Б. Расчет динамических показателей внешнего дыхания. Объемы дыхания Максимальный объем выдоха

Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов . В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

Альвеолярная вентиляция

Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не столько легочная, сколько альвеолярная вентиляция.

Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл.

Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.

Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП)  ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.

Рисунок 6. Соотношение МОД и альвеолярной вентиляции

Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1).

Кроме статических показателей, характеризующих степень физического развития дыхательного аппарата, существуют и дополнительные - динамические показатели, дающие информацию об эффективности вентиляции легких и функциональном состоянии дыхательных путей.

Форсированная жизненная емкость легких (ФЖЕЛ) - количество воздуха, которое может быть выдохнуто при форсированном выдохе после максимального вдоха.

Определение фактической ФЖЕЛ. После максимального, медленного вдоха из атмосферы сделайте возможно быстрый максимальный выдох в спирометр. Сравните вашу фактическую ЖЕЛ (см. предыдущую работы) с ФЖЕЛ.

В норме разница между ЖЕЛ и ФЖЕЛ равна 100-300 мл. Увеличение этой разницы до 1500 мл и более указывает на сопротивление току воздуха вследствие сужения просвета мелких бронхов. Продолжительность максимально быстрого выдоха колеблется от 1,5 до 2,5 с.

Расчет должной ФЖЕЛ. Должную величину ЖЕЛ можно рассчитать по соответствующей формуле:

0,0592 Í Р – 0,025 Í В – 4,24 (мужчины); 0,0460 Í Р – 0,024 Í В – 2,852 (женщины);

где, Р – рост в сантиметрах; В – возраст;

Частота дыхания (ЧД) - количество дыхательных циклов (вдох-выдох) в 1 мин. Подсчитайте у себя число дыхательных циклов за одну минуту.

Минутный объем дыхания (МОД) - количество вентилируемого в легких воздуха за 1 мин. Фактический МОД определяют исходя из измеренных дыхательных объемов следующим образом:

МОД = ДО Í ЧД.

Должный минутный объем (дМОД) можно рассчитать по следующей формуле:

дМОД = ДОО / (7,07 Í 40);

ДОО – это должный основной обмен, который также рассчитывают по формуле:

66,47 + 13,7 Í Р + 5 Í Н – 6,75Í А (мужчины);

65,59 + 19,59 Í Р + 1,85 Í Н – 4,67 Í А (женщины);

где, Р – масса тела, кг, Н – рост, см, А – возраст, годы.

Альвеолярная вентиляция - объем вдыхаемого воздуха, поступающего в альвеолы.

АВ = 66-80 % от МОД.

Максимальная вентиляция легких (МВЛ) – максимальное количество воздуха вентилируемого в легких за 1 минуту. Фактическая МВЛ может быть определена следующим образом:

МВЛ = ЖЕЛ Í ЧД

Однако её прямое определение затруднено, так как очень глубокое и частое дыхание в течение минуты приведет к нарушению газового состава крови и ухудшению самочувствия. Поэтому максимальную ЧД целесообразно определить при спокойной глубине дыхания. В норме она должна составлять 70 – 100 л/мин.

Должная МВЛ (дМВЛ) может быть рассчитана по следующей формуле:

дМВЛ = дЖЕЛ Í 25 (мужчины); дМВЛ = дЖЕЛ Í 26 (женщины);

Резерв дыхания (РД) - показатель, характеризующий возможности увеличения вентиляции.


МВЛ - МОД.

РД = ------------------ Í 100

В норме эта разность составляет 85 – 90 % МВЛ.

Оформление протокола.

1. Измерьте указанные статические и динамические показатели внешнего дыхания. Результаты измерения занесите в тетрадь.

2. Рассчитайте должные величины показателей внешнего дыхания, где это возможно и сравните их с измеренными.

3. Если невозможно рассчитать должную величину, сравните измеренные фактические величины со средними значениями показателей внешнего дыхания (Таблица 1): Вычислите % отклонения фактических величин от должных, Заполните таблицу.:

Таблица 1. Средние значения основных показателей внешнего дыхания.

Вентиляция легких – это газообмен между альвеолярным воздухом и легкими. Количественной характеристикой легочной вентиляции служит минутный объем дыхания (МОД) - объем воздуха, проходящий через легкие за 1 минуту. Определить МОД можно, если знать частоту дыхательных движений (в покое у взрослого человека составляет 16-20 в 1 минуту) и дыхательный объем (ДО=350 - 800 мл).

МОД=ЧД´ДО = 5000 -16000 мл/мин

Однако в легочном газообмене участвует не весь вентилируемый воздух, а лишь та его часть, которая достигает альвеол. Дело в том, что примерно 1/3 дыхательного объема покоя приходится на вентиляцию так называемого анатомического мертвого пространства (МП) , заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Но иногда некоторые из альвеол не функционируют или функционируют частично из-за отсутствия или уменьшения кровотока в близлежащих капиллярах. С функциональной точки зрения эти альвеолы также представляют собой мертвое пространство. При включении альвеолярного мертвого пространства в общее мертвое пространство последнее называют не анатомическим, а физиологическим мертвым пространством. У здорового человека анатомическое и физиологическое пространства почти равны, но если часть альвеол не функционирует или функционирует только частично, объем физиологического мертвого пространства может оказаться больше анатомического в несколько раз.

