию шестичленного кольца.
7735. ОБЩЕНИЕ КАК ОБМЕН ИНФОРМАЦИЕЙ 35.98 KB
По невербальным каналам коммуникации в процессе общения передается около 70 процентов информации и только 30 по вербальным. Следовательно больше о человеке может сказать не слово а взгляд мимика пластика позы жесты телодвижения межличностная дистанція одежда и другие невербальные средства общения. Итак основными задачами невербального общения можно считать следующие: создание и поддержание психологического контакта регуляция процесса общения; добавление новых значимых оттенков словесному тексту правильное толкование слов;...
6645. Обмен веществ и энергии (метаболизм) 39.88 KB
Поступление веществ в клетку. Благодаря содержанию растворов солей сахаров и других осмотически активных веществ клетки характеризуются наличием в них определенного осмотического давления. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.
21480. ОБМЕН И ФУНКЦИИ НУКЛЕИНОВЫХ КИСЛОТ 116.86 KB
Дезоксирибонуклеиновая кислота Азотистые основания в ДНК представлены аденином гуанином тимином цитозином углевод - дезоксирибозой. ДНК играет важную роль в хранении генетической информации. В отличие от РНК в ДНК присутствуют две полинуклеотидные цепи. Молекулярная масса ДНК около 109 дальтон.
386. СТРОЕНИЕ И ОБМЕН ЖИРОВ И ЛИПОИДОВ 724.43 KB
В составе липидов обнаружены многочисленные и разнообразные структурные компоненты: высшие жирные кислоты спирты альдегиды углеводы азотистые основания аминокислоты фосфорная кислота и др. Жирные кислоты входящие в состав жиров делятся на предельные и непредельные. Жирные кислоты Некоторые физиологически важные насыщенные жирные кислоты Число атомов С Тривиальное название Систематическое название Химическая формула соединения...
10730. Международный технологический обмен. Международная торговля услугами 56.4 KB
Транспортные услуги на мировом рынке. Основное отличие состоит в том что услуги обычно не имеют овеществленной формы хотя ряд услуг приобретает ее например: в виде магнитных носителей для компьютерных программ различной документации отпечатанной на бумаге и др. Услуги в отличие от товаров производятся и потребляются в основном одновременно и не подлежат хранению. ситуация когда продавец и покупатель услуги не перемещаются через границу се пересекает только услуга.
4835. Обмен железа и нарушение обмена железа. Гемоседероз 138.5 KB
Железо является важнейшим микроэлементом, принимает участие в дыхании, кроветворении, иммунобиологических и окислительно-восстановительных реакциях, входит в состав более 100 ферментов. Железо является незаменимой составной частью гемоглобина и миогемоглобина. В организме взрослого человека содержится около 4 г железа, из них более половины (около 2,5 г) составляет железо гемоглобина.

Значение темы: Вода и растворенные в ней вещества создают внутреннюю среду организма. Важнейшие параметры водно-солевого гомеостаза – осмотическое давление, рН и объем внутриклеточной и внеклеточной жидкости. Изменение этих параметров может привести к изменению артериального давления, ацидозу или алкалозу, дегидратации и отекам тканей. Основные гормоны, участвующие в тонкой регуляции водно-солевого обмена и действующие на дистальные канальцы и собирательные трубочки почек: антидиуретический гормон, альдостерон и натриуретический фактор; ренин-ангиотензивная система почек. Именно в почках происходит окончательное формирование состава и объема мочи, обеспечивающее регуляцию и постоянство внутренней среды. Почки отличаются интенсивным энергетическим обменом, что связано с необходимостью активного трансмембранного транспорта значительных количеств веществ при образовании мочи.

Биохимический анализ мочи дает представление о функциональном состоянии почек, обмена веществ в различных органах и организме в целом, способствует выяснению характера патологического процесса, позволяет судить об эффективности проводимого лечения.

Цель занятия: изучить характеристику параметров водно-солевого обмена и механизмы их регуляции. Особенности метаболизма в почках. Научиться проводить и оценивать биохимический анализ мочи.

Студент должен знать:

1. Механизм образования мочи: клубочковая фильтрация, реабсорбция и секреция.

2. Характеристика водных компартментов организма.

3. Основные параметры жидкой среды организма.

4. Чем обеспечивается постоянство параметров внутриклеточной жидкости?

5.Системы (органы, вещества), обеспечивающие постоянство внеклеточной жидкости.

6.Факторы (системы), обеспечивающие осмотическое давление внеклеточной жидкости и его регуляцию.

7. Факторы (системы), обеспечивающие постоянство объема внеклеточной жидкости и его регуляцию.

8. Факторы (системы), обеспечивающие постоянство кислотно-щелочного состояния внеклеточной жидкости. Роль почек в этом процессе.

9. Особенности метаболизма в почках: высокая активность обмена веществ, начальный этап синтеза креатина, роль интенсивного глюконеогенеза (изоферменты), активация витамина Д3.

10. Общие свойства мочи (количество за сутки –диурез, плотность, цвет, прозрачность), химический состав мочи. Патологические компоненты мочи.

Студент должен уметь:

1.Провести качественное определение основных компонентов мочи.



2.Оценить биохимический анализ мочи.

Студент должен владеть информацией: о некоторых патологических состояниях, сопровождающихся изменением биохимических параметров мочи (протеинурия, гематурия, глюкозурия, кетонурия, билирубинурия, порфиринурия); Принципами планирования лабораторного исследования мочи и анализа результатов для постановки предварительного заключения о биохимических сдвигах на основании результатов лабораторного обследования.

