Все формулы логарифмов с примерами. Основные свойства логарифмов

    Совсем неплохо, правда? Пока математики подбирают слова, чтобы дать вам длинное путанное определение, давайте поближе посмотрим на это простое и ясное.

    Число e означает рост

    Число e означает непрерывный рост. Как мы видели в прошлом примере, e x позволяет нам увязать процент и время: 3 года при росте 100% есть то же самое, что и 1 год при 300%, при условии "сложных процентов".

    Можно подставлять любые значения процента и времени (50% на протяжении 4 лет), но лучше задать процент как 100% для удобства (получается 100% на протяжении 2 лет). За счёт перехода к 100% мы можем сфокусироваться исключительно на компоненте времени:

    e x = e процент * время = e 1.0 * время = e время

    Очевидно, что e x означает:

  • насколько вырастет мой вклад через x единиц времени (при условии 100%-го непрерывного роста).
  • например, через 3 промежутка времени я получу в e 3 = 20.08 раз больше "штуковин".

e x - это масштабирующий коэффициент, показывающий, до какого уровня мы вырастем за x отрезков времени.

Натуральный логарифм означает время

Натуральный логарифм - это инверсия числа e, такой причудливый термин для обозначения противоположности. Кстати, о причудах; по латыни он называется logarithmus naturali , отсюда и появилась аббревиатура ln.

И что эта инверсия или противоположность означает?

  • e x позволяет нам подставить время и получить рост.
  • ln(x) позволяет нам взять рост или доход и узнать время, необходимое для его получения.

Например:

  • e 3 равняется 20.08. Через три отрезка времени у нас будет в 20.08 раз больше того, с чего мы начали.
  • ln(20.08) будет примерно 3. Если вас интересует рост в 20.08 раз, вам понадобится 3 промежутка времени (опять же, при условии стопроцентного непрерывного роста).

Всё ещё читаете? Натуральный логарифм показывает время, нужное, чтобы достичь желаемого уровня.

Этот нестандартный логарифмический счёт

Вы проходили логарифмы - это странные существа. Как им удалось превратить умножение в сложение? А деление в вычитание? Давайте посмотрим.

Чему равняется ln(1)? Интуитивно понятно, что вопрос стоит так: сколько нужно ждать, чтобы получить в 1 раз больше того, что у меня есть?

Ноль. Нуль. Нисколько. У вас уже это есть единожды. Не требуется нисколько времени, чтобы от уровня 1 дорости до уровня 1.

  • ln(1) = 0

Хорошо, что насчёт дробного значения? Через сколько у нас останется 1/2 от имеющегося количества? Мы знаем, что при стопроцентном непрерывном росте ln(2) означает время, необходимое для удвоения. Если мы обратим время вспять (т.е. подождём отрицательное количество времени), то получим половину от того, что имеем.

  • ln(1/2) = -ln(2) = -0.693

Логично, правда? Если мы вернёмся назад (время вспять) на 0.693 секунды, то обнаружим половину имеющегося количества. Вообще можно переворачивать дробь и брать отрицательное значение: ln(1/3) = -ln(3) = -1.09. Это означает, что, если мы вернёмся в прошлое на 1.09 отрезков времени, то обнаружим только треть от нынешнего числа.

Ладно, а как насчёт логарифма отрицательного числа? Сколько времени нужно, чтобы "вырастить" колонию бактерий от 1 до -3?

Это невозможно! Нельзя получить отрицательное число бактерий, не так ли? Вы можете получить максимум (эээ... минимум) нуль, но вам никак не получить отрицательное число этих маленьких тварей. В отрицательном числе бактерий просто нет смысла.

  • ln(отрицательное число) = неопределено

"Неопределено" означает, что нет такого промежутка времени, который надо было бы прождать, чтобы получить отрицательное значение.

Логарифмическое умножение - просто умора

Сколько времени займёт четырёхкратный рост? Конечно, можно просто взять ln(4). Но это слишком просто, мы пойдём другим путём.