Следовательно, вентиляция альвеолярных пространств - альвеолярная вентиляция (АВ) - представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства.

АВ= ЧД´(ДО –МП)

Интенсивность альвеолярной вентиляции зависит от глубины дыхания: чем глубже дыхание (больше ДО), тем интенсивнее вентиляция альвеол.

Максимальная вентиляция легких (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений, Максимальная вентиляция возникает во время интенсивной работы, при недостатке содержания О 2 (гипоксия) и избытке СО 2 (гиперкапния) во вдыхаемом воздухе. В этих условиях МОД может достигать 150 - 200 л в 1 минуту.

Перечисленные выше показатели являются динамическими и отражают эффективность функционирования системы дыхания во временном аспекте (обычно за 1 минуту).

Кроме динамических показателей внешнее дыхание оценивают по статическим показателям (рис.7) :

§ дыхательный объем (ДО) - это объем воздуха, вдыхаемый и выдыхаемый при спокойном дыхании (у взрослого человека составляет 350 - 800 мл);

§ резервного объема вдоха (РОвд) – дополнительный объем воздуха, который можно вдохнуть сверх спокойного вдоха при форсированном дыхании (РО вд в среднем 1500-2500 мл);


§ резервного объема выдоха (РОвыд) – максимальный дополнительный объем воздуха, который можно выдохнуть после спокойного выдоха (РО выд в среднем 1000-1500 мл);

§ остаточный объем легких (00) - объем воздуха, который остается в легких после максимального выдоха (ОО= 1000 -1500 мл)

Рис.7. Спирограмма при спокойном и форсированном дыхании

При спадении легких (при пневмотораксе) большая часть остаточного воздуха выходит (коллапсный остаточный объем = 800-1000 мл), а в легких остается минимальный остаточный объем (200-400 мл). Этот воздух задерживается в так называемых воздушных ловушках, так как часть бронхиол спадается раньше альвеол (концевые и дыхательные бронхиолы не содержат хрящей). Эти знания используются в судебной медицине для теста живым ли родился ребенок: легкое мертворожденного тонет в воде, так как не содержит воздуха.

Суммы легочных объемов называют емкостями легких.

Различают следующие емкости легких:

1. общая емкость легких (ОЕЛ) - объем воздуха, находящегося в легких после максимального вдоха – включает все четыре объема

2. жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ - это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе.

ЖЕЛ = ДО + РOвд + РОвыд

ЖЕЛ составляет у мужчин 3,5 - 5,0 л, у женщин - 3,0-4,0л. Величина ЖЕЛ зависит от роста, возраста, пола, степени функциональной подготовки.

С возрастом этот показатель снижается (особенно после 40 лет). Это связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25 % меньше, чем у мужчин. ЖЕЛ зависит от роста, так как величина грудной клетки пропорциональна другим размерам тела. ЖЕЛ зависит от степени тренированности: особенно велика ЖЕЛ (до 8 л) у пловцов и гребцов, так как у этих спортсменов хорошо развиты вспомогательные мышцы (большие и малые грудные).

3. емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 - 2,5 л;

4. функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха. В легких при спокойном вдохе и выдохе постоянно содержится примерно 2500 мл воздуха, заполняющего альвеолы и нижние дыхательные пути. Благодаря этому газовый состав альвеолярного воздуха сохраняется на постоянном уровне.

При обычном исследовании ОЕЛ, ОО и ФОЕ недоступны для измерения. Их определяют с помощью газоанализаторов, изучая изменение состава газовых смесей в замкнутом контуре (содержание гелия, азота).

Для оценки вентиляционной функции легких, состояния дыхательных путей, изучения паттерна (рисунка) дыхания применяются различные методы исследования: пневмография, спирометрия, спирография .

Спирография (лат. spiro дышать + греч. graphо писать, изображать) - метод графической регистрации изменений легочных объемов при выполнении естественных дыхательных движений и волевых форсированных дыхательных маневров.

Спирография позволяет получить ряд показателей, которые описывают вентиляцию легких.

В техническом выполнении все спирографы делятся на приборы открытого и закрытого типа (рис. 8).

Рис. 8. Схематическое изображение спирографа

В аппаратах открытого типа больной через клапанную коробку вдыхает атмосферный воздух, а выдыхаемый воздух поступает в мешок Дугласа или в спирометр Тисо (емкостью 100-200 л), иногда - к газовому счетчику, который непрерывно определяет его объем. Собранный таким образом воздух анализируют: в нем определяют величины поглощения кислорода и выделения углекислого газа за единицу времени. В аппаратах закрытого типа используется воздух колокола аппарата, циркулирующий в закрытом контуре без сообщения с атмосферой. Выдыхаемый углекислый газ поглощается специальным поглотителем.

В современных приборах, регистрирующих изменения объема легких при дыхании (как открытого, так и закрытого типов), имеются электронные вычислительные устройства для автоматической обработки результатов измерений.

При анализе спирограммы также определяют скоростные показатели. Вычисление скоростных показателей имеет большое значение в выявлении признаков бронхиальной обструкции.

