Клеточное строение организмов. Органоиды клетки. Строение и функции Построение клетки

Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

Строение животной клетки отличается от растительной . Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих ).

Рисунок животной клетки с подписями

Клетка состоит из множества специализированных органелл, выполняющих различные функции.

Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

Основные органеллы и органоиды животной клетки

Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

Ядро

Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы . Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.

Ядро регулирует рост и деление клетки. При в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

Рибосомы

Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

Существует два вида эндоплазматического ретикулума:

  • гранулярный;
  • агранулярный.

Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.

Везикулы

Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

Митохондрии

В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

Цитоплазма клетки

Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

Цитозоль

Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

Цитоскелет

Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.

Он выполняет следующие функции:

  • придает форму;
  • обеспечивает прочность;
  • стабилизирует ткани;
  • закрепляет органеллы на определенных местах;
  • играет важную роль в передаче сигналов.

Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

Клеточная мембрана

Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.

Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

Лизосомы

Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

Центриоль

Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

Как выглядит животная клетка под микроскопом

Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

Не вызывают сомнений следующие части:

  • ядро;
  • цитоплазма;
  • клеточная мембрана.

Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

Функции центриоли

Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

Строение клетки человека - рисунок с подписями

Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

Признаки живой клетки

Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

Признак Растительная Животная
Получение питания Автотрофный.

Фотосинтезирует питательные вещества

Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Заключение

Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.

Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.

У многоклеточного организма содержимое клетки отделено от внешней среды и соседних клеток плазматической мембраной, или плазмалеммой. Все содержимое клетки, за исключением ядра, носит название цитоплазмы. Она включает вязкую жидкость - цитозоль (или гиалоплазму), мембранные и немембранные компоненты. К мембранным компонентам клетки относятся ядро, митохондрии, пластиды, эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли растительных клеток. К немембранным компонентам относятся хромосомы, рибосомы, клеточный центр и центриоли, органоиды передвижения (реснички и жгутики). Клеточная мембрана (плазмалемма) состоит из липидов и белков. Липиды в мембране образуют двойной слой (кислой), а белки пронизывают всю ее толщу или располагаются на внешней или внутренней поверхности мембраны. К некоторым белкам, находящимся на наружной поверхности, прикреплены углеводы. Белки и углеводы на поверхности мембран у разных клеток неодинаковы и являются своеобразными указателями типа клеток. Благодаря этому клетки, принадлежащие к одному типу, удерживаются вместе, образуя ткани. Кроме того, белковые молекулы обеспечивают избирательный транспорт сахаров, аминокислот, нуклеотидов и других веществ в клетку и из клетки. Таким образом, клеточная мембрана выполняет функции избирательно проницаемого барьера, регулирующего обмен между клеткой и средой.

Ядро - самый крупный органоид клетки, заключенный в оболочку из двух мембран, насквозь пронизанных многочисленными порами. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Полость ядра заполнена ядерным соком.

В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки, углеводы, липиды. Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.



Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающая всю цитоплазму и образующая единое целое с наружной клеточной мембраной и ядерной оболочкой. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество рибосом, на мембранах гладкой сети их нет. Основная функция ЭПС - участие синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется гранулированной, а углеводы и жиры - гладкой ЭПС.

Рибосомы - очень мелкие органоиды, состоящие из двух субчастиц. В их состав входят белки и РНК. Основная функция рибосом - синтез белка.

Митохондрии снаружи ограничены внешней мембраной, имеющей в основном то же строение, что и плазматическая мембрана. Под наружной мембраной располагается внутренняя мембрана, образующая многочисленные складки - кристы. На кристах находятся дыхательные ферменты. Во внутренней полости митохондрий размещаются рибосомы, ДНК, РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков ДНК и РНК.

Хлоропласты - это органоиды, свойственные только клеткам растений. По своему строению они сходны с митохондриями. С поверхности каждый хлоропласт ограничен двумя мембранами - наружной и внутренней. Внутри хлоропласт заполнен студенистой стромой. В строме располагаются особые мембранные оболочка (две мембраны) - граны, связанные между собой и с внут-мемопаной хлоропласта. В мембранах гран на-орофилл. Благодаря хлорофиллу происходит превращение энергий солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза углеводов.

Аппарат Гольджи состоит из 3 - 8 сложенных стопкой, уплощенных и слегка изогнутых дискообразных полостей. Он выполняет в клетке разнообразные функции: участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом, в построении клеточной мембраны.

Лизосомы представляют собой простые сферические мембранные мешочки (мембрана одинарная), заполненные пищеварительными ферментами, расщепляющими углеводы, жиры, белки, нуклеиновые кислоты. Их основная функция - переваривание пищевых частиц и удаление отмерших органоидов.

Клеточный центр принимает участие в делении клетки и располагается около ядра. В состав клеточного центра клеток животных и низших растений входит центриоль. Центриоль - парное образование, она содержит две удлиненные гранулы, состоящие из микротрубочек и расположенные перпендикулярно друг другу центриоли

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений. Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриоллы - тонкие нити, расположенные пучками вдоль мышечного волокна.

Крупная центральная вакуоль встречается в клетках растений и представляет собой мешок, образованный одинарной мембраной. (Более мелкие вакуоли, например, пищеварительные и сократительные, встречаются как в растительных, так и в животных клетках.) В вакуоли содержится клеточный сок - концентрированный раствор различных веществ (минеральных солей, Сахаров, кислот, пигментов, ферментов), которые здесь хранятся.

Клеточные включения - углеводы, жиры и белки - это непостоянные компоненты клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Формы клеток очень разнообразны. У одноклеточных каждая клетка - отдельный организм. Ее форма и особенности строения связаны с условиями среды, в которых обитает данное одноклеточное, с его образом жизни.