1.Строение почки, нефрона.

2. Механизмы формирования мочи.

Задания для самоподготовки:

1. Обратитесь к курсу гистологии. Вспомните строение нефрона. Отметьте проксимальный каналец, дистальный извитой каналец, собирательную трубку, сосудистый клубочек, юкстагломерулярный аппарат.

2. Обратитесь к курсу нормальной физиологии. Вспомните механизм образования мочи: фильтрация в клубочках, реабсорбция в канальцах с образованием вторичной мочи и секреция.

3. Регуляция осмотического давления и объема внеклеточной жидкости связана с регуляцией, главным образом, содержания ионов натрия и воды во внеклеточной жидкости.

Назовите гормоны, участвующие в этой регуляции. Опишите их эффект по схеме: причина секреции гормона; орган (клетки) –мишени; механизм их действия в этих клетка; конечный эффект их действия.

Проверьте свои знания:

А.Вазопрессин (все верно, кроме одного):

а. синтезируется в нейронах гипоталамуса; б. секретируется при повышении осмотического давления; в. увеличивает скорость реабсорбции воды из первичной мочи в почечных канальцах; г. увеличивает реабсорбцию в почечных канальцах ионов натрия; д. снижает осмотическое давление е. моча становится более концентрированной.



Б. Альдостерон (все верно, кроме одного):

а. синтезируется в коре надпочечников; б. секретируется при снижении концентрации ионов натрия в крови; в. в почечных канальцах увеличивает реабсорбцию ионов натрия; г. моча становится более концетрированной.

д. главным механизмом регуляции секреции аренин-ангиотензивная система почек.

В. Натриуретический фактор (все верно, кроме одного):

а. синтезируется в основ клетками предсердия; б. стимул секреции – повышение артериального давления; в. усиливает фильтрующую способность клубочков; г. увеличивает образование мочи; д. моча становится менее концентрированной.

4. Составьте схему, иллюстрирующую роль ренин-ангиотензивной системы в регуляции секреции альдостерона и вазопрессина.

5. Постоянство кислотно-основного равновесия внеклеточной жидкости поддерживается буферными системами крови; изменением легочной вентиляции и скорости выделения почками кислот(Н+).

Вспомните буферные системы крови (основная бикарбонатная)!

Проверьте свои знания:

Пища животного происхождения имеет кислый характер (преимущественнонно за счет фосфатов, в отличие от пищи растительного происхождения). Как изменится рН мочи у человека, использующего преимущественно пищу животного происхождения:

а. ближе к рН 7,0; б.рН около 5.; в. рН около 8,0.

6. Ответьте на вопросы:

А. Чем объяснить высокую долю кислорода, потребляемую почками (10%);

Б. Высокую интенсивность глюконеогенеза;??????????

В. Роль почек в обмене кальция.

7. Одна из главных задач нефронов реабсорбировать из крови полезные вещества в нужном количестве и удалить из крови конечные продукты обмена.

Составьте таблицу Биохимические показатели мочи:

Аудиторная работа.

Лабораторная работа:

Провести ряд качественных реакций в пробах мочи разных пациентов. Сделать заключение о состоянии обменных процессов по результатам биохимического анализа.

Определение рН.

Ход работы: На середину индикаторной бумаги наносят 1-2 капли мочи и по изменению цвета одной из окрашенных полосок, совпадающему с окраской контрольной полосы, устанавливают рН исследуемой мочи. В норме рН 4,6 – 7,0

2. Качественная реакция на белок . Нормальная моча белка не содержит (следовые количества не открываются обычными реакциями). При некоторых патологических состояниях в моче может появиться белок – протеинурия.

Ход работы : К 1-2 мл мочи добавить 3-4 капли свежеприготовленного 20% раствора сульфасалициловой кислоты. При наличии белка появляется белый осадок или муть.

3. Качественная реакция на глюкозу (реакция Фелинга).

Ход работы: К 10 каплям мочи прибавить 10 капель реактива Фелинга. Нагреть до кипения. При наличии глюкозы появляется красное окрашивание. Результаты сравнить с нормой. В норме в моче следовые количества глюкозы качественными реакциями не обнаруживается. Принято считать в норме глюкозы в моче нет. При некоторых патологических состояниях в моче появляется глюкоза- глюкозурия.

Определение можно провести с помощью тест-полоски (индикаторной бумаги)/

Обнаружение кетоновых тел

Ход работы: На предметное стекло нанести каплю мочи, каплю 10% раствора едкого натрия и каплю свежеприготовленного 10% раствора нитропруссида натрия. Появляется красное окрашивание. Прилить 3 капли концентрированной уксусной кислоты – появляется вишневое окрашивание.

В норме кетоновые тела в моче отсутствуют. При некоторых патологических состояниях в моче появляется кетоновые тела – кетонурия.

Самостоятельно решить задачи, ответить на вопросы:

1. Увеличилось осмотическое давление внеклеточной жидкости. Опишите, в виде схемы, последовательность событий, которые приведут к его снижению.

2. Как изменится продукция альдостерона, если избыточная продукция вазопрессина приведет к значительному снижению осмотического давления.

3. Изложите последовательность событий (в виде схемы), направленных на восстановление гомеостаза при снижении концентрации хлорида натрия в тканях.