§ Объём форсированного выдоха за 1 с (ОФВ1) - объём воздуха, изгоняемый с максимальным усилием из лёгких в течение первой секунды выдоха после глубокого вдоха, т.е. часть ФЖЕЛ, выдыхаемая за первую секунду. Прежде всего ОФВ1 отражает состояние крупных дыхательных путей и часто выражается в процентах от ЖЕЛ (нормальное значение ОФВ1 = 75% ЖЕЛ).

§ индекс Тиффно отношение ОФВ1/ФЖЕЛ , выраженное в %:

ИТ= ОФВ1 ´ 100%

ФЖЕЛ

Он определяется в тесте дыхательного «толчка» (тест Тиффно) и заключается в изучении одиночного форсированного выдоха, позволяет сделать важные диагностические заключения о функциональном состоянии дыхательного аппарата. В конце выдоха интенсивность дыхательного потока ограничивается за счет компрессии мелких дыхательных путей (рис.8).

Рис. 9. Схематическое изображение спирограммы и ее показателей

Объем форсированного выдоха за первую секунду (ОФВ1) в норме составляет не менее 70-75 %. Уменьшение индекса Тиффно и ОФВ1 является характерным признаком заболеваний, которые сопровождаются снижением бронхиальной проходимости - бронхиальной астмы, хронического обструктивного заболевания легких, бронхоэктатической болезни и пр.

По спирограмме можно определить объем кислорода , потребляемого организмом. При наличии системы компенсации кислорода в спирографе этот показатель определяют по наклону кривой поступления в него кислорода, при отсутствии такой системы - по наклону спирограммы спокойного дыхания. Разделив этот объем на число минут, в течение которых проводилась запись потребления кислорода, получают величину VО 2 (составляет 200-400 мл в покое).

Все показатели легочной вентиляции изменчивы. Они зависят от пола, возраста, веса, роста, положения тела, состояния нервной системы больного и прочих факторов. Поэтому для правильной оценки функционального состояния легочной вентиляции абсолютное значение того или иного показателя является недостаточным. Необходимо сопоставлять полученные абсолютные показатели с соответствующими величинами у здорового человека того же возраста, роста, веса и пола - так называемыми должными показателями.

для мужчин ДЖЕЛ = 5, 2xР - 0, 029xВ - 3, 2

для женщин ДЖЕЛ = 4, 9xР - 0, 019xВ - 3, 76

для девочек от 4 до 17 лет при росте от 1, 0 до 1, 75 м:

ДЖЕЛ = 3, 75xР - 3, 15

для мальчиков того же возраста при росте до 1, 65 м:

ДЖЕЛ = 4, 53xР - 3, 9, а при росте св. 1, 65 м - ДЖЕЛ = 10xР - 12, 85

где Р- рост (м), В -возраст

Такое сопоставление выражается в процентах по отношению к должному показателю. Патологическими считаются отклонения, превышающие 15-20 % от величины должного показателя.

Контрольные вопросы

1. Что такое легочная вентиляция, какой показатель ее характеризует?

2. Что такое анатомическое и физиологическое мертвое пространство?

3. Как определить альвеолярную вентиляцию?

4. Что такое МВЛ?

5. Какие статические показатели используют для оценки внешнего дыхания?

6. Какие емкости легких бывают?

7. От каких факторов зависит величина ЖЕЛ?

8. С какой целью используют спирографию?

10. Что такое должные показатели, как их определяют?

Дыхание - это единый процесс, осуществляемый целостным организмом и состоящий из трех неразрывных звеньев: а) внешнего дыхания, то есть газообмена между внешней средой и кровью легочных капилляров; б) переноса газов, осуществляемого системами кровообращения; в) внутреннего (тканевого) дыхания, то есть газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту (рис. ).

Органы грудной полости (а). Периферическая и центральная нервная система (б).
а: 1 - полость носа, 2 - гортань, 3 - трахея, 4 - бронхи, 5 - верхушка легкого, 6 - ротовая часть глотки, 7 - ветви нижне-долевого бронха, 8 - диафрагма, 9 - альвеолы.
б: 1 - головной мозг, 2 - спинной мозг, 3 - седалищный нерв, 4 - зрительный нерв, 5 - лицевой нерв, 6 - блуждающий нерв, 7 - узлы симпатического ствола, 8 - солнечное сплетение, 9 - межреберные нервы, 10 - поясничное сплетение, 11 - крестцовое сплетение, 12 - бедренный нерв, 13 - запирательный нерв, 14 - локтевой нерв, 15 - срединный нерв, 16 - лучевой нерв, 17 - плечевое сплетение.

Основу тканевого дыхания составляют сложные окислительно-восстановительные реакции, сопровождающиеся освобождением энергии, которая необходима для жизнедеятельности организма.

Работоспособность человека (в частности, спортсмена) определяется в основном тем, какое количество кислорода (O 2) забрано из наружного воздуха в кровь легочных капилляров и доставлено в ткани и клетки. Указанные выше три системы дыхания тесно связаны между собой и обладают взаимной компенсацией. Так, при сердечной недостаточности наступает одышка, при недостатке O 2 в атмосферном воздухе (например, в среднегорье) увеличивается количество эритроцитов - переносчиков кислорода, при заболеваниях легких наступает тахикардия.

