Большой и малый круги кровообращения: схема. Кровеносная система – как она работает? Большое значение в механизме заместительного действия гемотрансфузий принадлежит жидкой части крови

У млекопитающих и человека кровеносная система самая сложная. Это замкнутая система, состоящая из двух кругов кровообращения. Обеспечивающая теплокровность, она более энергетически выгодна и позволяет человеку занять ту нишу обитания, в которой он сейчас находится.

Система кровообращения - это группа полых мышечных органов, ответственных за циркуляцию крови по сосудам организма. Она представлена сердцем и сосудами разного калибра. Это мышечные органы, которые образуют круги кровообращения. Схема их предлагается во всех учебниках по анатомии и описана в данной публикации.

Понятие о кругах кровообращения

Система кровообращения состоит из двух кругов - телесного (большого) и легочного (малого). Кругом кровообращения называется система сосудов артериального, капиллярного, лимфатического и венозного типа, которая осуществляет подачу крови из сердца в сосуды и ее движение в обратном направлении. Центральным является сердце, так как в нем без смешения артериальной и венозной крови перекрещивается два круга кровообращения.

Большой круг кровообращения

Большим кругом кровообращения называется система обеспечения периферических тканей артериальной кровью и ее возврата к сердцу. Он начинается от откуда кровь выходит в аорту через аортальное отверстие с Из аорты кровь направляется к более мелким телесным артериям и доходит до капилляров. Это совокупность органов, образующая приводящее звено.

Здесь в ткани поступает кислород, а из них эритроцитами захватывается углекислота. Также в ткани кровь транспортирует аминокислоты, липопротеиды, глюкозу, продукты метаболизма которых выносятся из капилляров в венулы и далее в более крупные вены. Они впадают в полые вены, которые возвращают кровь непосредственно к сердцу в правое предсердие.

Правым предсердием заканчивается большой круг кровообращения. Схема выглядит так (по ходу циркуляции крови): левый желудочек, аорта, эластические артерии, мышечно-эластические артерии, мышечные артерии, артериолы, капилляры, венулы, вены и полые вены, возвращающие кровь к сердцу в правое предсердие. От большого круга кровообращения питаются головной мозг, вся кожа, кости. В общем, все ткани человека питаются от сосудов большого круга кровообращения, а малый является лишь местом оксигенации крови.

Малый круг кровообращения

Легочной (малый) круг кровообращения, схема которого представлена ниже, берет начало от правого желудочка. В него кровь попадает из правого предсердия через атриовентрикулярное отверстие. Из полости правого желудочка обедненная кислородом (венозная) кровь через выходной (легочной) тракт поступает в легочной ствол. Эта артерия тоньше аорты. Она делится на две ветви, которые направляются к обоим легким.

Легкие - это центральный орган, который образует малый круг кровообращения. Схема человека, описанная в учебниках по анатомии, поясняет, что легочной кровоток нужен для оксигенации крови. Здесь она отдает углекислый газ и вбирает кислород. В синусоидальных капиллярах легких с нетипичным для тела диаметром около 30 мкм и идет газообмен.

Впоследствии кровь, насыщенная кислородом, направляется по системе внутрилегочных вен и собирается в 4 пульмональные вены. Все они прикреплены к левому предсердию и несут туда богатую кислородом кровь. На этом и заканчиваются круги кровообращения. Схема малого легочного круга выглядит так (по ходу движения крови): правый желудочек, легочная артерия, внутрилегочные артерии, легочные артериолы, легочные синусоиды, венулы, левое предсердие.

Особенности системы кровообращения

Ключевой особенностью системы кровообращения, которая состоит из двух кругов, является необходимость наличия сердца с двумя и более камерами. У рыб круг кровообращения один, ведь у них нет легких, а весь газообмен протекает в сосудах жабер. В итоге рыбье сердце однокамерное - это насос, проталкивающий кровь лишь в одном направлении.

У земноводных и рептилий есть органы дыхания и, соответственно, круги кровообращения. Схема их работы проста: из желудочка кровь направляется в сосуды большого круга, из артерий - в капилляры и вены. Венозный возврат к сердцу также реализован, однако из правого предсердия кровь попадает в общий для двух кругов кровообращения желудочек. Поскольку сердце у этих животных трехкамерное, то кровь из обоих кругов (венозная и артериальная) смешивается.