4. У пациента сахарный диабет, который сопровождается кетонемией. Как главная буферная система крови – бикарбонатная - ответит на изменение кислотно-основного равновесия? Какова роль почек в восстановлении КОС? Изменится ли рН мочи у данного пациента.

5.Спортсмен, готовясь к соревнованиям, проходит усиленную тренировку. Как измениться скорость глюконеогенеза в почках (ответ аргументировать)? Возможно ли изменение рН мочи у спортсмена; ответ аргументировать)?

6. У пациента отмечены признаки нарушения метаболизма в костной ткани, что отражается и на состоянии зубов. Уровень кальцитонина и паратгормона в пределах физиологической нормы. Пациент получает витамин Д (холекальциферол) в необходимых количествах. Сделайте предположение о возможной причине нарушения метаболизма.

7. Рассмотрите стандартный бланк «Общий анализ мочи» (многопрофильная клиника ТюмГМА) и умейте объяснить физиологическую роль и диагностическое значение биохимических компонентов мочи, определяемых в биохимических лабораториях. Запомните биохимические показатели мочи в норме.

Занятие 27. Биохимия слюны.

Значение темы: В полости рта сочетаются различные ткани и обитают микроорганизмы. Они находятся во взаимосвязи и определенном постоянстве. И в поддержании гомеостаза ротовой полости, и организма в целом, важнейшая роль принадлежит ротовой жидкости и, конкретно, слюне. Полость рта, как начальный отдел пищеварительного тракта, является местом первого контакта организма с пищей, лекарственными веществами и другими ксенобиотиками, микроорганизмами. Формирование,состояние и функционирование зубов и слизистой оболочки полости рта также во многом определяется химическим составом слюны.

Слюна выполняет несколько функций, определяемых физико-химическими свойствами и составом слюны. Знание химического состава слюны, функций, скорости слюноотделения, взаимосвязи слюны с болезнями полости рта способствует выявлению особенностей патологических процессов и поиску новых эффективных средств профилактики стоматологических заболеваний.

Некоторые биохимические показатели чистой слюны коррелируются с биохимическими показателями плазмы крови, в связи с этим анализ слюны является удобным неинвазивным методом, используемый в последние годы для диагностики стоматологических и соматических заболеваний.

Цель занятия: Изучить физико-химические свойства, составные компоненты слюны, обуславливающие ее основные физиологические функции. Ведущие факторы, ведущие к развитию кариеса,отложению зубного камня.

Студент должен знать:

1 . Железы, секретирующие слюну.

2.Структура слюны (мицеллярное строение).

3. Минерализующая функция слюны и факторы, обуславливающие и влияющие на эту функции: перенасыщенность слюны; объем и скорость сальвации; рН.

4. Защитная функция слюны и компоненты системы, обуславливающие эту функцию.

5. Буферные системы слюны. Показатели рН в норме. Причины нарушения КОС (кислотно-основное состояние) в полости рта. Механизмы регуляции КОС в полости рта.

6. Минеральный состав слюны и в сравнении с минеральным составом плазмы крови. Значение компонентов.

7. Характеристика органических компонентов слюны, специфические для слюны компоненты, их значение.

8. Пищеварительная функция и факторы, ее обуславливающие.

9. Регуляторная и выделительная функции.

10. Ведущие факторы, ведущие к развитию кариеса,отложению зубного камня.

Студент должен уметь:

1. Различать понятия «собственно слюна или слюна», «десневая жидкость», «ротовая жидкость».

2. Уметь объяснить степень изменения резистентности к кариесу при изменении рН слюны, причины изменения рН слюны.

3. Собрать смешанную слюну для анализа и провести анализ химического состава слюны.

Студент должен владеть: информацией о современных представлениях о слюне как объекте неинвазивных биохимических исследований в клинической практике.

Сведения из базовых дисциплин, необходимые для изучения темы:

1. Анатомия и гистология слюнных желез; механизмы слюноотделения и его регуляция.

Задания для самоподготовки:

Изучите материал темы в соответствии с целевыми вопросами («студент должен знать») и письменно выполните следующие задания:

1.Запишите факторы, определяющие регуляцию слюноотделения.

2.Изобразите схематично мицеллу слюны.

3. Составьте таблицу: Минеральный состав слюны и плазмы крови в сравнении.

Изучите значение перечисленных веществ. Запишите иные неорганические вещества, содержащиеся в слюне.

4. Составьте таблицу: Основные органические компоненты слюны и их значение.

6. Запишите факторы, ведущие к снижению и повышению резистентности

(соответственно) к кариесу.

Аудиторная работа

Лабораторная работа: Качественный анализ химического состава слюны

Поддержание одной из сторон гомеостаза - водно-электролитного баланса организма осуществляется с помощью нейроэндокринной регуляции. Высший вегетативный центр жажды располагается в вентромедиальном отделе гипоталамуса. Регуляция выделения воды и электролитов осуществляется преимущественно путем нейрогуморального контроля функции почек. Особую роль в этой системе играют два тесно связанных между собой нейрогормональных механизма - секреция альдостерона и (АДГ). Главным направлением регулирующего действия альдостерона служит его тормозящие влияние на все пути выделения натрия и, прежде всего на канальцы почек (антинатриуремическое действие). АДГ поддерживает баланс жидкости, непосредственно препятствуя выделению воды почками (антидиуретическое действие). Между деятельности альдостеронового и антидиуретического механизмов существует постоянная, тесная взаимосвязь. Потеря жидкостей стимулирует через волюморецепторы секрецию альдостерона, в результате чего происходит задержка натрия и повышение концентрации АДГ. Эффекторным органом обеих систем являются почки.