Система внешнего дыхания

Система внешнего дыхания состоит из легких, верхних дыхательных путей и бронхов, грудной клетки и дыхательных мышц (межреберные, диафрагма и др.).

Внешнее дыхание обеспечивает обмен газов между альвеолярным воздухом и кровью легочных капилляров, то есть насыщение венозной крови кислородом и освобождение ее от избытка углекислоты, что свидетельствует о взаимосвязи функции внешнего дыхания с регуляцией кислотно-щелочного равновесия.

В физиологии дыхания функцию внешнего дыхания разделяют на три основные процесса - вентиляцию, диффузию и перфузию (кровоток в капиллярах легких).

Под вентиляцией следует понимать обмен газа между альвеолярным и атмосферным воздухом. От уровня альвеолярной вентиляции зависит постоянство газового состава альвеолярного воздуха.

Альвеолярная вентиляция равна разности между объемом дыхания в минуту и объемом «мертвого» пространства, умноженной на число дыханий в минуту. Объем вентиляции зависит прежде всего от потребности организма в кислороде при выведении определенного количества углекислого газа, а также от состояния дыхательных мышц, проходимости бронхов и пр.

Не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объем вдыхаемого воздуха равен 500 мл, то 150 мл остается в «мертвом» пространстве, и за минуту через дыхательную зону легких в среднем проходит (500 мл - 150 мл) х 15 (частота дыхания) = 5250 мл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. «Мертвое» пространство возрастает при глубоком вдохе, его объем зависит также от массы тела и позы обследуемого.

Диффузия - это процесс пассивного перехода кислорода из легких через альвеоло-капиллярную мембрану в гемоглобин легочных капилляров, с которыми кислород вступает в химическую реакцию.

Перфузия (орошение) легких кровью по сосудам малого круга. Об эффективности работы легких судят по соотношению между вентиляцией и перфузией. Указанное соотношение определяется числом вентилируемых альвеол, которые соприкасаются с хорошо перфузируемыми капиллярами. При спокойном дыхании у человека верхние отделы легкого расправляются полнее, чем нижние. При вертикальном положении нижние отделы перфузируются кровью лучше, чем верхние.

Легочная вентиляция повышается параллельно увеличению потребления кислорода, причем при максимальных нагрузках у тренированных лиц она может возрастать в 20-25 раз по сравнению с состоянием покоя и достигать 150 л/мин и более. Такое увеличение вентиляции обеспечивается возрастанием частоты и объема дыхания, причем частота может увеличиться до 60-70 дыханий в минуту, а дыхательный объем - с 15 до 50% жизненной емкости легких (H. Monod, M. Pottier, 1973).

В возникновении гипервентиляции при физических нагрузках важную роль играет раздражение дыхательного центра в результате высокой концентрации углекислого газа и водородных ионов при высоком уровне молочной кислоты в крови.

Гипервентиляция, вызываемая физическими нагрузками, всегда ниже максимальной вентиляции, и увеличение диффузной способности кислорода в легких во время работы также не является предельным. Поэтому, если отсутствует легочная патология, дыхание не ограничивает мышечную работу. Важный показатель - потребление кислорода - отражает функциональное состояние кардиореспираторной системы. Существует связь между факторами циркуляции и дыхания, влияющими на объем потребляемого кислорода.

Во время физических нагрузок потребление кислорода значительно увеличивается. Это предъявляет повышенные требования к функции сердечно-сосудистой и дыхательной систем. Поэтому кардиореспираторная система при мышечной работе подвержена изменениям, которые зависят от интенсивности физических нагрузок.

Исследование функции внешнего дыхания в спорте позволяет наряду с системами кровообращения и крови оценить функциональное состояние спортсмена в целом и его резервные возможности.

Исследование начинают со сбора анамнеза, затем переходят к осмотру, перкуссии и аускультации.

Осмотр позволяет определить тип дыхания, установить наличие или отсутствие одышки (особенно при тестировании) и т.п. Определяют три типа дыхания: грудной, брюшной (диафрагмальный) и смешанный. При грудном типе дыхания на вдохе заметно поднимаются ключицы и происходит движение ребер. При этом типе дыхания объем легких возрастает главным образом за счет движения верхних и нижних ребер. При брюшном типе дыхания увеличение объема легких происходит в основном за счет движения диафрагмы - на вдохе она опускается вниз, несколько смещая органы брюшной полости. Поэтому стенка живота на вдохе при брюшном типе дыхания слегка выпячивается. У спортсменов, как правило, смешанный тип дыхания, где участвуют оба механизма увеличения объема грудной клетки.

Перкуссия (поколачивание) позволяет определить изменение (если оно есть) плотности легких. Изменения в легких являются обычно следствием некоторых заболеваний (воспаление легких, туберкулез и др.).

Аускультация (выслушивание) определяет состояние воздухоносных путей (бронхов, альвеол). При различных заболеваниях органов дыхания прослушиваются весьма характерные звуки - различные хрипы, усиление или ослабление дыхательного шума и т.д.