У человека (и млекопитающих) сердце имеет 4-камерную структуру. В нем перегородками разделены два желудочка и два предсердия. Отсутствие смешения двух видов крови (артериальной и венозной) стало гигантским эволюционным изобретением, которое обеспечило теплокровность млекопитающих.

и сердца

В системе кровообращения, которая состоит из двух кругов, особую важность имеет питание легкого и сердца. Это важнейшие органы, обеспечивающие замкнутость кровеносного русла и целостность дыхательной и кровеносной систем. Итак, легкие имеют в своей толще два круга кровообращения. Но их ткань питается за счет сосудов большого круга: от аорты и от внутригрудных артерий ответвляются бронхиальные и легочные сосуды, несущие кровь к паренхиме легкого. А из правых отделов орган питаться не может, хотя часть кислорода диффундирует и оттуда. Значит, большой и малый круги кровообращения, схема которых описана выше, выполняют разные функции (один обогащает кровь кислородом, а второй отправляет ее к органам, забирая деоксигенированную кровь от них).

Сердце также питается от сосудов большого круга, но находящаяся в его полостях кровь способна обеспечивать кислородом эндокард. При этом часть вен миокарда, преимущественно мелких, впадает непосредственно в Примечательно, что пульсовая волна на коронарные артерии распространяется в сердечную диастолу. Потому орган кровоснабжается только тогда, когда "отдыхает".

Круги кровообращения человека, схема которых представлена выше в соответствующих разделах, обеспечивают и теплокровность, и высокую выносливость. Пусть человек не является тем животным, которое часто использует свою силу для выживания, но остальным млекопитающим это позволило заселить определенные ареалы обитания. Ранее они были недоступны земноводным и рептилиям, а тем более рыбам.

В филогенезе большой круг появился ранее и был характерен для рыб. А малый круг дополнил его только у тех животных, которые целиком или полностью вышли на сушу и ее заселили. С момента его появления система дыхания и кровообращения рассматриваются вместе. Они связаны функционально и структурно.

Это важный и уже нерушимый эволюционный механизм выхода из водной среды обитания и заселения суши. Потому продолжающееся усложнение организмов млекопитающих теперь направится не по пути усложнения респираторной и кровеносной системы, а по направлению усиления кислородсвязывающей и увеличения площади легких.

Ведущие специалисты в области гематологии

Редактор страницы : Крючкова Оксана Александровна — врач-травматолог-ортопед

Профессор Шатохин Юрий Васильевич

ДМН, Зав. кафедрой гематологии РостГМУ.

Переливание крови оказывает сложное и многогранное влияние на жизненные функции организма больного.

В настоящее время изучены многие стороны действия этого весьма эффективного метода терапии, причем прежние представления о гемотрансфузии как о простом замещении потерянной массы крови или способе «раздражения» различных функций организма в значительной степени изменены и дополнены данными клинических наблюдений и экспериментальных исследований.

Кроме того, в известной степени изучены особенности действия различных методов переливания крови, и, таким образом, клиницисты получили возможность более целеустремленно и индивидуально направленно применять те или другие способы гемотрансфузии, с учетом характера заболевания и особенностей реактивности больного.

Вместе с тем необходимо отметить, что до самого последнего времени в трактовке различных сторон

действия трансфузии крови преобладали гуморальные теории, объясняющие не всю совокупность влияния гемотрансфузий на организм больного, а лишь отдельные изменения, происходящие после этого сложного лечебного мероприятия.

Наиболее распространенной и принятой большинством (авторов являлась гипотеза коллоидоклазии, предложенная А. А. Богомольцем. Эта гипотеза была выдвинута А. А. Богомольцем после большого количества экспериментальных и клинических наблюдений, проведенных главным образом в Центральном институте гематологии и переливания крови.

Согласно этой гипотезе, вследствие индивидуальной несовместимости белков крови донора и реципиента при гемотрансфузии в организме реципиента происходит сложный биологический процесс коллоидоклазии, который является основой стимулирующего действия перелитой крови. В связи со старением клеточных биоколлоидов - процессом, весьма распространенном при ряде патологических состояний, -наблюдается уплотнение и уменьшение их дисперсности, обезвоживание клеток и понижение внутриклеточного обмена. При этом отмечается резкое укрупнение белковых молекул клеточной протоплазмы, появление в ней различных включений, пигментных частиц, продуктов дегенерации.