Степень потери воды и натрия определяют механизмы гуморальной регуляции водно-солевого обмена: антидиуретический гормон гипофиза, вазопрессин и надпочечниковый гормон альдостерон, воздействующие на наиболее важный орган для подтверждения постоянства водно-солевого баланса в организме, какими являются почки. АДГ образуется в супраоптическом и паравентрикулярном ядрах гипоталамуса. По портальной системе гипофиза этот пептид попадает в заднюю долю гипофиза, концентрируется там и выделяется в кровь под влиянием нервных импульсов, поступающих в гипофиз. Мишенью АДГ является стенка дистальных канальцев почек, где он усиливает выработку гиалуронидазы, которая деполимеризует гиалуроновую кислоту, тем самым повышает проницаемость стенок сосудов. Вследствие этого вода из первичной мочи пассивно диффундирует в клетки почек в силу осмотического градиента между гиперосмотической межклеточной жидкостью организма и гипоосмолярной мочой. Почки за сутки пропускают через свои сосуды примерно 1000 л крови. 180 л первичной мочи фильтруется через клубочки почек, но лишь 1% жидкости, профильтрованной почками, превращается в мочу, 6/7 жидкости, составляющей первичную мочу, подвергается обязательной реабсорбции вместе с другими растворенными в ней веществами в проксимальных канальцах. Остальная вода первичной мочи подвергается реабсорбции в дистальных канальцах. В них осуществляется формирование первичной мочи по объему и составу.

Во внеклеточной жидкости осмотическое давление регулируют почки, которые могут выделять мочу с концентрацией хлорида натрия от следовой до 340 ммоль/л. При выделении мочи, бедной хлоридом натрия, осмотическое давление из-за задержки соли будет возрастать, а при быстром выделении соли – падать.


Концентрация мочи контролируется гормонами: вазопрессин (антидиуретический гормон), усиливая обратное всасывание воды, повышает концентрацию соли в моче, альдостерон стимулирует обратное всасывание натрия. Продукция и секреция этих гормонов зависит от осмотического давления и концентрации натрия во внеклеточной жидкости. При снижении концентрации соли в плазме увеличивается продукция альдостерона и задержка натрия возрастает, при повышении – увеличивается продукция вазопрессина, а продукция альдостерона падает. Это увеличивает реабсорбцию воды и потери натрия, способствует уменьшению осмотического давления. Кроме того, рост осмотического давления вызывает жажду, что увеличивает потребление воды. Сигналы для образования вазопрессина и ощущение жажды инициируют осморецепторы гипоталамуса.

Регуляция клеточного объема и концентрации ионов внутри клеток - это энергозависимые процессы, включающие активный транспорт натрия и калия через клеточные мембраны. Источником энергии для систем активного транспорта, как практически при любых энергетических затратах клетки, является обмен АТФ. Ведущий фермент - натрий-калиевая АТФ-аза - дает клеткам возможность перекачивать натрий и калий. Этому ферменту необходим магний, а, кроме того, для максимальной активности требуется одновременное присутствие как натрия, так и калия. Одним из следствий существования различных концентраций калия и других ионов на противоположных сторонах клеточной мембраны является генерация разности электрических потенциалов на мембране.

На обеспечение работы натриевого насоса расходуется до 1/3 общей энергии, запасенной клетками скелетных мышц. При гипоксии или вмешательстве любых ингибиторов в метаболизм клетка набухает. Механизм набухания, заключается в поступление ионов натрия и хлора в клетку; это приводит к возрастанию внутриклеточной осмолярности, что в свою очередь увеличивает содержание воды, ибо она следует за растворенным веществом. Одновременная потеря калия не эквивалентна поступлению натрия, и поэтому итогом будет повышение содержания воды.

Эффективная осмотическая концентрация (тоничность, осмолярность) внеклеточной жидкости изменяется практически параллельно концентрации в ней натрия, который вместе со своими анионами обеспечивает не менее 90% ее осмотической активности. Колебания (даже в патологических условиях) калия и кальция не превышают нескольких миллиэквивалентов на 1л и не отражаются существенно на величине осмотического давления.

Гипоэлектролитемией (гипоосмией, гипоосмолярностью, гипотоничностью) внеклеточной жидкости называют падение осмотической концентрации ниже 300 мосм/л. Это соответствует снижению концентрации натрия ниже 135 ммоль/л. Гиперэлектролитемией (гиперосмолярностью, гипертоничностью) называют превышение осмотической концентрации 330 мосм/л и концентрацией натрия 155 ммоль/л.

Большие колебания объемов жидкости в секторах организма обусловлены сложными биологическими процессами, подчиняющимися физико-химическим законам. При этом большое значение имеет принцип электронейтральности, заключающийся в том, что сумма положительных зарядов во всех водных пространствах равна сумме отрицательных зарядов. Постоянно возникающие изменения концентрации электролитов в водных средах сопровождаются изменением электропотенциалов с последующим восстановлением. При динамическом равновесии образуются стабильные концентрации катионов и анионов по обе стороны биологических мембран. Однако, необходимо отметить, что электролиты - не единственные осмотически активные компоненты жидкой среды организма, поступающие с пищей. Окисление углеводов и жиров обычно приводят к образованию углекислого газа и воды, которые могут просто выделяться легкими. При окислении аминокислот образуется аммиак и мочевина. Превращение аммиака в мочевину обеспечивает организм человека одним из механизмов детоксикации, но при этом летучие соединения, потенциально удаляемые легкими, превращаются в нелетучие, которые должны уже выводиться почками.