Исследование внешнего дыхания проводят по показателям, характеризующим вентиляцию, газообмен, содержание и парциальное давление кислорода и углекислого газа в артериальной крови и по другим параметрам. Для исследования функции внешнего дыхания пользуются спирометрами, спирографами и специальными аппаратами открытого и закрытого типа. Наиболее удобно спирографическое исследование, при котором на движущейся бумажной ленте записывается кривая - спирограмма (рис. ). По этой кривой, зная масштаб шкалы аппарата и скорость движения бумаги, определяют следующие показатели легочной вентиляции: частоту дыхания (ЧД), дыхательный объем (ДО), минутный объем дыхания (МОД), жизненную емкость легких (ЖЕЛ), максимальную вентиляцию легких (МВЛ), остаточный объем легких (ОО), общую емкость легких (ОЕЛ). Kроме того, исследуется сила дыхательной мускулатуры, бронхиальная проходимость и др.

Спирограмма: 1 - МОД; 2 - ЖЕЛ, 3 - дыхательный объем (ДО); 4 - резервный объем вдоха; 5 - резервный объем выдоха; 6 - проба Тиффно-Вотчала; 7 - МВЛ

Легочная вентиляция связана с функцией дыхательных мышц (рис. ). Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движениями частей грудной стенки и диафрагмы. Дыхательные мышцы - это те мышцы, сокращение которых изменяет объем грудной клетки.

Потребление кислорода дыхательными мышцами в норме и при патологии (эмфизема легких)

Вдох создается расширением грудной клетки (полости) и всегда является активным процессом. Обычно главную роль во вдохе играет диафрагма. При усиленном вдохе сокращаются дополнительные группы мышц.

Выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условия для вдоха. Расслабление связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. При усиленном выдохе в дополнение к другим мышечным группам действуют внутренние межреберные мышцы, а также брюшные мышцы.

Объем легких при вдохе не всегда одинаков. Объем воздуха, вдыхаемый при обычном вдохе и выдыхаемый при обычном выдохе, называется дыхательным воздухом (ДВ).

Параметры дыхательной системы

Остаточный воздух (ОВ) - объем воздуха, оставшийся в невозвратившихся в исходное положение легких.

(ЧД) - количество дыханий в 1 мин. Определение ЧД производят по спирограмме или по движению грудной клетки. Средняя частота дыхания у здоровых лиц - 16-18 в минуту, у спортсменов - 8-12. В условиях максимальной нагрузки ЧД возрастает до 40-60 в 1 мин.

Глубина дыхания (ДО) - объем воздуха спокойного вдоха или выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, пола и функционального состояния спортсмена. У здоровых лиц ДО составляет 300-800 мл.

Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания.

В спокойном состоянии воздух в трахее, бронхах, бронхиолах и в неперфузируемых альвеолах в газообмене не участвуют, так как не приходит в соприкосновение с активным легочным кровотоком - это так называемое «мертвое» пространство.

Часть дыхательного объема, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом. С физиологической точки зрения альвеолярная вентиляция - наиболее существенная часть наружного дыхания, так как она является тем объемом вдыхаемого за 1 мин воздуха, который обменивается газами с кровью легочных капилляров.

МОД измеряется произведением ЧД на ДО. У здоровых лиц ЧД - 16-18 в минуту, а ДО колеблется в пределах 350-750 мл, у спортсменов ЧД - 8-12 мл, а ДО - 900-1300 мл. Увеличение МОД (гипервентиляция) наблюдается вследствие возбуждения дыхательного центра, затруднения диффузии кислорода и др.

В покое МОД составляет 5-6 л, при напряженной физической нагрузке может возрастать в 20-25 раз и достигать 120-150 л в 1 мин и более. Увеличение МОД находится в прямой зависимости от мощности выполняемой работы, но только до определенного момента, после которого рост нагрузки уже не сопровождается увеличением МОД.

Даже при самой тяжелой нагрузке МОД никогда не превышает 70-80% уровня максимальной вентиляции. Расчет должной величины МОД основан на том, что у здоровых лиц из каждого литра провентилированного воздуха поглощается примерно 40 мл кислорода (это так называемый коэффициент использования кислорода - KИ).

Должный МОД = должное потребление кислорода / 40

а должную величину поглощения кислорода рассчитывают по формуле:

должный основной обмен (в ккал) / 7,07

где должный основной определяют по таблицам Гаррис-Бенедикта; 7,07 - число, полученное при умножении калорийной ценности 1 л кислорода (4,91 ккал) на число минут в сутках (1440 мин) и деленное на 1000.

Таблицы Гаррис-Бенедикта

Таблицы Гаррис-Бенедикта для определения основного обмена человека:

Вентиляционным эквивалентом (ВЭ) называются соотношение между МОД и величиной потребления кислорода. В состоянии покоя 1 л кислорода в легких поглощается из 20-25 л воздуха. При тяжелой физической нагрузке вентиляционный эквивалент увеличивается и достигает 30-35 л. Под влиянием тренировки на выносливость вентиляционный эквивалент при стандартной нагрузке уменьшается. Это свидетельствует о более экономном дыхании у тренированных лиц.

(ЖЕЛ) состоит из дыхательного объема легких, резервного объема вдоха и резервного объема выдоха. ЖЕЛ зависит от пола, возраста, размера тела и тренированности. ЖЕЛ составляет в среднем у женщин 2,5-4 л, а у мужчин - 3,5-5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л.

Абсолютные значения ЖЕЛ мало показательны из-за индивидуальных колебаний. При оценке состояния обследуемого рекомендуется рассчитывать «должные» величины.