Можно представить четырёхкратный рост как удвоение (требующее ln(2) единиц времени) и затем снова удвоение (требующее ещё ln(2) единиц времени):

  • Время на 4х рост = ln(4) = Время на удвоится и затем ещё раз удвоится = ln(2) + ln(2)

Интересно. Любой показатель роста, скажем, 20, можно рассматривать как удвоение сразу после 10-кратного увеличения. Или роста в 4 раза, и затем в 5 раз. Либо же утроение и затем увеличение в 6.666 раз. Видите закономерность?

  • ln(a*b) = ln(a) + ln(b)

Логарифм от A, умноженного на B, есть log(A) + log(B). Это отношение сразу обретает смысл, если оперировать в терминах роста.

Если вас интересует 30-кратный рост, вы можете подождать ln(30) за один присест, либо же подождать ln(3) Для утроения, и затем ещё ln(10) для удесятирения. Конечный результат тот же самый, так что конечно время должно оставаться постоянным (и остаётся).

Что на счёт деления? В частности, ln(5/3) означает: сколько времени понадобится для того, чтобы вырасти в 5 раз, и затем получить 1/3 от этого?

Отлично, рост в 5 раз есть ln(5). Рост в 1/3 раза займёт -ln(3) единиц времени. Итак,

  • ln(5/3) = ln(5) – ln(3)

Сие означает: дайте вырасти в 5 раз, и затем "вернитесь во времени" к той отметке, где останется всего треть от того количества, так что у вас получится 5/3 рост. В общем получается

  • ln(a/b) = ln(a) – ln(b)

Я надеюсь, что странная арифметика логарифмов начинает обретать для вас смысл: умножение показателей роста становится сложением единиц времени роста, а деление превращается в вычитание единиц времени. Не надо запоминать правила, попробуйте осознать их.

Использование натурального логарифма при произвольном росте

Ну конечно, - скажете вы, - это всё хорошо, если рост 100%-ный, а что в случае 5%, которые я получаю?"

Нет проблем. "Время", которое мы рассчитываем с помощью ln(), на самом деле является комбинацией процентной ставки и времени, тот самый Х из уравнения e x . Мы всего лишь решили задать процент как 100% для простоты, но мы вольны использовать любые числа.

Допустим, мы хотим достичь 30-кратного роста: берём ln(30) и получаем 3.4 Это означает:

  • e x = рост
  • e 3.4 = 30

Очевидно, это уравнение означает "100%-ная доходность на протяжении 3.4 лет даёт рост в 30 раз". Мы можем записать это уравнение в таком виде:

  • e x = e ставка*время
  • e 100% * 3.4 года = 30

Мы можем менять значения "ставки" и "времени", лишь бы ставка * время оставалось 3.4. Например, если нас интересует 30-кратный рост - сколько нам придётся ждать при процентной ставке 5%?

  • ln(30) = 3.4
  • ставка * время = 3.4
  • 0.05 * время = 3.4
  • время = 3.4 / 0.05 = 68 лет

Я рассуждаю так: "ln(30) = 3.4, значит, при 100%-ном росте это займёт 3.4 года. Если я удвою скорость роста, необходимое время уменьшится вдвое".

  • 100% за 3.4 года = 1.0 * 3.4 = 3.4
  • 200% за 1.7 года = 2.0 * 1.7 = 3.4
  • 50% за 6.8 года = 0.5 * 6.8 = 3.4
  • 5% за 68 года = .05 * 68 = 3.4 .

Здорово, правда? Натуральный логарифм может использоваться с любыми значениями процентной ставки и времени, поскольку их произведение остаётся постоянным. Можете перемещать значения переменных сколько душе угодно.