Обмен воды и электролитов, питательных веществ, кислорода и двуокиси углерода и других конечных продуктов метаболизма, в основном, происходит за счет диффузии. Капиллярная вода несколько раз в секунду обменивается с интерстициальной тканью водой. Благодаря растворимости в липидах кислород и двуокись углерода свободно диффундируют через все капиллярные мембран; в то же время вода и электролиты, как полагают проходят через мельчайшие поры эндотелиальной мембраны.

7. Принципы классификации и основные виды расстройств водного обмена.

Необходимо отметить, что единой общепринятой классификации нарушений водно-электролитного баланса не существует. Все виды нарушений в зависимости от изменения объема воды принято делить: с увеличением объема внеклеточной жидкости - водный баланс положительный (гипергидратация и отеки); с уменьшением объема внеклеточной жидкости – отрицательный водный баланс (дегидратация). Гамбиргер и соавт. (1952) предложили подразделять каждую из этих форм на экстра- и интерцеллюлярную. Избыток и уменьшение общего количества воды рассматривают всегда в связи с концентрацией натрия во внеклеточной жидкости (осмолярностью ее). В зависимости от изменения осмотической концентрации гипер- и дегидратацию подразделяют на три вида: изоосмолярную, гипоосмолярную и гиперосмолярную.

Избыточное накопление воды в организме (гипергидратация, гипергидрия).

Изотоническая гипергидратация представляет собой увеличение внеклеточного объема жидкости без нарушения осмотического давления. При этом перераспределение жидкости между внутри- и внеклеточным секторами не происходит. Увеличение общего объема воды в теле совершается за счет внеклеточной жидкости. Такое состояние может быть результатом сердечной недостаточности, гипопротеинемии при нефротическом синдроме, когда объем циркулирующей крови остается постоянным за счет перемещения жидкой части в интерстициальный сегмент (появляются пальпируемые отеки конечностей, может развиться отек легких). Последнее может явиться тяжелым осложнением, связанным с парентеральным введением жидкости в терапевтических целях, вливание больших количеств физиологического или Рингеровского раствора в эксперименте или больным в послеоперационном периоде.

Гипоосмолярная гипергидратация , или водное отравление обусловлено избыточным накопление воды без соответствующей задержки электролитов, нарушением выведения жидкости из-за почечной недостаточности или неадекватной секреции антидиуретического гормона. В эксперименте это нарушение можно воспроизвести путем перитонеального диализа гипоосмотического раствора. Водное отравление у животных легко развивается также при нагрузке водой после введения АДГ или удалении надпочечников. У здоровых животных водная интоксикация наступала через 4-6 часов после приема внутрь воды по 50 мл/кг через каждые 30 минут. Возникают рвота, тремор, клонические и тонические судороги. Концентрация электролитов, белков и гемоглобина в крови при этом резко снижается, объем плазмы возрастает, реакция крови не изменяется. Продолжение инфузии может привести к развитию коматозного состояния и к гибели животных.

При водном отравлении падает осмотическая концентрация внеклеточной жидкости благодаря ее разведению избытком воды, возникает гипонатриемия. Осмотический градиент между «интерстицием» и клетками обуславливает передвижение части межклеточной воды в клетки и набухание их. Объем клеточной воды может повышаться на 15%.

В клинической практике с явлениями водной интоксикации встречаются в тех случаях, когда поступление воды превосходит способность почек к ее выделению. После введения больному 5 и более литров воды в день наступают головные боли, апатия, тошнота и судороги в икрах. Отравление водой может возникать при избыточном ее потреблении, когда имеет место повышенная продукция АДГ и олигоурия. После травм, при больших хирургических операциях, потери крови, введения анестетиков, особенно морфина, обычно не менее 1-2 суток длится олигоурия. Водное отравление может возникать в результате внутривенного вливания больших количеств изотонического раствора глюкозы, которая быстро потребляется клетками, причем концентрация введенной жидкости падает. Опасно также введение больших количеств воды при ограничении функции почек, которая бывает при шоке, почечных заболеваниях с анурией и олигоурией, лечении препаратами АДГ несахарного диабета. Опасность водной интоксикации возникает при избыточном введении воды без солей во время лечения токсикоза, в связи с поносом грудных детей. Избыточное обводнение иногда бывает при часто повторяемых клизмах.

Терапевтические воздействия при состояниях гипоосмолярной гипергидрии должны быть направлены на устранения избытка воды и на восстановление осмотической концентрации внеклеточной жидкости. Если избыток был связан с чрезмерно большим введением воды больному с явлениями анурии, быстрый терапевтический эффект дает применение искусственной почки. Восстановление нормального уровня осмотического давления путем введения соли допустимо лишь при снижении общего количества соли в организме и при явных признаках водного отравления.