Для расчета ЖЕЛ обычно используют формулу Anthony и Vernath (1961), в основу которой положена величина основного обмена (ккал/24 ч). Ее находят по таблицам Гаррис-Бенедикта соответственно полу, возрасту и массе тела.

ДЖЕЛ = величина основного обмена (ккал) х к ,

где к - коэффициент: 2,3 у женщин, 2,6 - у мужчин. Величину основного обмена (ккал) определяем по таблицам Гаррис-Бенедикта, где находят фактор роста (Б) и фактор веса (А). Сумма А + Б и есть должная величина основного обмена. Должный основной обмен, как и ЖЕЛ, зависит от пола, возраста, роста и веса, легко определяется по специальным таблицам и выражается в килокалориях. Для выражения отношения в процентах фактической ЖЕЛ к должной пользуются формулой:

(фактическая ЖЕЛ / должная ЖЕЛ) х 100

ЖЕЛ считается нормальной, если составляет 100% должной величины. Для оценки ДЖЕЛ можно пользоваться номограммой (рис. ). ЖЕЛ выражается в процентах к ДЖЕЛ.

Номограмма для оценки жизненной емкости легких (VС, мл). Соединяя прямой линией (1) соответствующие пункты на шкалах «Возраст» и «Относительная масса», на линии А отмечают точку пересечения. От этой точки проводят прямую линию (2) на шкалу «Рост». Точка пересечения со шкалой VC и будет должной величиной жизненной емкости легких (ДЖЕЛ). Пределы нормы: х(2) = 1200 мл (Amrein et al., 1969)

Номограмма для определения должной жизненной емкости легких в зависимости от роста и возраста

Общая емкость легких (ОЕЛ) представляет собой сумму ЖЕЛ и остаточного объема легких, то есть того воздуха, который остается в легких после максимального выдоха и может быть определен только косвенно. У молодых здоровых лиц - 75-80%. ОЕЛ занимает ЖЕЛ, а остальное приходится на остаточный объем. У спортсменов доля ЖЕЛ в структуре ОЕЛ увеличивается, что благоприятно отражается на эффективности вентиляции.

Максимальная вентиляция легких (МВЛ) - это предельно возможное количество воздуха, которое может быть провентилировано через легкие в единицу времени. Обычно форсированное дыхание проводится в течение 15 с и умножается на 4. Это и будет величина МВЛ. Большие колебания МВЛ снижают диагностическую ценность определения абсолютного значения этих величин. Поэтому полученную величину МВЛ приводят к должной. Для определения должной МВЛ пользуются формулой:

должная МВЛ = 1/2ЖЕЛ х 35 ,

или с использованием основного обмена по таблице А. Теличинаса (19б8); или по номограмме (рис. ).

Номограмма для оценки максимальной минутной вентиляции легких (MMV). Соединяя прямой линией (1) соответствующие пункты на шкалах «масса» и «рост», находят точку пересечения со шкалой «Поверхность тела». Затем эту точку соединяют прямой (2) с соответствующим пунктом на шкале «Возраст» и на месте пересечения этой линии со шкалой MMV находят должную величину максимальной вентиляции (Amrein et al., 1969)

Снижение МВЛ происходит вследствие уменьшения объема вентилируемой легочной ткани и снижения бронхиальной проходимости, гиподинамии. У мужчин в возрасте 20-30 лет МВЛ колеблется от 100 до 180 (в среднем 140 л/мин), у женщин - от 70 до 120 л/мин. У высокорослых спортсменов с хорошо развитой дыхательной мускулатурой МВЛ иногда достигает 350 л/мин, у спортсменок - 250 л/мин (W. Hollmann, 1972).

Таким образом МВЛ наиболее точно и полно характеризует функцию внешнего дыхания в сравнении с другими спирографическими показателями.

Оценки и пробы функций дыхания

Для оценки бронхиальной проходимости используют тест ФЖЕЛ (форсированная жизненная емкость легких). Обследуемому предлагают максимально глубоко вдохнуть и быстро выдохнуть. ФЖЕЛ у здоровых лиц ниже ЖЕЛ на 200-300 мл. Тиффно предложил измерять ФЖЕЛ за первую секунду. В норме ФЖЕЛ за секунду составляет не менее 70% ЖЕЛ.

Пневмотахометрия проводится пневмотахометром Б.Е. Вотчала. Методом пневмотахометрии определяют скорость воздушной струи при максимально быстром вдохе и выдохе. У здоровых лиц этот показатель колеблется у мужчин от 5 до 8 л/с, у женщин - от 4 до 6 л/с. Отмечена зависимость пневмотахометрического показателя от ЖЕЛ и возраста. Обнаружено, что чем больше ЖЕЛ, тем выше максимальная скорость выдоха. Пневмотахометрический показатель зависит от бронхиальной проходимости, силы дыхательной мускулатуры спортсмена, его возраста, пола и функционального состояния.

Величину максимальной скорости выдоха сравнивают с должными величинами, рассчитанными по формуле:

должная величина выдоха = ЖЕЛ х 1,2

Разница фактической и должной величин у здоровых людей не должна быть более 15% от должного уровня. У здоровых лиц показатель выдоха больше вдоха. С повышением тренированности отмечается преобладание максимальной скорости вдоха над выдохом. Увеличение скорости вдоха у спортсменов объясняется повышением резервных возможностей легких.