Различия в строении клеток

Тело каждого многоклеточного животного и растения слагается из клеток, различных по внешнему виду, что связано с их функциями. Так, у животных сразу можно отличить нервную клетку от мышечной или эпителиальной клетки (эпителий-покровная ткань). У растений неодинаково строение клетки листа, стебля и т. д.
Столь же изменчивы и размеры клеток. Самые мелкие из них (некоторые ) не превышают 0,5 мкм Величина клеток многоклеточных организмов колеблется от нескольких микрометров (диаметр лейкоцитов человека 3-4 мкм, диаметр эритроцитов - 8 мкм) до огромных размеров (отростки одной нервной клетки человека имеют длину более 1 м). У большинства клеток растений и животных величина их диаметра колеблется от 10 до 100 мкм.
Несмотря на разнообразие строения форм и размеров, все живые клетки любого организма сходны по многим признакам внутреннего строения. Клетка - сложная целостная физиологическая система, в которой осуществляются все основные процессы жизнедеятельности: и энергии, раздражимость, рост и самовоспроизведение.

Основные компоненты в строение клетки

Основные общие компоненты клетки - наружная мембрана, цитоплазма и ядро. Клетка может жить и нормально функционировать лишь при наличии всех этих компонентов, которые тесно взаимодействуют друг с другом и с окружающей средой.

Рисунок. 2. Строение клетки: 1 - ядро, 2 - ядрышко, 3 - ядерная мембрана, 4 - цитоплазма, 5 - аппарат Гольджи, 6 - митохондрии, 7 - лизосомы, 8-эндоплазматическая сеть, 9 - рибосомы, 10 - клеточная мембрана

Строение наружной мембраны. Она представляет собой тонкую (около 7,5 нм2 толщиной) трехслойную оболочку клетки, видимую лишь в электронном микроскопе. Два крайних слоя мембраны состоят из белков, а средний образован жироподобными веществами. В мембране есть очень мелкие поры, благодаря чему она легко пропускает одни вещества и задерживает другие. Мембрана принимает участие в фагоцитозе (захватывание клеткой твердых частиц) и в пиноцитозе (захватывание клеткой капелек жидкости с растворенными в ней веществами). Таким образом мембрана сохраняет целостность клетки и регулирует поступление веществ из окружающей среды в клетку и из клетки в окружающую ее среду.
На своей внутренней поверхности мембрана образует впячивания и разветвления, глубоко проникающие внутрь клетки. Через них наружная мембрана связана с оболочкой ядра, С другой стороны, мембраны соседних клеток, образуя взаимно прилегающие впячивания и складки, очень тесно и надежно соединяют клетки в многоклеточные ткани.

Цитоплазма представляет собой сложную коллоидную систему. Ее строение: прозрачный полужидкий раствор и структурные образования. Общими для всех клеток структурными образованиями цитоплазмы являются: митохондрии, эндоплазматическая сеть, комплекс Гольджи и рибосомы (рисунок. 2). Все они вместе с ядром представляют собой центры тех или иных биохимических процессов, в совокупности составляющих в клетке. Эти процессы чрезвычайно разнообразны и протекают одновременно в микроскопически малом объеме клетки. С этим связана общая особенность внутреннего строения всех структурных элементов клетки: несмотря на малые размеры, они имеют большую поверхность, на которой располагаются биологические катализаторы (ферменты) и осуществляются различные биохимические реакции.

Митохондрии (рисунок. 2, 6) - энергетические центры клетки. Это очень мелкие, но хорошо видимые в световом микроскопе тельца (длина 0,2- 7,0 мкм). Они находятся в цитоплазме и значительно варьируют по форме и числу в разных клетках. Жидкое содержимое митохондрий заключено в две трехслойные оболочки, каждая из которых имеет такое же строение, как и наружная мембрана клетки. Внутренняя оболочка митохондрии образует многочисленные впячивания и неполные перегородки внутри тела митохондрии (рисунок. 3). Эти впячивания называются кристами. Благодаря им при малом объеме достигается резкое увеличение поверхностей, на которых осуществляются биохимические реакции и среди них прежде всего реакции накопления и освобождения энергии при помощи ферментативного превращения адено-зиндифосфорной кислоты в аденозинтрифосфорную кислоту и наоборот.

Рисунок. 3. Схема строения митохондрии: 1 - наружная оболочка. 2 - внутренняя оболочка, 3 - гребни оболочки, направленные внутрь митохондрии

Эндоплазматическая сеть (рисунок. 2, 8) представляет собой многократно разветвленные впячивания наружной мембраны клетки. Мембраны эндоплазматической сети обычно расположены попарно, а между ними образуются канальцы, которые могут расширяться в более значительные полости, заполненные продуктами биосинтеза. Вокруг ядра мембраны, слагающие эндоплазматическую сеть, непосредственно переходят в наружную мембрану ядра. Таким образом, эндоплазматическая сеть связывает воедино все части клетки. В световом микроскопе, при осмотре строения клетки, эндоплазматическая сеть не видна.

В строение клетки различают шероховатую и гладкую эндоплазматическую сеть. Шероховатая эндоплазматическая сеть густо окружена рибосомами, где происходит синтез белков. Гладкая эндоплазматическая сеть лишена рибосом и в ней осуществляются синтез жиров и углеводов. По канальцам эндоплазматической сети осуществляется внутриклеточный обмен веществами, синтезируемыми в различных частях клетки, а также обмен между клетками. Вместе с тем эндоплазматическая сеть как более плотное структурное образование выполняет функцию остова клетки, придавая ее форме определенную устойчивость.

Рибосомы (рисунок. 2, 9) находятся как в цитоплазме клетки, так и в ее ядре. Это мельчайшие зернышки диаметром около 15-20 им, что делает их невидимыми в световом микроскопе. В цитоплазме основная масса рибосом сосредоточена на поверхности канальцев шероховатой эндоплазматической сети. Функция рибосом заключается в самом ответственном для жизнедеятельности клетки и организма в целом процессе — в синтезе белков.

Комплекс Гольджи (рисунок. 2, 5) сначала был найден только в животных клетках. Однако в последнее время и в растительных клетках обнаружены аналогичные структуры. Строение структуры комплекса Гольджи близка к структурным образованиям эндоплазматической сети: это различной формы канальцы, полости и пузырьки, образованные трехслойными мембранами. Помимо того, в комплекс Гольджи входят довольно крупные вакуоли. В них накапливаются некоторые продукты синтеза, в первую очередь ферменты и гормоны. В определенные периоды жизнедеятельности клетки эти зарезервированные вещества могут быть выведены из данной клетки через эндоплазматическую сеть и вовлечены в обменные процессы организма в целом.