Гиперосомлярная гипергидратация проявляется увеличением объема жидкости во внеклеточном пространстве с одновременным ростом осмотического давления за счет гипернатриемии. Механизм развития нарушений таков: задержка натрия не сопровождается задержкой воды в адекватном объеме, внеклеточная жидкость оказывается гипертонической, и вода из клеток движется во внеклеточные пространства до момента осмотического равновесия. Причины нарушения многообразны: синдром Кушинга или Кона, питье морской воды, черепно-мозговая травма. Если состояние гиперосмолярной гипергидратации сохраняется долго, может наступить гибель клеток центральной нервной системы.

Обезвоживания клеток в условиях эксперимента наступает при введении гипертонических растворов электролитов в объемах, превышающих возможность достаточно быстрого выделения их почками. У человека подобное расстройство наступает при вынужденном питье морской воды. Происходит передвижение воды из клеток во внеклеточное пространство, ощущаемое как тяжелое чувство жажды. В некоторых случаях, гиперосмолярная гипергидрия сопровождает развитие отеков.

Уменьшение общего объема воды (обезвоживание, гипогидрия, дегидратация, эксикоз) происходит также с понижением или с повышением осмотической концентрации внеклеточной жидкости. Опасность обезвоживания состоит в угрозе сгущения крови. Серьезные симптомы дегидратации возникают после потери около одной трети внеклеточной воды.

Гипоосмолярная дегидратация развивается в тех случаях, когда организм теряет много жидкости, содержащей электролиты, а возмещение потери происходит меньшим объемом воды без введения соли. Такое состояние бывает при повторной рвоте, поносе, усиленном потоотделении, гипоальдостеронизме, полиурии (несахарный и сахарный диабет), если потеря воды (гипотонических растворов) частично пополняется питьем без соли. Из гипоосмотического внеклеточного пространства часть жидкости устремляется в клетки. Таким образом, эксикоз, развивающийся вследствие солевой недостаточности, сопровождается внутриклеточным отеком. Чувство жажды при этом отсутствует. Потеря воды кровью сопровождается нарастанием гематокрита, повышением концентрации гемоглобина и белков. Обеднение крови водой и связанное с этим уменьшение объема плазмы и повышение вязкости существенно нарушает кровообращение и, иногда, служит причиной коллапса и смерти. Уменьшение минутного объема ведет также к почечной недостаточности. Объем фильтрации резко падает и развивается олигоурия. Моча бывает практически лишена хлористого натрия, чему способствует усиление секреции альдостерона благодаря возбуждению объемных рецепторов. Нарастает содержание остаточного азота в крови. Могут наблюдаться внешние признаки обезвоживания - снижение тургора и сморщивание кожи. Нередко бывают головные боли, отсутствие аппетита. У детей при обезвоживании быстро появляется апатия, вялость, мышечная слабость.

Замещать дефицит воды и электролитов при гипоосмолярной гидратации рекомендуется путем введения изоосмотической или гипоосмотической жидкости, содержащей разные электролиты. При невозможности достаточного приема воды внутрь неизбежные потери воды через кожу, легкие и почки следует возмещать внутривенным вливанием 0,9% раствора хлористого натрия. При уже возникшем дефиците увеличивают вводимый объем, не превышая 3 л в сутки. Гипертонический раствор соли следует вводить лишь в исключительных случаях, когда возникают неблагоприятные последствия снижения концентрации электролитов крови, если почки не удерживают натрий и его много теряется другими путями, иначе введение избытка натрия может усилить обезвоживание. Для предупреждения гиперхлоремического ацидоза при понижении выделительной функции почек рационально вводить вместо хлористого натрия молочнокислую соль.

Гиперосмолярная дегидратация развивается в результате потери воды, превышающей ее поступление и эндогенное образование без потерь натрия. Потеря воды при этой форме происходит с небольшой потерей электролитов. Это может иметь место при усиленном потоотделении, гипервентиляции, поносе, полиурии, если утраченная жидкость не компенсируется питьем. Большая потеря воды с мочой бывает при так называемом осмотическом (или разводящем) диурезе, когда через почки выделяется много глюкозы, мочевины или других азотистых веществ, повышающих концентрацию первичной мочи и затрудняющих реабсорбцию воды. Потеря воды в таких случаях превосходит потерю натрия. Ограниченное введение воды у больных с нарушениями глотания, а также при подавлении чувства жажды в случаях мозговых заболеваний, в коматозном состоянии, у стариков, у недоношенных новорожденных, грудных детей с повреждениями мозга и др. У новорожденных первого дня жизни иногда бывает гиперосмолярный эксикоз из-за малого потребления молока («лихорадка от жажды»). Гиперосмолярное обезвоживание значительно легче возникает у грудных детей, чем у взрослых. В грудном возрасте большие количества воды почти без электролитов могут теряться через легкие при лихорадке, умеренном ацидозе и других случаях гипервентиляции. У грудных детей несоответствие между балансом воды и электролитов может возникать также в результате недостаточно развитой концентрационной способности почек. Задержка электролитов значительно легче наступает в организме ребенка, особенно при передозировке гипертонического или изотонического раствора. У грудных детей минимальное, обязательное выделение воды (через почки, легкие и кожу) на единицу поверхности примерно в два раза выше, чем у взрослых.