Объем воздуха, остающегося в легких после максимального выдоха (ОО) наиболее полно и точно характеризует газообмен в легких.

Одним из основных показателей внешнего дыхания является газообмен (анализ респираторных газов - углекислоты и кислорода в альвеолярном воздухе), то есть поглощение кислорода и выведение углекислоты. Газообмен характеризует внешнее дыхание на этапе «альвеолярный воздух - кровь легочных капилляров». Он исследуется методом газовой хроматографии.

Функциональная проба Розенталя позволяет судить о функциональных возможностях дыхательной мускулатуры. Проба проводится на спирометре, где у обследуемого 4-5 раз подряд с интервалом в 10-15 с определяют ЖЕЛ. В норме получают одинаковые показатели. Снижение ЖЕЛ на протяжении исследования указывает на утомляемость дыхательных мышц.

Пневмотонометрический показатель (ПТП, мм рт. ст.) дает возможность оценить силу дыхательной мускулатуры, которая является основой процесса вентиляции. ПТП снижается при гиподинамии, при длительных перерывах в тренировках, при переутомлении и др. Исследование проводится пневмотонометром В.И. Дубровского и И.И. Дерябина (1972). Исследуемый производит выдох (или вдох) в мундштук аппарата. В норме у здоровых лиц ПТП в среднем составляет у мужчин на выдохе 328 ± 17,4 мм рт. ст., на вдохе - 227 ± 4,1 мм рт. ст., у женщин, соответственно, - 246 ± 1,8 и 200 ± 7,0 мм рт. ст. При заболеваниях легких, гиподинамии, переутомлении эти показатели снижаются.

При физических нагрузках, особенно в циклических видах спорта (лыжные гонки, марафонский бег, гребля академическая и др.), дыхательная мускулатура является лимитирующим фактором.

На рис. показана функция легких в состоянии покоя и мышечной нагрузки. Общая емкость легких во время нагрузки может несколько уменьшаться из-за увеличения внутриторакального объема крови. В состоянии покоя дыхательный объем (ДО) составляет 10-15% ЖЕЛ (450-600 мл), при физической нагрузке может достигать 50% ЖЕЛ. Таким образом, у людей с большой ЖЕЛ дыхательный объем в условиях интенсивной физической работы может составлять 3-4 л. Kак видно на рис. , ДО увеличивается главным образом за счет резервного объема вдоха. Резервный объем выдоха даже при тяжелой физической нагрузке изменяется незначительно. Поскольку во время физической работы остаточный объем увеличивается, а функциональная остаточная емкость практически не изменяется, ЖЕЛ несколько уменьшается.

Функция легких в состоянии покоя (А) и при максимальной физической нагрузке (Б).
Частота дыхания (fR) 10-15 и 40-50 мин-1 соответственно 1 - дыхательный объем; 2 - резервный объем выдоха; 3 - резервный объем вдоха; 4 - остаточный объем; 5 - внутриторакальный объем крови.
МГВд - максимально глубокий вдох; НВд - нормальный вдох; НВы - нормальный выдох; МГВы - максимально глубокий выдох; а - жизненная емкость легких; б - функциональный остаточный объем, в - общий объем легких

Пробы Штанге и Генчи дают некоторое представление о способности организма противостоять недостатку кислорода.

Проба Штанге . Измеряется максимальное время задержки дыхания после глубокого вдоха. При этом рот должен быть закрыт и нос зажат пальцами. Здоровые люди задерживают дыхание в среднем на 40-50 с; спортсмены высокой квалификации - до 5 мин, а спортсменки - от 1,5 до 2,5 мин.

С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается (с учетом других показателей), как улучшение подготовленности (тренированности) спортсмена.

Проба Генчи . После неглубокого вдоха сделать выдох и задержать дыхание. У здоровых людей время задержки дыхания составляет 25-30 с. Спортсмены способны задержать дыхание на 60-90 с. При хроническом утомлении время задержки дыхания резко уменьшается.

Значение проб Штанге и Генчи увеличивается, если вести наблюдения постоянно, в динамике.

Английский
дыхание – breath
грудная полость – thoracic cavity
система внешнего дыхания – respiratory system
параметры дыхательной системы – parameters of the respiratory system
таблицы Гаррис-Бенедикта – Table Harris-Benedict
оценки и пробы функций дыхания – evaluation and tests of respiratory function


Дыхательный объем и жизненная емкость легких - это статические характеристики, измеряемые за один дыхательный цикл. Но потребление кислорода и образование углекислого газа происходят в организме непрерывно.