Отпадный пример: Правило семидесяти двух

Правило семидесяти двух - математический приём, позволяющий оценить, сколько времени понадобится, чтобы ваши деньги удвоились. Сейчас мы его выведем (да!), и более того, мы попробуем уяснить его суть.

Сколько времени понадобится, чтобы удвоить ваши деньги при 100% ставке, нарастающей ежегодно?

Оп-па. Мы использовали натуральный логарифм для случая с непрерывным ростом, а теперь ты ведёшь речь о ежегодном начислении? Не станет ли это формула непригодной для такого случая? Да, станет, однако для реальных процентных ставок вроде 5%, 6% или даже 15%, разница между ежегодным начислением процентов и непрерывным ростом будет невелика. Так что грубая оценка работает, мм, грубо, так что мы сделаем вид, что у нас полностью непрерывное начисление.

Теперь вопрос прост: Как быстро можно удвоиться при 100%-ном росте? ln(2) = 0.693. Нужно 0.693 единиц времени (лет - в нашем случае), чтобы удвоить нашу сумму с непрерывным ростом 100%.

Так, а что если процентная ставка - не 100%, а скажем, 5% или 10%?

Легко! Поскольку ставка * время = 0.693, мы удвоим сумму:

  • ставка * время = 0.693
  • время = 0.693 / ставка

Получается, если рост 10%-ный, это займёт 0.693 / 0.10 = 6.93 лет на удвоение.

Чтобы упростить вычисления, давайте домножим обе части на 100, тогда можно будет говорить "10", а не "0.10":

  • время на удвоение = 69.3 / ставка, где ставка выражена в процентах.

Теперь черёд удваиваться при ставке 5%, 69.3 / 5 = 13.86 лет. Однако 69.3 - не самое удобное делимое. Давайте выберем близкое число, 72, которое удобно делить на 2, 3, 4, 6, 8 и другие числа.

  • время на удвоение = 72 / ставка

что и является правилом семидесяти двух. Всё шито-крыто.

Если вам нужно найти время для утроения, можете использовать ln(3) ~ 109.8 и получить

  • время на утроение = 110 / ставка

Что является ещё одним полезным правилом. "Правило 72" применимо росту по процентным ставкам, росту населения, культур бактерий, и всего, что растёт экспоненциально.

Что дальше?

Надеюсь, натуральный логарифм теперь приобрёл для вас смысл - он показывает время, необходимое для роста любого числа при экспоненциальном росте. Я думаю, натуральным он называется потому, что e - универсальная мера роста, так что ln можно считать универсальным способом определения, сколько времени нужно для роста.

Каждый раз, когда вы видите ln(x), вспоминайте "время, нужное, чтобы вырасти в Х раз". В предстоящей статье я опишу e и ln в связке, так что свежий аромат математики заполнит воздух.

Дополнение: Натуральный логарифм от e

Быстрая викторина: сколько будет ln(e)?

  • математический робот скажет: поскольку они определены как инверсия одна другой, очевидно, что ln(e) = 1.
  • понимающий человек: ln(e) это число времени, чтобы вырасти в "е" раз (около 2.718). Однако число e само по себе является мерой роста в 1 раз, так что ln(e) = 1.

Мыслите ясно.

9 сентября 2013

Продолжаем изучать логарифмы. В этой статье мы поговорим про вычисление логарифмов , этот процесс называют логарифмированием . Сначала мы разберемся с вычислением логарифмов по определению. Дальше рассмотрим, как находятся значения логарифмов с использованием их свойств. После этого остановимся на вычислении логарифмов через изначально заданные значения других логарифмов. Наконец, научимся использовать таблицы логарифмов. Вся теория снабжена примерами с подробными решениями.

Навигация по странице.

Вычисление логарифмов по определению

В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению . Давайте подробно рассмотрим, как происходит этот процесс.

Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: log a b=log a a c =c .

Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

Пример.

Найдите log 2 2 −3 , а также вычислите натуральный логарифм числа e 5,3 .

Решение.

Определение логарифма позволяет нам сразу сказать, что log 2 2 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

Аналогично находим второй логарифм: lne 5,3 =5,3 .

Ответ:

log 2 2 −3 =−3 и lne 5,3 =5,3 .

Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , ...

Пример.

Вычислите логарифмы log 5 25 , и .

Решение.

Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log 5 25=log 5 5 2 =2 .

Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите ). Следовательно, .

Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

Коротко решение можно было записать так: .

Ответ:

log 5 25=2 , и .

Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

Пример.

Найдите значение логарифма .

Решение.

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

Пример.

Чему равны логарифмы и lg10 ?

Решение.

Так как , то из определения логарифма следует .

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

Ответ:

И lg10=1 .

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства log a a p =p , которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Пример.

Вычислите логарифм .

Решение.

Ответ:

.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log 2 3≈1,584963 , тогда мы можем найти, например, log 2 6 , выполнив небольшое преобразование с помощью свойств логарифма: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Пример.

Вычислите логарифм 27 по основанию 60 , если известно, что log 60 2=a и log 60 5=b .

Решение.

Итак, нам нужно найти log 60 27 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log 60 3 .

Теперь посмотрим, как log 60 3 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log 60 60=1 . С другой стороны log 60 60=log60(2 2 ·3·5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким образом, 2·log 60 2+log 60 3+log 60 5=1 . Следовательно, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b .

Наконец, вычисляем исходный логарифм: log 60 27=3·log 60 3= 3·(1−2·a−b)=3−6·a−3·b .

Ответ:

log 60 27=3·(1−2·a−b)=3−6·a−3·b .

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Таблицы логарифмов, их использование

Для приближенного вычисления значений логарифмов могут быть использованы таблицы логарифмов . Наиболее часто используется таблица логарифмов по основанию 2 , таблица натуральных логарифмов и таблица десятичных логарифмов. При работе в десятичной системе счисления удобно пользоваться таблицей логарифмов по основанию десять. С ее помощью и будем учиться находить значения логарифмов.










Представленная таблица позволяет с точностью до одной десятитысячной находить значения десятичных логарифмов чисел от 1,000 до 9,999 (с тремя знаками после запятой). Принцип нахождения значения логарифма с помощью таблицы десятичных логарифмов разберем на конкретном примере – так понятнее. Найдем lg1,256 .

В левом столбце таблицы десятичных логарифмов находим две первые цифры числа 1,256 , то есть, находим 1,2 (это число для наглядности обведено синей линией). Третью цифру числа 1,256 (цифру 5 ) находим в первой или последней строке слева от двойной линии (это число обведено красной линией). Четвертую цифру исходного числа 1,256 (цифру 6 ) находим в первой или последней строке справа от двойной линии (это число обведено зеленой линией). Теперь находим числа в ячейках таблицы логарифмов на пересечении отмеченной строки и отмеченных столбцов (эти числа выделены оранжевым цветом). Сумма отмеченных чисел дает искомое значение десятичного логарифма с точностью до четвертого знака после запятой, то есть, lg1,236≈0,0969+0,0021=0,0990 .

А можно ли, используя приведенную таблицу, находить значения десятичных логарифмов чисел, имеющих больше трех цифр после запятой, а также выходящих за пределы от 1 до 9,999 ? Да, можно. Покажем, как это делается, на примере.

Вычислим lg102,76332 . Сначала нужно записать число в стандартном виде : 102,76332=1,0276332·10 2 . После этого мантиссу следует округлить до третьего знака после запятой, имеем 1,0276332·10 2 ≈1,028·10 2 , при этом исходный десятичный логарифм приближенно равен логарифму полученного числа, то есть, принимаем lg102,76332≈lg1,028·10 2 . Теперь применяем свойства логарифма: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2 . Наконец, находим значение логарифма lg1,028 по таблице десятичных логарифмов lg1,028≈0,0086+0,0034=0,012 . В итоге весь процесс вычисления логарифма выглядит так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012 .