Переливание крови по А. А. Богомольцу приводит к осаждению белковых мицелл плазмы крови реципиента и их последующему ферментативному расщеплению. Этот процесс распространяется и на клеточную протоплазму, в результате чего происходит освобождение ее от «балластных» элементов, повышение обмена веществ, улучшение процесса регенерации.

Важную роль в механизме стимулирующего действия трансфузии отводится А. А. Богомольцем ретикуло- эндотелиалыной системе.

Необходимо отметить, что А. А. Богомолец так называемую «активную мезенхиму» или «физиологическую систему соединительной ткани» рассматривал в отрыве от нервной системы, придавая ей автономное значение. Совершенно очевидно, что этот взгляд не соответствует современным представлениям и, естественно, подвергся резкой критике.

Многими экспериментально-клиническими исследованиями со всей убедительностью показано, что после переливания крови отчетливо выступает стимуляция деятельности органов и систем организма больного.

А. А. Багдасаров в экспериментальных исследованиях отмечал после переливания крови увеличение резервной щелочности крови в печеночной и воротной венах и уменьшение ее в артериях, что было, видимо, связано с усилением обмена веществ. К таким же выводам пришла Н. Л. Стоцик, которая обнаружила нарастание количества нейтрального жира в печеночной вене в посттрансфузионном периоде, что свидетельствует о мобилизации жировых запасов печени.

В ранних исследованиях А. А. Багдасарова, X. X. Владоса, М. С. Дульцина, И. А. Леонтьева, Н. Б. Медведевой,

Е. А. Тузлуковой, Н. Д. Юдиной и И. И. Юровской (1939) приводятся клинические наблюдения многочисленной группы больных после переливания крови. Авторы выделяют два типа ответной реакции на гемотрансфузию. При первом типе (25% больных) имеет место нарастание общего азота и белка сыворотки, а также уменьшение белкового коэфициента. Остаточный азот не изменяется, содержание хлоридов в крови несколько уменьшается, а количество калия в сыворотке увеличивается.

У больных второй группы (75%) отмечается уменьшение белков сыворотки (главным образом глобулинов), повышение белкового коэфициента, остаточного азота, падение хлоридов крови. Этот тип реакции в то время (1939) авторы рассматривали как одно из проявлений индивидуальной несовместимости белков крови донора и реципиента.

В дальнейших исследованиях учеников А. А. Богомольца было показано, что процесс коллоидоклазии наблюдается после переливания крови во всех органах и тканях, но бывает более выражен в тех органах, которые наиболее подвержены патологическим изменениям (А. А. Багдасаров, И. А. Леонтьев, Н. А. Федоров и др.).

Работы А. А. Богомольца и его учеников явились первыми глубокими исследованиями механизма действия переливания крови. Они сыграли положительную роль в развитии учения о переливании крови, так как позволили установить ряд новых фактов, объясняли многие неясные стороны стимулирующего влияния гемотрансфузий, повышали интерес к данной проблеме и послужили основой для дальнейших исследований.

Объединенная сессия Академии наук СССР и Академии медицинских наук СССР,

посвяшенная проблемам физиологического учения И. П. Павлова, ознаменовала начало нового, высшего этапа в развитии советской медицины и в том числе гематологии и переливания крови. Прошедшие в дальнейшем научные дискуссии по различным актуальным проблемам медицины сыграли также большую роль в мобилизации усилий ученых и врачей- практиков для критического рассмотрения и проверки основных положений теории переливания крови.

В этом направлении на расширенных пленумах и ученых советах Центрального института гематологии и переливания крови была проведена большая работа по творческому пересмотру гипотезы коллоидоклазии, Научная дискуссия в отношении этой гипотезы проводилась на базе нового фактического материала и учения И. П. Павлова о целостности организма и доминирующей роли центральной нервной системы, регулирующей все функции организма.

В своих выступлениях А. А. Багдасаров, Н. А. Федоров, П. С. Васильев, И. И. Федоров, И. Р. Петров и др. подвергли резкой критике важнейшие положения гипотезы коллоидоклазии. В корне ошибочными и механистическими признаны представления А. А. Богомольца о том, что основой реакции на переливание крови является встреча белковых систем донора и реципиента, что все посттрансфузионные процессы обусловлены лишь физико-химическими изменениями.

Многочисленными исследованиями большого числа авторов со всей наглядностью показано,

что после переливания крови действительно имеют место белковые коллоидные структурные изменения и что это одна из наиболее ранних реакций организма, однако сущность вопроса заключается в том, как понимать механизм этих изменений.

Н. А. Федоров и П. С. Васильев справедливо- указывали, что если белковые изменения являются результатом непосредственного взаимодействия коллоидов, то тогда, естественно, их можно уловить вне организма, т. е. при смешивании крови донора и реципиента in vitro. Однако в этих условиях коллоидно-структурных изменений обнаружить не удалось (П. С. Васильев, В. В. Суздалева).

Отсюда со всей очевидностью вытекает, что эти изменения опосредованы целостным организмом при решающей роли нервной системы и прежде всего ее центральных отделов - коры головного мозга и подкорковых рецепторов.

За последнее время Н. А. Федоров и его сотрудники (А. М. Намятышева, И. И. Зарецкий, Н. А. Мессинева, В. М. Родионов, Б. М. Ходоров) получили новые экспериментальные фактические данные, убеждающие в том, что посттрансфузионные белковые изменения представляют собой лишь частное проявление активации процессов обмена между кровью и тканями.

Было доказано, что количественные и качественные изменения белков крови связаны с мобилизацией резервных мелкодисперсных белков тканей

Альбуминов и с усилением поступления их в кровоток. Наиболее интенсивно этот процесс происходит в тканях печени и кишечника, где, как известно, скапливается большое количество резервных белков.

Одновременно с изменением белкового обмена происходят изменения и других вегетативных функций.

Твердо установлено, что значительным постгрансфузионным изменениям подвергаются водно-солевой, углеводный и основной обмены, терморегуляция и иммунобиологическое состояние организма. Н. А. Федорову и его сотрудникам со всей наглядностью удалось показать, что все эти вегетативные изменения после переливания крови непосредственно связаны с изменением функционального состояния высших отделов центральной нервной системы -. коры и подкорки. Авторы отмечали, что под действием перелитой крови изменяется условно-рефлекторная деятельность. Степень и характер изменений условно-рефлекторной деятельности зависят от типа высшей нервной деятельности.

Весьма показательным является тот факт, что изменение и восстановление условно-рефлекторной деятельности протекают параллельно с изменением и восстановлением вегетативных функций организма (белкового, водно-солевого, углеводного, основного обмена и др.).

Так, в экспериментах И. И. Федорова в изолированные вены конечностей животного вводилась чужеродная кровь,

что вызывало резкое падение кровяного давления и другие симптомы посттрансфузионного шока. Предварительное введение новокаина в данную область предупреждало появление шока. Результаты этих опытов не укладываются в основные положения коллоидоклазическои гипотезы А. А. Богомольца, а, наоборот, убеждают в нервно-рефлекторной природе реакций организма на переливание крови.

Клинические наблюдения также не подтверждают мнения А. А. Богомольца о том, что посттрансфузионные реакции зависят от индивидуальной несовместимости белков крови донора и реципиента. Опыт показал, что большинство клинически выраженных реакций возникает не в связи с индивидуальной несовместимостью крови, а в результате недочетов при заготовке и переливании крови, отсутствия учета противопоказаний к гемотрансфузии и других моментов.

Можно было бы привести еще много фактов, дающих основание для критики гипотезы А. А. Богомольца и его трактовки наблюдений, полученных при гемотрансфузиях. Все они подтверждают мнение о необходимости разработки новых путей для выявления механизма действия гемотрансфузий.

В настоящее время процесс пересмотра механизма действия переливаний крови еще не закончен,

но и теперь уже накопилось достаточно много фактов, позволяющих по-новому рассматривать как отдельные стороны действия гемотрансфузий, так и весь комплекс изменений, происходящих в организме больного.

Всеми признается, что переливания крови вызывают в организме реципиента сложный, но единый по своей направленности биологический процесс; все звенья этого процесса тесно связаны между собой. И естественно поэтому, что замещающее, стимулирующее, гемостатическое, антитоксическое и иммунобиологическое действие перелитой крови нельзя рассматривать в отрыве друг от друга.

При каждом переливании крови на организм больного воздействует сумма перечисленных и многих еще не изученных факторов, причем в различных случаях один иди несколько из них оказывают большее влияние, чем другие. Эти особенности и варианты действия гемотрансфузий зависят от многих причин, среди которых имеют весьма существенное значение: исходное состояние больного организма, доза, скорость переливания, методика трансфузии, температура переливаемой крови, качество и индивидуальный состав крови донора и другие моменты.

Этими факторами определяются характер реакции организма и окончательные результаты гемотрансфузии,

Они должны строго учитываться при определении показаний к различным методам переливания крови.

При рассмотрении механизма действия переливания крови необходимо учитывать все эти условия и методики гемотрансфузий. В качестве различных вариантов действия гемотрансфузий в хирургической клинике можно привести следующие примеры.

На основании наших наблюдений, при шоке без кровопотери введенная в вену или артерию кровь оказывает мощное тонизирующее действие на центральную нервную систему, причем эффект этого действия заметен даже при трансфузии небольших количеств крови (например, при капельной методике оно отмечается уже в первые минуты), что можно объяснить, в частности, воздействием переливаемой крови на интерорецепторы сосудистой системы. При этом не исключается возможность и непосредственного влияния на высшие нервные центры.

При массивной кровопотере эти рефлекторные и автоматические влияния гемотрансфузии также имеют место (Н. И. Блинов). Важно отметить, что в данных случаях отчетливо выступает перераспределение депонированной крови. Вскоре после введения большого количества крови улучшается деятельность анемизированного головного мозга, а затем наступает стимуляция всех функций организма.

И в первом, и во втором примерах отмечена преимущественная роль одного из факторов механизма переливания крови: в одном случае преобладание стимулирующего, в другом - заместительного действия. Однако, помимо этого, в обоих случаях, может быть в меньшей степени, проявляются и другие стороны влияния гемотрансфузии - гемостатический эффект, дезинтоксикация и др.

Таким образом, при анализе результата гемотрансфузии приходится в некоторой степени

схематично рассматривать отдельные явления и фиксировать внимание на ведущих в данном случае элементах действия переливаний, из которых составляется целостное представление об общем действии этого лечебного мероприятия.

Общепринято в виде рабочей схемы выделять следующие стороны действия гемотрансфузий: 1) заместительную (субституирующую), 2) «раздражающую» (стимулирующую), 3) кровоостанавливающую (гемостатическую), 4) обезвреживающую яды (дезинтоксикационную). Некоторые авторы отмечают также иммунобиологическое действие и другие моменты.

Анализ результатов гемотрансфузии при ее использовании в хирургической клинике показывает большое значение всех перечисленных сторон действия этого метода. Поэтому целесообразно изложить их в отдельности более подробно.

ДЕЙСТВИЕ ПЕРЕЛИВАНИЙ КРОВИ НА ОРГАНИЗМ БОЛЬНОГО. Заместительное действие трансфузий

В хирургической клинике весьма часто приходится применять гемотрансфузию для целей замещения при кровопотере, что особенно заметно проявляется при введении больших количеств крови (свыше 500 мл). Такие переливания крови принято называть заместительными.

Это действие складывается из ряда моментов. Прежде всего перелитая кровь пополняет общую массу циркулирующей крови больного. Кровь в отличие от всех кровозамещающих растворов сравнительно длительные сроки остается в русле крови больного и тем самым улучшает гемодинамику при крово- и плазмопотере. Этим обстоятельством в значительной степени объясняются факты быстрого повышения артериального давления в процессе и особенно после переливания крови. При этом отмечается устранение явлений цианоза, улучшение слышимости тонов сердца и других симптомов нарушения деятельности сердечно-сосудистой системы.

При длительном капельном переливании массивных доз крови повышение артериального давления происходит медленно и постепенно, что является более физиологичным по сравнению с быстрым повышением давления при ускоренном введении больших количеств крови.

Таким образом, скорость введения крови нужно отнести к важным моментам в механизме действия массивных трансфузий, что должно учитываться при каждом переливании. Необходимо подчеркнуть, что при угрожающей жизни кровопотере требуется внутривенное переливание 1-2-3 л крови за сравнительно небольшие сроки (1-2 часа).

Наоборот, при нервно-рефлекторном травматическом шоке необходимо вводить несколько меньшие дозы крови

(500-750 мл) и обязательно капельным путем, для того чтобы не вызвать быстрого подъема артериального давления, перегрузки сердечно-сосудистой системы, главным образом малого круга кровообращения, и последующего рецидива шока.

Последние данные В. Г. Чистякова и С. И. Стыскина, исследовавших артериальное и венозное давление во время крупных внутригрудных операций, свидетельствуют о том, что в ряде случаев в конце операции происходит повышение венозного давления, что может усугубляться массивным введением крови. Наши наблюдения говорят о том, что массивное введение крови в отдельных случаях может привести к перегрузке венозного сосудистого русла даже при капельном, постепенном переливании.

Аналогичные явления перегрузки венозного сосудистого русла и правой половины сердца после гемотрансфузии мы наблюдали еще у 2 больных. Сравнительная редкость подобных нарушений после гемотрансфузий может быть объяснена преимущественным использованием капельного метода в случаях массивных введений крови. При капельном переливании наблюдается компенсаторное вытеснение плазмы из русла крови в ткани. Это явление особенно выражено при тяжелой хронической анемии, где перелитая даже в больших дозах кровь не намного увеличивает общий объем циркулирующей крови. Показатель объема эритроцитов по гематокриту после введения 2-3 л крови повышался у этих больных вдвое. Наряду с этим, отмечалось увеличение -сухого -остатка цельной крови больного и несколько менее заметно уве-

Рис. 57. Больной И. Рак легкого. Переливание крови во время операции.

личивался сухой остаток сыворотки (наши исследования, 1937).

Последнее говорит о том, что плазма донорской крови в значительной своей части поступает из русла крови реципиента в ткани, а глобулярная масса остается в циркулирующей крови (Б. В. Петровский, Мариотт и др.). Такие же данные получены Б. Ю. Андриевским и И. А. Леонтьевым при переливании крови в эксперименте (1935); согласно их наблюдениям, при кровопотере переливание крови обогащает плазму белками на короткий срок. Через 15 минут количество белка постепенно уменьшается и становится даже ниже нормы.

Эшби переливал кровь 0(1) группы больным, имеющим группы А(II), В(III) и AB(IV). Затем он смешивал небольшое количество крови больного е сывороткой 0(1) группы, при этом происходила агглютинация эритроцитов больного [А(II), В(III) или AB(IV)].

При подсчете неагглютинированных эритроцитов донора группы 0(1) представлялась известная возможность

установить сроки длительности их жизни в сосудистой системе реципиента. В дальнейшем методика Эшби была признана несовершенной и в значительной мере изменена (В. Воронов, Г. М. Гуревич, Д. К. Рабинович и др.).

Определение жизнеспособности перелитых эритроцитов по Шиффу предусматривает использование сывороток анти-М и анти-N. Существуют также методики определения длительности жизни эритроцитов при переливании крови, основанные на исследовании способности крови поглощать кислород. Однако данные способы не могут показать, за счет чего увеличилась эта способность - за счет ли перелитых эритроцитов или за счет поступления крови из Депо, или стимуляции кроветворения реципиента как следствия трансфузии.

В настоящее время более точным способом признается методика определения количества перелитых эритроцитов путем использования изотопов. Эта методика широко применяется в Центральном институте переливания крови.

На основании многочисленных исследований жизнеспособности перелитых эритроцитов получены разнообразные данные. По Эшби, эритроциты перелитой крови продолжают циркулировать в русле реципиента в течение 113 суток, по Гольцу -42 дня, по Воронову - 60 дней и по данным Центрального ордена Ленина института гематологии и переливания крови - 30 дней.

Разнообразие этих сроков свидетельствует о неточности применявшихся ранее методов определения жизнеспособности перелитых эритроцитов.

Однако даже минимальные цифры (30 дней) вполне достаточны для того, чтобы сделать вывод о- стойком увеличении дыхательной поверхности крови в случаях применения гемотрансфузии.

Несомненно, что это улучшение газообмена после переливания крови прежде всего сказывается на улучшении деятельности центральных отделов нервной системы. Благотворное влияние переливаний крови на центральную нервную систему особенно заметно при остром и хроническом малокровии. Старый способ так называемой аутотрансфузии, не потерявший своей ценности и в настоящее время, состоит в бинтовании четырех конечностей эластическими бинтами в целях вытеснения из них крови и уменьшения общего круга кровообращения. С помощью этого способа в первые минуты тяжелой кровопотери удается бороться с опасными последствиями анемии мозга. Для улучшения кровоснабжения головного мозга при применении этого способа рекомендуется опускать голову больного ниже туловища (приподнимая ножной конец кровати).