Преобладание потери воды над выделением электролитов приводит к увеличению осмотической концентрации внеклеточной жидкости и передвижению воды из клеток в экстрацеллюлярное пространство. Таким образом, замедляется сгущение крови. Уменьшение объема внеклеточного пространства стимулирует секрецию альдостерона. Этим поддерживается гиперосмолярность внутренней среды и восстановление объема жидкости благодаря усилению продукции АДГ, который ограничивает потерю воды через почки. Гиперосмолярность внеклеточной жидкости снижает также выделение воды экстраренальными путями. Неблагоприятное действие гиперосмолярности связано с обезвоживанием клеток, которое вызывает мучительное чувство жажды, усиление распада белка, повышение температуры. Потеря нервными клетками ведет к нарушениям со стороны психики (помрачнение сознания), расстройствам дыхания. Обезвоживание гиперосмолярного типа сопровождается также снижением массы тела, сухостью кожи и слизистых оболочек, олигурией, признаками сгущения крови, повышением осмотической концентрации крови. Угнетение механизма жажды и развития умеренной внеклеточной гиперосмолярности в эксперименте достигали уколом в супрооптические ядра гипоталамуса у кошек и вентромедиальные ядра у крыс. Восстановление дефицита воды и изотоничности жидкости организма человека достигается главным образом введением гипотонического раствора глюкозы, содержащим основные электролиты.

Изотоническая дегидратация может наблюдаться при аномально увеличенном выведении натрия, чаще всего – с секретом желез желудочно-кишечного тракта (изоосмолярные секреты, суточный объем которых составляет до 65% к объему всей внеклеточной жидкости). Потеря этих изотонических жидкостей не ведет к изменению внутриклеточного объема (все потери – за счет внеклеточного). Их причины – повторная рвота, поносы, потеря через фистулу, формирование больших транссудатов (асцит, плевральный выпот), крово- и плазмопотери при ожогах, перитонитах, панкреатитах.

Первые живые организмы появились в воде около 3 млрд лет тому назад, и до настоящего времени вода является главнейшим биорастворителем.

Вода - жидкая среда, которая является главным компонентом живого организма, обеспечивающая его жизненно важные физико-химические процессы: осмотическое давление, величину pH, минеральный состав. Вода составляет в среднем 65% общей массы тела взрослого животного и более 70% новорожденного. Более половины количества этой воды находится внутри клеток организма. Учитывая очень малую молекулярную массу воды, рассчитано, что около 99% всех молекул в клетке являются молекулами воды (Бохински Р., 1987).

Высокая теплоемкость воды (требуется 1 кал на нагревание 1 г воды на 1°С) позволяет организму поглощать значительное количество тепла без существенного повышения внутренней температуры. За счет высокой теплоты испарения воды (540 кал/г) организм рассеивает часть тепловой энергии, избегая перегрева.

Для молекул воды характерна сильная поляризация. В молекуле воды каждый атом водорода образует электронную пару с центральным атомом кислорода. Поэтому молекула воды имеет два постоянных диполя, так как высокая электронная плотность вблизи кислорода придает ему отрицательный заряд, тогда как каждый атом водорода характеризуется пониженной электронной плотностью и несет частичный положительный заряд. В результате возникают электростатические связи между атомом кислорода одной молекулы воды и водородом другой молекулы, получившие название водородных связей. Эта структура воды объясняет ее высокие значения теплоты испарения и температуры кипения.

Водородные связи сравнительно слабые. Их энергия диссоциации (энергия разрыва связи) в жидкой воде равна 23 кДж/моль, по сравнению с 470 кДж для ковалентной связи О-Н в молекуле воды. Время существования водородной связи составляет от 1 до 20 пикосекунд (1 пикосекунда = 1(Г 12 с). Однако водородные связи не являются уникальными для воды. Они могут возникать и между атомом водорода и азота в других структурах.

В состоянии льда каждая молекула воды образует максимально четыре водородные связи, формируя кристаллическую решетку. Напротив, в жидкой воде при комнатной температуре каждая молекула воды имеет водородные связи в среднем с 3-4 другими молекулами воды. Эта кристаллическая решетка льда делает его менее плотным, чем жидкая вода. Поэтому лед плавает на поверхности жидкой воды, оберегая ее от замерзания.

Таким образом, водородные связи между молекулами воды обеспечивают связующие силы, которые сохраняют воду в форме жидкости при комнатной температуре и трансформируют молекулы в кристаллы льда. Отметим, что, помимо водородных связей, для биомолекул характерными являются другие типы нековалентных связей: ионные, гидрофобные, вандерва- альсовы силы, которые индивидуально являются слабыми, но совместно оказывают сильное влияние на структуры белков, нуклеиновых кислот, полисахариды и мембраны клеток.

Молекулы воды и продукты их ионизации (Н + и ОН) оказывают выраженное влияние на структуры и свойства компонентов клеток, включая нуклеиновые кислоты, белки, жиры. Помимо стабилизации структуры белков и нуклеиновых кислот, водородные связи участвуют в биохимической экспрессии генов.

Как основа внутренней среды клеток и тканей, вода определяет их химическую активность, являясь уникальным растворителем различных веществ. Вода повышает устойчивость коллоидных систем, участвует в многочисленных реакциях гидролиза и гидрирования в процессах окисления. Вода поступает в организм с кормами и питьевой водой.

Многие метаболические реакции в тканях приводят к образованию воды, которая получила название эндогенной (8-12% от общего количества жидкости организма). Источниками эндогенной воды организма в первую очередь служат жиры, углеводы, белки. Так окисление 1 г жиров, углеводов и белков приводит к образованию 1,07; 0,55 и 0,41 г воды соответственно. Поэтому животные в условиях пустыни могут обходиться какое-то время без приема воды (верблюды даже достаточно долго). Собака погибает без приема воды через 10 дней, а без кормов - через несколько месяцев. Потеря 15-20% воды организмом влечет за собой смерть животного.