Клеточный центр - образование, до сих пор описанное только в клетках животных и низших растений. Он состоит из двух центриолей , строение каждой из которых представляет собой цилиндрик размером до 1 мкм. Центриоли играют важную роль в митотическом делении клеток. Кроме описанных постоянных структурных образований, в цитоплазме различных клеток периодически появляются те или иные включения. Это капельки жира, крахмальные зерна, кристаллики белков особой формы (алейроновые зерна) и др. В большом количестве такие включения встречаются в клетках запасающих тканей. Однако и в клетках других тканей такие включения могут существовать как временный резерв питательных веществ.

Ядро (рисунок. 2, 1), как и цитоплазма с наружной мембраной,- обязательный компонент подавляющего большинства клеток. Лишь у некоторых бактерий, при рассмотрении строения их клеток, не удалось выявить структурно оформленного ядра, но в их клетках обнаружены все химические вещества, присущие ядрам других организмов. Нет ядер в некоторых специализированных клетках, потерявших способность делиться (эритроциты млекопитающих, ситовидные трубки флоэмы растения). С другой стороны, существуют многоядерные клетки. Ядро играет очень важную роль в синтезе белков-ферментов, в передаче наследственной информации из поколения в поколение, в процессах индивидуального развития организма.

Ядро неделящейся клетки имеет ядерную оболочку. Она состоит из двух трехслойных мембран. Наружная мембрана связана через эндоплазматическуго сеть с клеточной мембраной. Через всю эту систему осуществляется постоянный обмен веществами между цитоплазмой, ядром и средой, окружающей клетку. Кроме того, в оболочке ядра есть поры, через которые также осуществляется связь ядра с цитоплазмой. Внутри ядро заполнено ядерным соком, в котором находятся глыбки хроматина, ядрышко и рибосомы. Хроматин образован белком и ДНК. Это тот материальный субстрат, который перед делением клетки оформляется в хромосомы, видимые в световом микроскопе.

Хромосомы - постоянные по числу и форме образования, одинаковые для всех организмов данного вида. Перечисленные выше функции ядра в первую очередь связаны с хромосомами, а точнее - с ДНК, входящей в их состав.

Ядрышко (рисунок. 2,2) в количестве одного или нескольких присутствует в ядре неделящейся клетки и хорошо видно в световом микросколе. В момент деления клетки оно исчезает. В самое последнее время выяснена огромная роль ядрышка: в нем формируются рибосомы, которые затем из ядра поступают в цитоплазму и там осуществляют синтез белков.

Все сказанное в равной мере относится и к клеткам животных, и к клеткам растений. В связи со спецификой обмена веществ, роста и развития растении и животных в строении клеток тех и других имеются дополнительные структурные особенности, отличающие растительные клетки от клеток животных. Подробнее об этом написано в разделах «Ботаника» и «Зоология»; здесь же отметим лишь самые общие различия.

Клеткам животных, кроме перечисленных составных частей, в строени клетки, присущи особые образования - лизосомы . Это ультрамикроскопические пузырьки в цитоплазме, наполненные жидкими пищеварительными ферментами. Лизосомы осуществляют функцию расщепления веществ пищи на более простые химические вещества. Есть отдельные указания, что лизосомы встречаются и в растительных клетках.
Самые характерные структурные элементы растительных клеток (кроме тех общих, которые присущи всем клеткам) - пластиды . Они существуют в трех формах: зеленые хлоропласты, красно-оранжево-желтые
хромопласты и бесцветные лейкопласты . Лейкопласты при определенных условиях могут превращаться в хлоропласты (позеленение клубня картофеля), а хлоропласты в свою очередь могут становиться хромопластами (осеннее пожелтение листьев).

Рисунок. 4. Схема строения хлоропласта: 1 - оболочка хлоропласта, 2 - группы пластинок, в которых совершается процесс фотосинтеза

Хлоропласты (рисунок 4) представляют собой «фабрику» первичного синтеза органических веществ из неорганических за счет солнечной энергии. Это небольшие тельца довольно разнообразной формы, всегда зеленого цвета благодаря присутствию хлорофилла. Строение хлоропластов в клетке: имеют внутреннюю структуру, которая обеспечивает максимальное развитие свободных поверхностей. Эти поверхности создаются многочисленными тонкими пластинками, скопления которых находятся внутри хлоропласта.
С поверхности хлоропласт, как и другие структурные элементы цитоплазмы, покрыт двойной мембраной. Каждая из них в свою очередь трехслойна, как и наружная мембрана клетки.

Клетка является наименьшей и основной структурной единицей живых организмов, способной к самообновлению, саморегуляции и самовоспроизведению.

Характерные размеры клеток: клетки бактерий — от 0,1 до 15 мкм, клетки других организмов — от 1 до 100 мкм, иногда достигают 1-10 мм; яйцеклетки крупных птиц — до 10-20 см, отростки нервных клеток — до 1 м.

Форма клеток весьма разнообразна: существуют шаровидные клетки (кокки) , цепочечные (стрептококки) , вытянутые (палочки, или бациллы) , изогнутые (вибрионы) , извитые (спириллы) , многогранные, с двигательными жгутиками и др.

Виды клеток: прокариотические (безъядерные) и эукариотические (имеющие оформленное ядро).

Эукариотические клетки, в свою очередь, подразделяются на клетки животных, растений и грибов.

Структурная организация эукариотической клетки

Протопласт — это все живое содержимое клетки. Протопласт всех эукариотических клеток состоит из цитоплазмы (со всеми органоидами) и ядра.

Цитоплазма — это внутреннее содержимое клетки за исключением ядра, состоящее из гиалоплазмы, погруженных в нее орга-иелл и (в некоторых типах клеток) внутриклеточных включений (запасных питательных веществ и/или конечных продуктов обмена).