Эти мероприятия, несомненно, следует признать эффективными. Их положительное действие подтверждает необходимость при кровопотере быстро доставить кровь сосудам центральной нервной системы - головному мозгу. В целях выяснения механизма действия трансфузии крови на центральную нервную систему производился ряд экспериментальных и клинических исследований (И. Р. Петров, В. А. Негевский и др.).

В нашей клинике в 1950 г. были произведены опыты по экспериментальному переливанию крови в общую сонную артерию по направлению к мозгу (Д. Франк).

Во всех случаях на артериограмме было видно, что кровь, смешанная с контрастным веществом, заполняет всю сосудистую сеть мозга. При этом в ряде случаев таким способом удавалось оживлять животных, спустя 3, 4 и 5 минут после остановки сокращений сердца, возникшей вследствие массивной кровопотери.

Наши клинические наблюдения во время Великой Отечественной войны 1941 -1945 гг. также показывают, что при агонии вследствие кровопотери переливание крови в периферический отдел обшей сонной артерии, разорванной снарядом и, лигированной в двух местах, быстро улучшает кровоснабжение головного мозга и сердца, и это приводит к восстановлению сердечной деятельности.

По данным Н. Н. Бурденко, переливание крови стимулирует деятельность вегетативной нервной системы, что можно объяснить улучшением кровоснабжения центральных ее отделов и улучшением газообмена.

Массивные переливания крови в большой степени повышают газообмен, что особенно заметно при исследовании больных в процессе капельных трансфузий. Менее выяснено заместительное действие перелитых лейкоцитов. В ряде работ отмечается роль лейкоцитов и иммунных антител, которые вводятся в организм больного при переливании крови и повышают его защитные свойства (Н. Б. Медведева, Д. А. Коган и др.). Однако следует отметить меньшую устойчивость перелитых лейкоцитов по сравнению с эритроцитами, особенно при переливании консервированной крови.

Большое значение в механизме заместительного действия гемотрансфузий принадлежит жидкой части крови

Роль перелитой плазмы особенно заметна при различных патологических процессах, ведущих к плазмопотере (шок, ожоги, анаэробная инфекция, последствия больших операций и т. д.), а также в случаях нарушения состава белков и других компонентов плазмы (кахексия, хроническая анемия и т. д.).

Использование для трансфузии обычной плазмы или сыворотки в смеси с глюкозой вызывает быстрое насыщение русла крови изохоллоидной, изоосмотической средой.

При введении концентрированных растворов сухой плазмы наблюдается повышение онкотического давления крови и устранение явлений гипопротеинемии (О. Д. Соколова-Пономарева и Е. С. Рысева), а также нормализация водного обмена (М. С. Дульцин).

Вместе с тем необходимо отметить более эффективное заместительное действие переливаний крови по сравнению с введением плазмы и сыворотки.

И. И. Зарецкий, провел интересное экспериментально- клиническое исследование по изучению водно-солевого обмена после переливания крови. Им было установлено, что в первые дни после гемотрансфузии имеет место некоторое сгущение крови, и хлоропения в результате задержки воды в тканях реципиента. В дальнейшем организм мобилизует свои запасы воды и солей и выводит их в циркуляцию в повышенном количестве, что и приводит к гидратации крови. Автору удалось установить важный факт активного участия эритроцитов реципиента в посттрансфузионных сдвигах:в содержании воды и хлора.

В первые дни после переливания крови наблюдается накопление воды и солей в эритроцитах, что является главным фактором посттрансфузионной гидремии. Проводя свод наблюдения на анемизированных больших, И. И. Зарецкий установил также, что под действием перелитой крови повышается проницаемость сосудистой мембраны реципиента.

Эксперименты на животных, проведенные в многочисленных работах, подтверждают мнение о весьма значительном удельном весе заместительного фактора в общем комплексе влияния гемотрансфузий на организм. Д. Н. Беленький отмечал, что собаки, у которых было произведено кровопускание 2/з объема крови, могли остаться живыми только после переливания крови. К аналогичным выводам приходит В. И. Шамов, Б. Ю. Андриевский, С. С. Брюхоненко и другие авторы.

В последней работе О. С. Глозмана и А. П. Касаткиной (1950) приведены эксперименты по замещению крови животного, «вымытой с помощью физиологического раствора, кровью донора». При этом животные оставались бодрыми и хорошо переносили операцию.