Низкая вязкость воды определяет постоянное перераспределение жидкости внутри органов и тканей организма. Вода поступает в желудочно-кишечный тракт, а затем почти все количество этой воды всасывается обратно в кровь.

Транспорт воды через клеточные мембраны осуществляется быстро: спустя 30-60 мин после приема воды животным наступает новое осмотическое равновесие между внеклеточной и внутриклеточной жидкостью тканей. Объем внеклеточной жидкости имеет большое влияние на кровяное давление; увеличение или уменьшение объема внеклеточной жидкости приводит к нарушениям циркуляции крови.

Повышение количества воды в тканях (гипергидрия) имеет место при положительном водном балансе (избыток поступления воды при нарушении регуляции водно-солевого обмена). Гипергидрия приводит к скоплению жидкости в тканях (отеки). Обезвоживание организма отмечают при недостатке питьевой воды или при избыточности потери жидкости (диарея, кровотечение, усиленное потоотделение, гипервентиляция легких). Потеря воды животным происходит за счет поверхности тела, системы пищеварения, дыхания, мочевого тракта, молока у лактирующих животных.

Обмен воды между кровью и тканями происходит за счет разности гидростатического давления в артериальной и венозной кровеносной системе, а также и за счет разности онкоти- ческого давления в крови и тканях. Вазопрессин, гормон задней доли гипофиза, удерживает воду в организме за счет обратного всасывания ее в почечных канальцах. Альдостерон, гормон коры надпочечников, обеспечивает задержку натрия в тканях, а вместе с ним сохраняется вода. Потребность животного в воде составляет в среднем 35-40 г на кг массы тела в сутки.

Отметим, что химические вещества в организме животного находятся в ионизированной форме, в виде ионов. Ионы, в зависимости от знака заряда, относятся к анионам (отрицательно заряженный ион) или к катионам (положительно заряженный ион). Элементы, которые диссоциируют в воде, образуя анионы и катионы, классифицируются как электролиты. Соли щелочных металлов (NaCl, КС1, NaHC0 3), соли органических кислот (лактат натрия, например) при растворении в воде диссоциируют полностью и являются электролитами. Легко растворяющиеся в воде сахара и спирты не диссоциируют в воде и не несут заряда, поэтому рассматриваются как неэлектролиты. Сумма анионов и катионов в тканях организма в целом одинакова.

Ионы диссоциирующих веществ, обладая зарядом, ориентируются вокруг диполей воды. Вокруг катионов диполи воды располагаются своими отрицательными зарядами, а анионы окружаются положительными зарядами воды. При этом возникает явление электростатической гидратации. По причине гидратации эта часть воды в тканях находится в связанном состоянии. Другая часть воды связана с различными клеточными органеллами, составляя так называемую иммобильную воду.

Ткани организма включают 20 обязательных из всех природных химических элементов. Углерод, кислород, водород, азот, сера являются незаменимыми компонентами биомолекул, из которых по массе преобладает кислород.

Химические элементы в организме формируют соли (минералы) и входят в состав биологически активных молекул. Биомолекулы имеют низкую молекулярную массу (30-1500) или являются макромолекулами (белки, нуклеиновые кислоты, гликоген), молекулярные массы которых составляют миллионы единиц. Отдельные химические элементы (Na, К, Са, S, Р, С1) составляют в тканях около 10 " 2 % и более (макроэлементы), тогда как другие (Fe, Со, Си, Zn, J, Se, Ni, Мо), например, присутствуют в значительно меньших количествах - 10" 3 -10~ 6 % (микроэлементы). В организме животного минеральные вещества составляют 1-3% от общей массы тела и распределяются чрезвычайно неравномерно. В отдельных органах содержание микроэлементов может быть значительным, например йод в щитовидной железе.

После абсорбции минералов в большей мере в тонком кишечнике они поступают в печень, где некоторые из них депонируются, а другие распределяются по различным органам и тканям организма. Выделяются минеральные вещества из организма главным образом в составе мочи и каловых масс.

Обмен ионами между клетками и межклеточной жидкостью происходит на основе как пассивного, так и активного транспорта через полупроницаемые мембраны. Возникающее осмотическое давление обусловливает тургор клеток, поддерживая эластичность тканей и форму органов. Активный транспорт ионов или передвижение их в среду с меньшей концентрацией (против осмотического градиента) требует затрат энергии молекул АТФ. Активный транспорт ионов характерен для ионов Na + , Са 2 ~ и сопровождается усилением окислительных процессов, генерирующих АТФ.

Роль минеральных веществ заключается в поддержании определенного осмотического давления плазмы крови, кислотно-щелочного равновесия, проницаемости различных мембран, регуляции активности ферментов, сохранении структур биомолекул, включая белки и нуклеиновые кислоты, в поддержании моторной и секреторной функции пищеварительного тракта. Поэтому при многих нарушениях функций пищеварительного тракта животного рекомендуются в качестве лечебных средств различные составы минеральных солей.

Важным является как абсолютное количество, так и должное соотношение в тканях между определенными химическими элементами. В частности, оптимальное соотношение в тканях Na:K:Cl составляет в норме 100:1:1,5. Выраженной особенностью является «асимметрия» в распределении ионов солей между клеткой и внеклеточной средой тканей организма.