Поэтому постоянство газового состава артериальной крови зависит не от характеристик одного дыхательного цикла, а от скорости поступления кислорода и удаления углекислого газа за продолжительный период времени. Мерой этой скорости в какой-то степени можно считать минутный объем дыхания (МОД), или легочную вентиляцию, т.е. объем воздуха, проходящего через легкие за 1 минуту. Минутный объем дыхания при равномерном автоматическом (без участия сознания) дыхании равен произведению дыхательного объема на количество дыхательных циклов за 1 минуту. В покое у мужчины он равен в среднем 8000 мл или 8 л в 1 минут)" (500мл х 16 дыханий в 1 минуту). Считается, что минутный объем дыхания дает информацию о вентиляции легких, но ни в коей мере не определяет эффективность дыхания. При дыхательном объеме 500 мл в альвеолы во время вдоха сначала поступает 150 мл воздуха, находящегося в дыхательных путях, т.е. в анатомическом мертвом пространстве, и поступившего в них в конце предшествующего выдоха. Это уже использованный воздух, поступивший в анатомическое мертвое пространство из альвеол. Таким образом, при вдохе из атмосферы 500 мл «свежего» воздуха в альвеолы из них поступает 350 мл. Последние 150 мл вдыхаемого «свежего» воздуха заполняют анатомическое мертвое пространство и в газообмене с кровью не участвуют. В результате за 1 минут)" при дыхательном объеме 500 мл и при 16 дыханиях в I минуту через альвеолы пройдет атмосферного воздуха не 8 л, а 5,6 л (350 х 16 = 5600), так называемая, альвеолярная вентиляция. При уменьшении дыхательного объема до 400 мл для сохранения прежней величины минутного объема дыхания, частота дыханий должна увеличиться до 20 дыханий в 1 минуту (8000: 400). При этом альвеолярная вентиляция составит 5000 мл (250 х 20) вместо 5600 мл, которые необходимы для сохранения постоянства газового состава артериальной крови. Чтобы сохранить газовый гомеостазис артериальной крови, необходимо увеличить частоту дыханий до 22-23 дыханий в 1 минуту (5600: 250-22,4). Это предполагает увеличение минутного объема дыхания до 8960 мл (400 х 22,4). При величине дыхательного объема 300 мл для сохранения альвеолярной вентиляции и, соответственно, газового гомеостазиса крови частота дыханий должна увеличиться до 37 дыханий в 1 минуту (5600: 150 = 37,3). При этом минутный объем дыхания составит 11100 мл (300 х 37 = 11100), т.е. возрастет почти в 1,5 раза. Таким образом, сама по себе величина минутного объема дыхания еще не определяет эффективность дыхания.
Человек может взять управление дыханием на себя и по своему желанию дышать животом или грудью, менять частот)" и глубину дыхания, продолжительность вдоха и выдоха и т.п. Однако, как бы он не менял свое дыхание, в состоянии физического покоя количество атмосферного воздуха, попадающего в альвеолы за 1 минут)", должно оставаться примерно одним и тем же, а именно, 5600 мл, чтобы обеспечить нормальный газовый состав крови,
потребности клеток и тканей в кислороде и в удалении избытка углекислого газа. При отклонении от этой величины в любую сторону газовый состав артериальной крови меняется. Сразу же срабатывают гомеостатические механизмы его поддержания. Они вступают в противоречие с сознательно формируемой завышенной или заниженной величиной альвеолярной вентиляции. При этом исчезает ощущение комфортности дыхания, возникает либо ощущение недостатка воздуха, либо чувство мышечного напряжения. Таким образом, сохранить нормальный газовый состав крови при углублении дыхания, т.е. при увеличении дыхательного объема, можно только уменьшая частоту" дыхательных циклов, и, наоборот, при увеличении частоты дыхания сохранение газового гомеостазиса возможно только при одновременном уменьшении дыхательного объема.
Кроме минутного объема дыхания, существует еще понятие максимальная вентиляция легких (МВЛ) - объем воздуха, который может пройти через легкие за 1 минуту при максимальной вентиляции. У нетренированного взрослого мужчины максимальная вентиляция легких при физической нагрузке может превышать минутный объем дыхания в состоянии покоя в 5 раз. У тренированных людей максимальная вентиляция легких может достигать 120 л, т.е. минутный объем дыхания может увеличиться в 15 раз. При максимальной вентиляции легких также существенное значение имеет соотношение дыхательного объема и частоты дыханий. При одной и той же величине максимальной вентиляции легких альвеолярная вентиляция будет выше при меньшей частоте дыхания и, соответственно, при большем дыхательном объеме В результате, в артериальную кровь может поступить за то же время больше кислорода и из нее выйти больше углекислого газа.

Еще по теме МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ.:

  1. ЛЕГКИЕ НЕ ИМЕЮТ СОБСТВЕННЫХ СОКРАТИТЕЛЬНЫХ ЭЛЕМЕНТОВ. ИЗМЕНЕНИЕ ИХ ОБЪЕМА - РЕЗУЛЬТАТ ИЗМЕНЕНИЙ ОБЪЕМА ГРУДНОЙ ПОЛОСТИ.
  2. ХАРАКТЕР ДЫХАНИЯ - ВАЖНЫЙ ФАКТОР ФОРМИРОВАНИЯ МОРФО-ФУНКЦИОНАЛЫІЫХ ХАРАКТЕРИСТИК ВНУТРЕННИХ ОРГАНОВ ГЛУБОКОЕ ДЫХАНИЕ СОХРАНЯЕТ УПРУГО - ЭЛАСТИЧЕСКИЕ СВОЙСТВА АОРТЫ И АРТЕРИЙ, ПРОТИВОДЕЙСТВУЯ РАЗВИТИЮ АТЕРОСКЛЕРОЗА И АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ.