Свет как электромагнитная волна физика. Что такое свет

Свет обладает как волновыми свойствами, так и корпускулярными свойствами. Такое свойство света называет корпускулярно-волновой дуализм. Но ученые и физики древности не знали об этом, и изначально считали свет упругой волной.

Свет - волны в эфире

Но так как для распространения упругих волн нужна среда, то возникал правомерный вопрос, в какой же среде распространяется свет? Какая среда находится на пути от Солнца к Земле? Сторонники волновой теории света предположили что всё пространство во вселенной заполнено некоторой невидимой упругой средой. Они даже придумали ей название – светоносный эфир.

В то время, ученые еще не знали о существовании каких либо волн, кроме механических. Такие взгляды на природу света высказывались примерно в 17 веке. Считалось, что свет распространяется именно в этом светоносном эфире.

Свет - поперечная волна

Но такое предположение вызывало ряд противоречивых вопросов. К концу 18 века было доказано, что свет является поперечной волной. А упругие поперечные волны могут возникать только в твердых телах, следовательно, светоносный эфир является твердым телом.

Это вызывало сильную головную боль у ученых того времени. Как небесные тела могут двигаться сквозь твердый светоносный эфир, и при этом не испытывать никакого сопротивления.

Свет - электромагнитная волна

Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме. И он предположил, что свет тоже является электромагнитной волной. Потом это предположение подтвердилось.

Но актуально также было представление о том, что в некоторых случаях свет ведет себя как поток частиц. Теория Максвелла противоречила некоторым экспериментальным фактам. Но, в 1990 году, физик Макс Планк выдвинул гипотезу, что атомы испускают электромагнитную энергию отдельными порциями – квантами.

А в 1905 г. Альберт Эйнштейн выдвинул идею, о том, что электромагнитные волны с некоторой частотой можно рассматривать как поток квантов излучения с энергией E=р*ν. В настоящее время квант электромагнитного излучения называют фотоном. Фотон не обладает ни массой, ни зарядом и всегда распространяется со скоростью света.

То есть при излучении и поглощении свет проявляет корпускулярные свойства, а при перемещении в пространстве волновые.

СВЕТ КАК ЭЛЕКТРОМАГНИТНАЯ ВОЛНА. Экспериментальное подтверждение теории Максвелла было получено Герцем в опытах с разряжающейся лейденской банкой. Превратив ее в первое подобие антенны, Герц получил электромагнитные колебания с = 50см и серией опытов доказал тождественность их свойств световым колебаниям (отражение, преломление, интерференция, дифракция, поляризация). Майкл Фарадей () - В 1833 году сформулировал законы электролиза (законы Фарадея), ввел понятия подвижность, анод, катод, ионы, электролиты, электроды. В 1845 году открыл диамагнетизм, а в парамагнетизм. Обнаружил (1845) явление вращения плоскости поляризации света в магнитном поле (эффект Джеймс Клерк Максвелл () Наиболее весомый вклад Максвелл сделал в молекулярную физику и электродинамику. В кинетической теории газов установил в 1859 году статистический закон, описывающий распределение молекул газа по скоростям (распределение Максвелла). В Фарадея). Это было первым экспериментальным доказательством связи между магнетизмом и светом. В 1846 году в своем мемуаре впервые высказал идею об электромагнитной природе света году первым показал статистическую природу второго начала термодинамики. Самым большим научным достижением Максвелла является теория электромагнитного поля, которую он сформулировал в виде системы уравнений, предсказав существование в свободном пространстве электромагнитных волн и их распространение со скоростью света. Последнее дало основание считать свет одним из видов электромагнитного излучения. Генрих Рудольф Герц () - В 1887 году предложил удачную конструкцию генератора электромагнитных колебаний (вибратор Герца) и метод их обнаружения с помощью резонанса (резонатор Герца), впервые разработав теорию излучения электромагнитных волн. Экспериментально доказал существование предсказанных Максвеллом электромагнитных волн, наблюдал их отражение, преломление, интерференцию и поляризацию. Установил, что скорость их распространения равна скорости света. Доказательство электромагнитной природы света. Впервые связь между светом и магнетизмом была исследована Фарадеем в 1845 году. Пропуская поляризованный пучок света через свинцовое стекло, помещенное между полюсами электромагнита, он наблюдал поворот плоскости поляризации на значительный угол. В 1860-е гг. Максвелл составил дифференциальные уравнения для напряженностей электрического и магнитного векторов, решениями которых являлись электромагнитные волны. Скорость распространения волн оказалась комбинацией размерных констант, вычисления которых дали значение, совпавшее с измерениями скорости света в опытах Физо и Фуко.






ПЛОСКИЕ И СФЕРИЧЕСКИЕ ВОЛНЫ. Волна называется сферической, если ее волновые поверхности представляют собой сферы В однородной среде колебание вдоль всех параллельных лучей распространяется с одинаковой фазовой скоростью. Все волновые поверхности такой волны являются плоскостями. Такая волна называется плоской. Рис.1.1 Сферическая волна Рис.1.2 Плоская волна




СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ВОЛН Поперечность электромагнитной волны – вектора Е и Н перпендикулярны направлению распространения волны Рис. 1.3 Распространение электромагнитной волны Взаимная ортогональность векторов Е, Н и k, образующих правовинтовую систему. Связь мгновенных значений Е и Н: Связь между модулями векторов Е и Н в гармонической волне:


Вектор Пойнтинга. Плотность энергии электромагнитного поля: Рис К выводу вектора Пойнтинга Поток энергии (поток лучистой энергии) - отношение энергии волны dW, передаваемой через площадку за малый промежуток времени, к этому промежутку времени. Плотность потока энергии (интенсивность волны) – отношение потока энергии через площадку к ее площади. Вектор Пойнтинга – вектор, численно равный интенсивности электромагнитной волны и направленный вдоль луча, т.е. вдоль направления переноса энергии. A – амплитуда волны

Свет – электромагнитная волна. В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая . Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую. Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные. Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров. Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими. Согласно самым новым измерениям скорость света в вакууме Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Интерференция света - опыт Юнга. Свет от лампочки со светофильтpом, котоpый создает пpактически монохpоматический свет, пpоходит чеpез две узкие, pядом pасположенные щели, за котоpыми установлен экpан. На экpане будет наблюдаться система светлых и темных полос - полос интеpфеpенции. В данном случае единая световая волна pазбивается на две, идущие от pазличных щелей. Эти две волны когеpентны между собой и пpи наложении дpуг на дpуга дают систему максимумов и минимумов интенсивности света в виде темных и светлых полос соответствующего цвета.

Интерференция света - условия max и min. Условие максимума : Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max). , где - pазность фаз складываемых волн. Условие минимума: Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум.

В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая .

Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую.

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам.

Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные.

Свет как электромагнитные волны

Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров.

Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.

Скорость света

Согласно самым новым измерениям скорость света в вакууме

Измерения скорости света в различных прозрачных веществах показали, что она всегда меньше, чем в вакууме. Например, в воде скорость света уменьшается в 4/3 раза.

Максвеллу создать электромагнитную теорию поля. Он доказал, что в природе должны существовать электромагнитные волны. Максвелл рассчитал скорость распро­странения электромагнитных волн в вакууме и в среде: υ=с/ . где с - скорость их распространения в вакууме, ε и μ -диэлектрическая и магнитная проницаемость среды. Свет - это электромагнитные волны.

Таким образом, волновая теория о при­роде света эволюционировала в электромагнитную теорию света. Согласно этой теории свет - это электромагнитные волны опре­деленного оптического диапазона. Оптическое излучение в пределах длин волн от 760 нм до 380 нм способно непосредственно вызывать зрительное ощущение в человеческом глазе. Следовательно, оно является видимым. Оптическое излуче­ние с λ > 760 нм называется инфракрасным, а с λ < 380 нм - ультрафиолетовым.Как любые электромагнитные волны, световые волны могут быть описаны с помощью вектора напряженности Ё электриче­ского поля и вектора магнитной индукции В магнитного поля волны. Но при действии света на вещество, основное значение имеет электрическая составляющая поля волны, действующая на электроны атомов вещества, поэтому световые волны описывают­ся уравнением:E=E 0 cos(ωt-2πr/λ).Где E 0 -амплитуда напряжонности, ω-циклическая честота, λ-длина волны,r- расстояние до источника света.

Скорость света

Скорость света в вакууме - одна из наиболее важных фи­зических констант..Поскольку скорость рас­пространения света очень ве­лика, свет затрачивает замет­ное время лишь на прохождение очень больших расстояний. Следовательно, для определения скорости света следует определять либо очень малые промежутки времени, либо астрономические расстояния.Впервые скорость света измерил датский астроном Ремер в 1676 г., Первое наблюдение было проведено в то время когда Земля, дви­гаясь вокруг Солнца, находилась ближе всего к Юпитеру. По­вторное наблюдение, проведенное через 6 месяцев, когда Земля удалилась от Юпитера примерно на диаметр своей орбиты, пока­зало, что Ио опоздал появиться из тени Юпитера на 22 мин. Это запаздывание вызвано тем, что свет тратит 22 мин на прохожде­ние расстояния, примерно равное диаметру земной орбиты. Раз­делив это расстояние на время запаздывания, Ремер нашел ско­рость света (215000 км/с). Впоследствии были разработаны другие, более точные методы лабораторных измерений скорости света.

В 1881 г. Майкельсон определил скорость света с помощью вращающейся восьмигранной зеркаль­ной призмы Для своих измерений Майкельсон воспользо­вался двумя горными вершинами: Антонио и Вильсон (в Калифорнии), расстояние между кото­рыми (35,426 км) было тщательно измерено. На вершине горы Вильсон был установлен сильный источник 5, свет от которого, проходя через щель, падал на восьмигранную зеркальную призму А. От­раженный от зеркальной грани призмы свет попадал на вогнутое зеркало В, установленное на вершине горы Антонио. Далее свет падал на зеркало т и, отражаясь от него, падал на другую точку зеркала В, после чего попадал на вторую грань зеркальной приз­мы А и отражался. Отраженный свет улавливался с помощью зрительной трубы С. Вышедший из щели свет мог попасть в зри­тельную трубу только при том условии, если за время распростра­нения света с одной горы на другую и обратно в расположении зеркал ничего не изменилось.


Зеркальная призма А при помощи мотора приводилась во вращение, причем скорость мотора регулировалась так, чтобы че­рез зрительную трубу щель S была видна непрерывно. Это могло быть только при том условии, если за время поворота призмы на 1/8 оборота свет проходил путь, равный двойному расстоянию между вершинами гор. Зная число оборотов зеркала в секунду и пройденный светом путь, Майкельсон нашел, что скорость света в воздухе

Скорость света в различных веществах, как показывают опыты, неодинакова. В воде, например, скорость света около 225000 км/с, в стекле около 200000 км/с.