В заключение стоит отметить, что используя таблицу десятичных логарифмов можно вычислить приближенное значение любого логарифма. Для этого достаточно с помощью формулы перехода перейти к десятичным логарифмам, найти их значения по таблице, и выполнить оставшиеся вычисления.

Для примера вычислим log 2 3 . По формуле перехода к новому основанию логарифма имеем . Из таблицы десятичных логарифмов находим lg3≈0,4771 и lg2≈0,3010 . Таким образом, .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В центре внимания этой статьи – логарифм . Здесь мы дадим определение логарифма, покажем принятое обозначение, приведем примеры логарифмов, и скажем про натуральные и десятичные логарифмы. После этого рассмотрим основное логарифмическое тождество.

Навигация по странице.

Определение логарифма

Понятие логарифма возникает при решении задачи в известном смысле обратной , когда нужно найти показатель степени по известному значению степени и известному основанию.

Но хватит предисловий, пришло время ответить на вопрос «что такое логарифм»? Дадим соответствующее определение.

Определение.

Логарифм числа b по основанию a , где a>0 , a≠1 и b>0 – это показатель степени, в который нужно возвести число a , чтобы в результате получить b .

На этом этапе заметим, что произнесенное слово «логарифм» должно сразу вызывать два вытекающих вопроса: «какого числа» и «по какому основанию». Иными словами, просто логарифма как бы нет, а есть только логарифм числа по некоторому основанию.

Сразу введем обозначение логарифма : логарифм числа b по основанию a принято обозначать как log a b . Логарифм числа b по основанию e и логарифм по основанию 10 имеют свои специальные обозначения lnb и lgb соответственно, то есть, пишут не log e b , а lnb , и не log 10 b , а lgb .

Теперь можно привести : .
А записи не имеют смысла, так как в первой из них под знаком логарифма находится отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Теперь скажем о правилах чтения логарифмов . Запись log a b читается как «логарифм b по основанию a ». Например, log 2 3 - это логарифм трех по основанию 2 , а - это логарифм двух целых двух третьих по основанию квадратный корень из пяти. Логарифм по основанию e называют натуральным логарифмом , а запись lnb читается как «натуральный логарифм b ». К примеру, ln7 – это натуральный логарифм семи, а мы прочитаем как натуральный логарифм пи. Логарифм по основанию 10 также имеет специальное название – десятичный логарифм , а запись lgb читается как «десятичный логарифм b ». Например, lg1 - это десятичный логарифм единицы, а lg2,75 - десятичный логарифм двух целых семидесяти пяти сотых.

Стоит отдельно остановиться на условиях a>0 , a≠1 и b>0 , при которых дается определение логарифма. Поясним, откуда берутся эти ограничения. Сделать это нам поможет равенство вида , называемое , которое напрямую следует из данного выше определения логарифма.

Начнем с a≠1 . Так как единица в любой степени равна единице, то равенство может быть справедливо лишь при b=1 , но при этом log 1 1 может быть любым действительным числом. Чтобы избежать этой многозначности и принимается a≠1 .

Обоснуем целесообразность условия a>0 . При a=0 по определению логарифма мы бы имели равенство , которое возможно лишь при b=0 . Но тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Избежать этой многозначности позволяет условие a≠0 . А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Наконец, условие b>0 следует из неравенства a>0 , так как , а значение степени с положительным основанием a всегда положительно.

В заключение этого пункта скажем, что озвученное определение логарифма позволяет сразу указать значение логарифма, когда число под знаком логарифма есть некоторая степень основания. Действительно, определение логарифма позволяет утверждать, что если b=a p , то логарифм числа b по основанию a равен p . То есть, справедливо равенство log a a p =p . Например, мы знаем, что 2 3 =8 , тогда log 2 8=3 . Подробнее об этом мы поговорим в статье

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.