Гиалоплазма — основная плазма, матрикс цитоплазмы, основное вещество, являющееся внутренней средой клетки и представляющее собой вязкий бесцветный коллоидный раствор (содержание воды до 85%) различных веществ: белков (10%), сахаров, органических и неорганических кислот, аминокислот, полисахаридов, РНК, липидов, минеральных солей и т.п.

■ Гиалоплазма является средой для внутриклеточных реакций обмена и связующим звеном между органеллами клетки; она способна к обратимым переходам из золя в гель, ее состав определяет буферные и осмотические свойства клетки. В цитоплазме находится цитоскелет, состоящий из микротрубочек и способных сокращаться белковых нитей.

■ Цитоскелет определяет форму клетки и участвует во внутриклеточном перемещении органоидов и отдельных веществ. Ядро — самый крупный органоид эукариотической клетки, содержащий хромосомы, в которых хранится вся наследственная информация (подробнее см. ниже).

Структурные компоненты эукариотической клетки:

■ плазмалемма (плазматическая мембрана),
■ клеточная стенка (только у клеток растений и грибов),
■ биологические (элементарные) мембраны,
■ ядро,
■ эндоплазматическая сеть (эндоплазматический ретикулум),
■ митохондрии,
■ комплекс Гольджи,
■ хлоропласты (только у клеток растений),
■ лизосомы, s
■ рибосомы,
■ клеточный центр,
■ вакуоли (только у клеток растений и грибов),
■ микротрубочки,
■ реснички, жгутики.

Схемы строения животной и растительной клеток приведены ниже:

Биологические (элементарные) мембраны — это активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Все мембраны имеют сходное строение.

Структура и состав мембран: толщина 6-10 нм; состоят в основном из молекул белков и фосфолипидов.

Фосфолипиды образуют двойной (бимолекулярный) слой, в котором их молекулы обращены своими гидрофильными (водорастворимыми) концами наружу, а гидрофобными (водонерастворимыми) концами — внутрь мембраны.

Белковые молекулы располагаются на обеих поверхностях двойного липидного слоя (периферические белки ), пронизывают оба слоя молекул липидов (интегральные белки, большая часть которых — ферменты) или только один их слой (полуинтегральные белки).

Свойства мембран: пластичность, асимметрия (состав наружного и внутреннего слоев и липидов, и белков различен), полярность (внешний слой заряжен положительно, внутренний — отрицательно), способность самозамыкаться, избирательная проницаемость (при этом гидрофобные вещества проходят через двойной липидный слой, а гидрофильные — через поры в интегральных белках).

Функции мембран: барьерная (отделяет содержимое органоида или клетки от окружающей среды), структурная (обеспсчнило определенную форму, размеры и устойчивость органоида или клетки), транспортная (обеспечивает транспорт веществ в органоид или клетку и из нее), каталитическая (обеспечивает примембранные биохимические процессы), регулятивная (участвует в регуляции обмена веществ и энергии между органоидом или клеткой и внешней средой), участвует в преобразовании энергии и поддержании трансмембранного электрического потенциала.

Плазматическая мембрана (плазмалемма)

Плазматическая мембрана , или плазмалемма, — это биологическая мембрана или комплекс плотно прилегающих друг к другу биологических мембран, покрывающих клетку с внешней стороны.

Строение, свойства и функции плазмалеммы в основном такие же, как и у элементарных биологических мембран.

❖ Особенности строения:

■ наружная поверхность плазмалеммы содержит гликокаликс — полисахаридный слой молекул гликолипоидов и гликопротеидов, служащих рецепторами для «узнавания» определенных химических веществ; у животных клеток она может быть покрыта слизью или хитином, а у растительных клеток — целлюлозой или пектиновыми веществами;

■ обычно плазмалемма образует выросты, впячивания, складки, микроворсинки и др., увеличивающие поверхность клетки.

Дополнительные функции: рецепторная (участвует в «узнавании» веществ и в восприятии сигналов из окружающей среды и передаче их в клетку), обеспечение связи между клетками в тканях многоклеточного организма, участие в построении специальных структур клетки (жгутиков, ресничек и др.).

Клеточная стенка (оболочка)

Клеточная стенка — это жесткая структура, расположенная снаружи плазмалеммы и представляющая собой внешний покров клетки. Присутствует у прокариотических клеток и клеток грибов и растений.

Состав клеточной стенки: целлюлоза у клеток растений и хитин у клеток грибов (структурные компоненты), белки, пектины (которые участвуют в образовании пластинок, скрепляющих стенки двух соседних клеток), лигнин (скрепляющий целлюлозные волокна в очень прочный каркас), суберин (откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов) и др. Наружная поверхность клеточной стенки эпидермальных клеток растений содержит большое количество карбоната кальция и кремнезема (минерализация) и покрыта гидрофобными веществами восками и кутикулой (слоем вещества кутина, пронизанным целлюлозой и пектинами).

Функции клеточной стенки: служит внешним каркасом, поддерживает тургор клеток, выполняет защитную и транспортную функции.

Органеллы клетки

Органеллы (или органоиды) — это постоянные высокоспециализированные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции.

По назначению органеллы подразделяются на:
■ органеллы общего назначения (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, центриоли, лизосомы, пластиды) и
■ органеллы специального назначения (миофибриллы, жгутики, реснички, вакуоли).
По наличию мембраны органеллы подразделяются на:
■ двумембранные (митохондрии, пластиды, клеточное ядро),
■ одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли) и
■ немембранные (рибосомы, клеточный центр).
Внутреннее содержимое мембранных органелл всегда отличается р.т окружающей их гиалоплазмы.

Митохондрии — двумембранные органеллы эукариотических клеток, осуществляющие окисление органических веществ до конечных продуктов с освобождением энергии, запасаемой в молекулах АТФ.

Строение: палочковидная, шаровидная и нитевидная формы, толщина 0,5-1 мкм, длина 2-7 мкм; двумембранные, наружная мембрана гладкая и имеет высокую проницаемость, внутренняя мембрана образует складки — кристы, на которых находятся тельца сферической формы — АТФ-сомы. В пространстве между мембранами скапливаются ионы водорода 11 , участвующие в кислородном дыхании.

Внутреннее содержимое (матрикс): рибосомы, кольцевые ДНК, РНК, аминокислоты, белки, ферменты цикла Кребса, ферменты тканевого дыхания (находятся на кристах).

Функции: окисление веществ до СO 2 и Н 2 O; синтез АТФ и специфических белков; образование новых митохондрий в результате деления надвое.

Пластиды (имеются только у клеток растений и автотрофных протистов).

Виды пластид: хлоропласты (зеленые), лейкопласты (бесцветные округлой формы), хромопласты (желтые или оранжевые); пластиды могут превращаться из одного вида в другой.

Строение хлоропластов: они двумембранные, имеют округлую или овальную форму, длина 4-12 мкм, толщина 1-4 мкм. Наружная мембрана гладкая, на внутренней имеются тилакоиды — складки, образующие замкнутые дисковидные впячивания, между которыми находится строма (см. ниже). У высших растений тилакоиды собраны в стопки (наподобие столбика монет) граны , которые соединены друг с другом ламеллами (одиночными мембранами).

Состав хлоропластов: в мембранах тилакоидов и гран — зерна хлорофилла и других пигментов; внутреннее содержимое (строма): белки, липиды, рибосомы, кольцевые ДНК, РНК, ферменты, участвующие в фиксации СO 2 , запасные вещества.

Функции пластид: фотосинтез (хлоропласты, содержащиеся в зеленых органах растений), синтез специфических белков и накопление запасных питательных веществ: крахмала, белков, жиров (лейкопласты), придание окраски тканям растений с целью привлечения насекомых-опылителей и распространителей плодов и семян (хромопласты).

Эндоплазматическая сеть (ЭПС ), или эндоплазматический ретикулум, имеется во всех эукариотических клетках.

Строение: представляет собой систему соединенных между собой канальцев, трубочек, цистерн и полостей различной формы и размеров, стенки которых образованы элементарными (одинарными) биологическими мембранами. Различают два типа ЭПС: гранулярную (или шероховатую), содержащую рибосомы на поверхности каналов и полостей, и агранулярную (или гладкую), не содержащую рибосом.

Функции: разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; шероховатая ЭПС накапливает, изолирует для созревания и транспортирует,белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

Комплекс (или аппарат) Гольджи — мембранная органелла эукариотической клетки, расположенная вблизи клеточного ядра, представляющая собой систему цистерн и пузырьков и участвующая в накоплении, хранении и транспортировке веществ, построении клеточной оболочки и образовании лизосом.

Строение: комплекс представляет собой диктиосому — стопку ограниченных мембраной плоских дисковидных мешочков {цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС.

Функции: образование лизосом, вакуолей, плазмалеммы и клеточной стенки растительной клетки (после ее деления), секреция ряда комплексных органических веществ (пектиновых веществ, целлюлозы и др. у растений; гликопротеинов, гликолипидов, коллагена, белков молока, желчи, ряда гормонов и др. у животных); накопление и обезвоживание транспортированных по ЭПС липидов (из гладкой ЭПС), доработка и накопление белков (из гранулярной ЭПС и свободных рибосом цитоплазмы) и углеводов, выведение веществ из клетки.

Зрелые цистерны диктиосомы отшнуровывают пузырьки (вакуоли Гольджи) , заполненные секретом, который затем либо используется самой клеткой, либо выводится за ее пределы.

Лизосомы — клеточные органеллы, обеспечивающие расщепление сложных молекул органических веществ; образуются из пузырьков, отделяющихся от комплекса Гольджи или гладкой ЭПС, и присутствуют во всех эукариотических клетках.

Строение и состав: лизосомы — это небольшие одномембранные пузырьки округлой формы диаметром 0,2-2 мкм; заполнены гидролитическими (пищеварительными) ферментами (~40), способными расщеплять белки (до аминокислот), липиды (до глицерина и высших карбоновых кислот), полисахариды (до моносахаридов) и нуклеиновые кислоты (до нуклеотидов).

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (или вторичную лизосому), где и происходит расщепление сложных органических веществ; полученные мономеры через мембрану вторичной лизосомы поступают в цитоплазму клетки, а непереваренные (негидролизуемые) вещества остаются во вторичной лизосоме и затем, как правило, выводятся за пределы клетки.

Функции: гетерофагия — расщепление чужеродных веществ, поступивших в клетку путем эндоцитоза, аутофагия — уничтожение ненужных клетке структур; автолиз — саморазрушение клетки, происходящее в результате освобождения содержимого лизосом при гибели или перерождении клетки.

❖ Вакуоли — крупные пузырьки или полости в цитоплазме, образующиеся в клетках растений, грибов и многих протистов и ограниченные элементарной мембраной -тонопластом.

■ Вакуоли протистов подразделяют на пищеварительные и сократительные (имеющие в мембранах пучки эластичных волокон и служащие для осмотической регуляции водного баланса клетки).

■Вакуоли растительных клеток заполнены клеточным соком — водным раствором различных органических и неорганических веществ. В них также могут находиться ядовитые и дубильные вещества и конечные продукты жизнедеятельности клеток.

■Вакуоли растительных клеток могут сливаться в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Функции: накопление и изоляция запасных веществ и веществ, предназначенных для экскреции; поддержание тургор-ного давления; обеспечение роста клетки за счет растяжения; регуляция водного баланса клетки.

♦Рибосомы — органеллы клетки, присутствующие во всех клетках (в количестве нескольких десятков тысяч), расположенные на мембранах гранулярной ЭПС, в митохондриях, хлоропластах, цитоплазме и наружной ядерной мембране и осуществляющие биосинтез белков; субъединицы рибосом образуются в ядрышках.

Строение и состав: рибосомы -мельчайшие (15-35 нм) немембранные гранулы округлой и грибовидной формы; имеют два активных центра (аминоацильный и пептидильный); состоят из двух неравных субъединиц - большой (в виде полусферы с тремя выступами и каналом), которая содержит три молекулы РНК и белок, и малой (содержащей одну молекулу РНК и белок); субъединицы соединяются с помощью иона Mg+.

■ Функция: синтез белков из аминокислот.

Клеточный центр — органелла большинства клеток животных, некоторых грибов, водорослей, мхов и папоротников, расположенная (в интерфазе) в центре клетки вблизи ядра и служащая центром инициации сборки микротрубочек .

Строение: клеточный центр состоит из двух центриолей и центросферы. Каждая центриоль (рис. 1.12) имеет вид цилиндра длиной 0,3-0,5 мкм и диаметром 0,15 мкм, стенки которого образованы девятью триплетами микротрубочек, а середина заполнена однородным веществом. Центриоли расположены перпендикулярно друг другу и окружены плотным слоем цитоплазмы с радиально расходящимися микротрубочками, образующими лучистую центросферу. При делении клетки центриоли расходятся к полюсам.

■ Основные функции: образование полюсов деления клеток и ахроматиновых нитей веретена деления (или митотического веретена), обеспечивающего равноценное распределение генетического материала между дочерними клетками; в интерфазе направляет передвижение органелл в цитоплазме.

Цитоскслст клетки — это система микрофиламентов и микротрубочек , пронизывающих цитоплазму клетки, связанных с наружной цитоплазматической мембраной и ядерной оболочкой и поддерживающих форму клетки.

Микрофнламенты — тонкие, способные сокращаться нити толщиной 5-10 нм и состоящие из белков (актина, миозина и др.). Находятся в цитоплазме всех клеток и ложноножках подвижных клеток.

Функции: микрофнламенты обеспечивают двигательную активность гиалоплазмы, непосредственно участвуют в изменении формы клетки при распластывании и амебоидном движении клеток протистов, участвуют в образовании перетяжки при делении клеток животных; одни из основных элементов цитоскелета клетки.

Микротрубочки — тонкие полые цилиндры (диаметром 25 нм), состоящие из молекул белка тубулина, расположенные спиральными или прямолинейными рядами в цитоплазме эукариотических клеток.

Функции: микротрубочки образуют нити веретена деления, входят в состав центриолей, ресничек, жгутиков, участвуют во внутриклеточном транспорте; одни из основных элементов цитоскелета клетки.

Органеллы движения жгутики и реснички , присутствуют во многих клетках, но чаще встречаются у одноклеточных организмов.

Реснички — многочисленные цитоплазматические короткие (длиной 5-20 мкм) выросты на поверхности плазмалеммы. Имеются на поверхности различных видов клеток животных и некоторых растений.

Жгутики — единичные цитоплазматические выросты на поверхности клеток многих протистов, зооспор и сперматозоидов; в ~10 раз длиннее ресничек; служат для передвижения.

Строение: реснички и жгутики (рис. 1.14) состоят их микротрубочек , расположенных по системе 9×2+2 (девять двойных микротрубочек — дублетов образуют стенку, в середине расположены две одиночные микротрубочки). Дублеты способны скользить друг относительно друга, что приводит к изгибанию реснички или жгутика. В основании жгутиков и ресничек имеются базальные тельца, идентичные, по структуре центриолям.

■ Функции: реснички и жгутики обеспечивают передвижение самих клеток или окружающей их жидкости и взвешенных в ней частиц.

Включения

Включения — непостоянные (существующие временно) компоненты цитоплазмы клетки, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.

Трофические включения — это запасы питательных веществ (жир, крахмальные и белковые зерна, гликоген).

Секреторные включения — это продукты жизнедеятельности желез внутренней и внешней секреции (гормоны, ферменты).

Экскреторные включения — это продукты обмена веществ в клетке, подлежащие выведению из клетки.

Ядро и хромосомы

Ядро — самый крупная органелла; является обязательным компонентов всех эукариотических клеток (за исключением клеток ситовидных трубок флоэмы высших растений и зрелых эритроцитов млекопитающих). В большинстве клеток присутствует одно ядро, но существуют двух- и многоядерные клетки. Выделяют два состояния ядра: интерфазное и делящееся

Интерфазное ядро состоит из ядерной оболочки (отделяющей внутреннее содержимое ядра от цитоплазмы), ядерного матрикса (кариоплазмы), хроматина и ядрышек. Форма и размеры ядра зависят от вида организма, типа, возраста и функционального состояния клетки. Отличается высоким содержанием ДНК (15-30%) и РНК (12%).

Функции ядра: хранение и передача наследственной информации в виде неизменной структуры ДНК; регуляция (через систему белкового синтеза) всех процессов жизнедеятельности клетки.

Ядерная оболочка (или кариолемма) состоит из наружной и внутренней биологических мембран, между которыми находится перинуклеарное пространство . На внутренней мембране имеется белковая пластинка, придающая форму ядру. Наружная мембрана соединена с ЭПС и несет на себе рибосомы. Оболочка пронизана ядерными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Число пор непостоянно и зависит от размеров ядра и его функциональной активности.

Функции ядерной оболочки: она отделяет ядро от цитоплазмы клетки, регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белков, жиров, углеводов, АТФ, воды, ионов).

Хромосома — важнейшая органелла ядра, содержащая одну молекулу ДНК в комплексе со специфическими белками гистонами и некоторыми другими веществами, большая часть которых находится на поверхности хромосомы.

В зависимости от фазы жизненного цикла клетки хромосомы могут быть в двух состояниях деспирализованном и спирализованном.

» В деспирализованном состоянии хромосомы находятся в период интерфазы клеточного цикла, образуя невидимые в оптический микроскоп нити, составляющие основу хроматина .

■ Спирализация, сопровожающаяся укорачиванием и уплотнением (в 100-500 раз) нитей ДНК, происходят в процессе деления клетки ; при этом хромосомы приобретают компактную форму и становятся видимыми в оптический микроскоп.

Хроматин - один из компонентов ядерного вещества в период интерфазы, основу которого составляют деспирализованные хромосомы в виде сети длинных тонких нитей молекул ДНК в комплексе с гистонами и другими веществами (РНК, ДНК полимеразой, липидами, минеральными веществами и др.); хорошо окрашивается красителями, применяемыми в гистологической практике.

■ В хроматине участки молекулы ДНК навиваются на гистоны, образуя нуклеосомы (по виду напоминают бусы).

Хроматида — это структурный элемент хромосомы, представляющий собой нить молекулы ДНК в комплексе с белками гистонами и другими веществами, многократно сложенную как суперспираль и упакованную в виде палочковидного тельца.

■ При спирализации и упаковке отдельные участки ДНК укладываются закономерным образом так, что на хроматидах образуются чередующиеся поперечные полосы.

❖ Строение хромосомы (рис. 1.16). В спирализованном состоянии хромосома представляет собой палочковидную структуру размерами около 0,2-20 мкм, состоящую из двух хроматид и разделенную на два плеча первичной перетяжкой, называемой центромерой. Хромосомы могут иметь вторичную перетяжку, отделяющую участок, называемый спутником. У некоторых хромосом имеется участок (ядрышковый организатор ), на котором закодирована структура рибосомных РНК (р-РНК).

Типы хромосом в зависимости от их формы: равноплечие , неравноплечие (центромера смещена от середины хромосомы), палочковидные (центромера находится близко к концу хромосомы).

После анафазы митоза и анафазы мейоза II хромосомы состоят из одной хромитиды, а после репликации (удвоения) ДНК на синтетической (S) стадии интерфазы — из двух сестринских хромитид, соединенных друг с другом в области центромеры. Во время деления клетки к центромере прикрепляются микротрубочки веретена деления.

❖ Функции хромосом:
■ содержат генетический материал — молекулы ДНК;
■ осуществляют синтез ДНК (при удвоении хромосом в S-иериод клеточного цикла) и и-РНК;
■ регулируют синтез белков;
■ контролируют жизнедеятельность клетки.

Гомологичные хромосомы — хромосомы, относящиеся к одной паре, одинаковые по форме, размерам, расположению центромер, несущие одинаковые гены и определяющие развитие одних и тех же признаков. Гомологичные хромосомы могут различаться аллелями содержащихся в них генов и обмениваться участками в ходе мейоза (кроссинговер).

Аутосомы хромосомы в клетках раздельнополых организмов, одинаковые у самцов и самок одного вида (это все хромосомы клетки за исключением половых).

Половые хромосомы (или гетерохромосомы ) — это хромосомы, несущие гены, определяющие пол живого организма.

Диплоидный набор (обозначается 2п) — хромосомный набор соматической клетки, в котором каждая хромосома имеет парную ей гомологичную хромосому . Одну из хромосом диплоидного набора организм получает от отца, другую — от матери.

■ Диплоидный набор человека составляет 46 хромосом (из них 22 пары гомологичных хромосом и две половые хромосомы: у женщин две Х- хромосомы, у мужчин — по одной X- и Y- хромосоме).

Гаплоидный набор (обозначается 1л) — одинарный хромосомный набор половой клетки (гаметы ), в котором хромосомы не имеют парных гомологичных хромосом . Гаплоидный набор образуется при формировании гамет в результате мейоза, когда из каждой нары гомологичных хромосом в гамету попадает только одна.

Кариотип — это совокупность постоянных количественных и качественных морфологических признаков, характерных для хромосом соматических клеток организмов данного вида (их количество, размер и форма), по которым можно однозначно идентифицировать диплоидный набор хромосом.

Ядрышко — округлое, сильно уплотненное, не ограниченное

мембраной тельце размером 1-2 мкм. В ядре имеется одно или несколько ядрышек. Ядрышко образуется вокруг притягивающихся друг к другу ядрышковых организаторов нескольких хромосом. Во время деления ядра ядрышки разрушаются и вновь формируются в конце деления.

■ Состав: белок 70-80%, РНК 10-15%, ДНК 2-10%.
■ Функции: синтез р-РНК и т-РНК; сборка субъединиц рибосом.

Кариоплазма (или нуклеоплазма, кариолимфа, ядерный сок ) — это бесструктурная масса, заполняющая пространство между структурами ядра, в которую погружены хроматин, ядрышки, а также различные внутриядерные гранулы. Содержит воду, нуклеотиды, аминокислоты, АТФ, РНК и белки-ферменты.

Функции: обеспечивает взаимосвязи ядерных структур; участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро; регулирует синтез ДНК при репликации, синтез и-РНК при транскрипции.

Сравнительная характеристика клеток эукариот

Особенности строения прокариотической и эукариотической клеток

Транспорт веществ

Транспорт веществ — это процесс переноса необходимых веществ по организму, к клеткам, внутрь клетки и внутри клетки, а также удаление отработанных веществ из клетки и организма.

Внутриклеточный транспорт веществ обеспечивает гиалоплазма и (у клеток эукариот) эндоплазматическая сеть (ЭПС), комплекс Гольджи и микротрубочки. Транспорт веществ будет описан позже на этом сайте.

Способы транспорта веществ через биологические мембраны:

■ пассивный транспорт (осмос, диффузия, пассивная диффузия),
■ активный транспорт,
■ эндоцитоз,
■ экзоцитоз.

Пассивный транспорт не требует затрат энергии и происходит по градиенту концентрации, плотности или электрохимического потенциала.

Осмос — это проникновение воды (или иного растворителя) через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный.

Диффузия — проникновение вещества через мембрану по градиенту концентрации (из области с большей концентрацией вещества в область с меньшей концентрацией).

Диффузия воды и ионов осуществляется при участии интегральных белков мембраны, имеющих поры (каналы), диффузия жирорастворимых веществ происходит при участии липидной фазы мембраны.

Облегченная диффузия через мембрану происходит с помощью специальных мембранных белков-переносчиков, смотрите на картинке.

Активный транспорт требует затрат энергии, выделяющейся при расщеплении АТФ, и служит для переноса веществ (ионов, моносахаров, аминокислот, нуклеотидов) против градиента их концентрации или электрохимического потенциала. Осуществляется специальными белками-переносчиками пермиазами , имеющими ионные каналы и образующими ионные насосы .

Эндоцитоз — захват и обволакивание клеточной мембраной макромолекул (белков, нуклеиновых кислот и т.д.) и микроскопических твердых пищевых частиц (фагоцитоз ) или капелек жидкости с растворенными в ней веществами (пиноцитоз ) и заключение их в мембранную вакуоль, которая втягивается «внутрь клетки. Вакуоль затем сливается с лизосомой, ферменты которой расщепляют молекулы захваченного вещества до мономеров.

Экзоцитоз — процесс, обратный эндоцитозу. Посредством экзоцитоза клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки.

Самое ценное, что есть у человека - это его собственная жизнь и жизнь его близких. Самое ценное, что есть на Земле - это жизнь в целом. А в основе жизни, в основе всех живых организмов лежат клетки. Можно сказать, что жизнь на Земле имеет клеточное строение. Вот почему так важно узнать, как устроены клетки. Строение клеток изучает цитология - наука о клетках. Но представление о клетках необходимо для всех биологических дисциплин.

Что же такое клетка?

Определение понятия

Клетка - это структурная, функциональная и генетическая единица всего живого, содержащая наследственную информацию, состоящая из мембранной оболочки, цитоплазмы и органоидов, способная к поддержанию , обмену, размножению и развитию. © Сазонов В.Ф., 2015. © kineziolog.bodhy.ru, 2015..

Данное определение клетки является хотя и кратким, но достаточно полным. Оно отражает 3 стороны универсальности клетки: 1) структурную, т.е. как единицу строения, 2) функциональную, т.е. как единицу деятельности, 3) генетическую, т.е. как единицу наследствености и смены поколений. Важной характеристикой клетки является наличие в ней наследственной информации в виде нуклеиновой кислоты - ДНК. Также определение отражает важнейшую черту строения клетки: наличие наружной мембраны (плазмолеммы), разграничивающую клетку и окружающую её среду. И, наконец, 4 важнейших признака жизни: 1) поддержание гомеостаза, т.е. постоянства внутренней среды в условиях её постоянного обновления, 2) обмен с внешней средой веществом, энергией и информацией, 3) способность к размножению, т.е. к самовоспроизведению, репродукции, 4) способность к развитию, т.е. к росту, дифференцировке и формообразованию.

Более краткое, но неполное определение: Клетка - это элементарная (наименьшая и простейшая) единица жизни.

Более полное определение клетки:

Клетка - это ограниченная активной мембраной упорядоченная, структурированная система биополимеров, образующих цитоплазму, ядро и органоиды. Эта биополимерная система участвует в единой совокупности метаболических, энергетических и информационных процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Ткань - это совокупность клеток, сходных по строению, функциям и происхождению, совместно выполняющих общие функции. У человека в составе четырех основных групп тканей (эпителиальной, соединительной, мышечной и нервной) имеется около 200 различных видов специализированных клеток [Фалер Д.М., Шилдс Д. Молекулярная биология клетки: Руководство для врачей. / Пер. с англ. - М.: БИНОМ–Пресс, 2004. - 272 с.].

Ткани, в свою очередь, образуют органы, а органы - системы органов.

Живой организм начинается от клетки. Вне клетки жизни нет, вне клетки возможно только временное существование молекул жизни, например, в виде вирусов. Но для активного существования и размножения даже вирусам нужны клетки, пусть даже и чужие.

Строение клетки

На рисунке, представленном ниже, даны схемы строения 6 биологических объектов. Проанилизируйте, какие из них можно считать клетками, а какие нельзя, согласно двум вариантам определения понятия "клетка". Оформите свой ответ в виде таблички:

Строение клетки под электронным микроскопом


Мембрана

Важнейшей универсальное структурой клетки является клеточная мембрана (синоним: плазмолемма) , покрывающая клетку в виде тонкой плёнки. Мембрана регулирует отношения между клеткой и окружающей её средой, а именно: 1) она частично отделяет содержимое клетки от внешней среды, 2) связывает содержимое клетки с внешней средой.

Ядро

Второй по значению и универсальности клеточной структурой является ядро. Оно есть не во всех клетках, в отличие от клеточной мембраы, поэтому мы и ставим его на второе место. В ядре находятся хромосомы, содержащие двойные нити ДНК (дезоксирибонуклеиновой кислоты). Участки ДНК являются матрицами для построения информационных РНК, которые в свою очередь служат матрицами для построения в цитоплазме всех белков клетки. Таким образом, в ядре содержатся как бы "чертежи" строения всех белков клетки.

Цитоплазма

Это полужидкая внутренняя среда клетки, разделённая внутриклеточными мембранами на отсеки. Она обычно имеет цитоскелет для поддержания определённой формы и находится в постоянном движении. В цитоплазме находятся органоиды и включения.

На третье место можно поставить все остальные клеточные структуры, которые могут иметь собственную мембрану и называются органоидами.

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. По строению органоиды можно разделить на две группы: мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения

Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества "на выброс") и пигментные (содержащие пигменты - красящие вещества).

Клеточные структуры, включая органоиды ( )

Включения . Они не относятся к органоидам. Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества "на выброс") и пигментные (содержащие пигменты - красящие вещества).

  1. (плазмолемма).
  2. Ядро с ядрышком .
  3. Эндоплазматическая сеть : шероховатая (гранулярная) и гладкая (агранулярная).
  4. Комплекс (аппарат) Гольджи .
  5. Митохондрии .
  6. Рибосомы .
  7. Лизосомы . Лизосомы (от гр. lysis - «разложение, растворение, распад» и soma - «тело») - это пузырьки диаметром 200-400 мкм.
  8. Пероксисомы . Пероксисомы - это микротельца (пузырьки-везикулы) 0,1-1,5 мкм в диаметре, окружённые мембраной.
  9. Протеасомы . Протеасомы – специальные органоиды для разрушения белков.
  10. Фагосомы .
  11. Микрофиламенты . Каждый микрофиламент - это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10% от всех белков.
  12. Промежуточные филаменты . Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
  13. Микротрубочки . Микротрубочки образуют в клетке густую сеть. Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
  14. Клеточный центр .
  15. Пластиды .
  16. Вакуоли . Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ.
  17. Реснички и жгутики (специальные органоиды) . Состоят из 2-х частей: базального тельца, расположенного в цитоплазме и аксонемы - выроста над поверхностью клетки, который снаружи покрыт мембраной. Обеспечвают движение клетки или движение среды над клеткой.