Исключительно яркие клинические наблюдения заместительного действия перелитой крови при резких степенях кровопотери имеют советские хирурги в мирное время и особенно во время Великой Отечественной войны. В. Н. Шамов пишет: «Истекший кровью, умирающий раненый, без пульса и без сознания, с еле заметным дыханием и не реагирующими зрачками, находящийся на краю гибели, после трансфузии оживает. Кожа его розовеет, сознание возвращается, появляется пульс, углубляется дыхание».

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Кровеносная система является достаточно сложной структурой. На первый взгляд она ассоциируется с разветвленной сетью дорог, которая позволяет курсировать транспортным средствам. Однако строение сосудов на микроскопическом уровне достаточно сложное. В функции данной системы входит не только транспортная функция, сложная регуляция тонуса кровеносных сосудов и свойств внутренней оболочки позволяет ей участвовать во многих сложных процессах адаптации организма. Система сосудов богато иннервирована и находится под постоянным влиянием компонентов крови и указаний поступающих со стороны нервной системы. Потому, для того, чтобы иметь правильное представление о том, как функционирует наш организм, необходимо более подробно рассмотреть эту систему.

Несколько интересных фактов о кровеносной системе

Знаете ли Вы, что протяженность сосудов кровеносной системы составляет 100 тысяч километров? Что в течение всей жизни через аорту проходит 175 000 000 литров крови?
Интересным фактом являются данные о скорости, с которой кровь движется по основным сосудам – 40 км/ч.

Структура кровеносных сосудов

В кровеносных сосудах можно выделить три основные оболочки:
1. Внутренняя оболочка – представлена одним слоем клеток и именуется эндотелием . Функций у эндотелия много – препятствует тромбообразованию при условии отсутствия повреждения сосуда, обеспечивает ток крови в пристеночных слоях. Именно сквозь данный слой на уровне мельчайших сосудов (капилляров ) происходит обмен в тканях организма жидкостями, веществами, газами.

2. Средняя оболочка – представлена мышечной и соединительной тканью. В разных сосудах соотношение мышечной и соединительной ткани широко варьирует. Для боле крупных сосудов характерно преобладание соединительной и эластической ткани – это позволяет противостоять высокому давлению, создаваемому в них после каждого сердечного сокращения. В то же время, способность пассивно незначительно изменять собственный объем позволяют этим сосудам преодолеть волнообразный ток крови и сделать его движение более плавным и равномерным.


В более мелких сосудах происходит постепенное преобладание мышечной ткани. Дело в том, что эти сосуды активно участвуют в регуляции артериального давления , осуществляют перераспределение тока крови, в зависимости от внешних и внутренних условий. Мышечная ткань обволакивает сосуд и регулирует диаметр его просвета.

3. Наружная оболочка сосуда (адвентиция ) – обеспечивает связь сосудов с окружающими тканями, благодаря чему происходит механическое фиксирование сосуда к окружающим тканям.

Какими кровеносные сосуды бывают?

Классификаций сосудов существует множество. Для того чтобы не утомиться в чтении этих классификаций и почерпнуть необходимую информацию остановимся на некоторых из них.

По характеру движения крови – сосуды делятся на вены и на артерии. По артериям кровь течет от сердца к периферии, по венам происходит ее обратный ток – от тканей и органов к сердцу.
Артерии обладают более массивной сосудистой стенкой, обладают выраженным мышечным слоем, что позволяет регулировать поток крови к определенным тканям и органам в зависимости от потребностей организма.
Вены обладают достаточно тонкой сосудистой стенкой, как правило, в просвете вен крупного калибра имеются клапаны, которые препятствуют обратному току крови.

По калибру артерии можно разделить на крупные, среднего калибра и мелкие
1. Крупные артерии – аорта и сосуды второго, третьего порядка. Данные сосуды характеризуются толстой сосудистой стенкой – это препятствует их деформации при нагнетании сердцем крови под высоким давлением, в то же время, некоторая податливость и эластичность стенок позволяет снизить пульсирующий ток крови, снизить турбулентность и обеспечить непрерывный ток крови.

2. Сосуды среднего калибра – осуществляют активное участие в распределении кровяного потока. В структуре данных сосудов имеется достаточно массивный мышечный слой, который, под влиянием многих факторов (химический состав крови, гормональное воздействие, иммунные реакции организма, воздействие вегетативной нервной системы ), изменяет при сокращении диаметр просвета сосуда.



3. Мельчайшие сосуды – эти сосуды, именуемые капиллярами . Капилляры являются наиболее разветвленной и длинной сосудистой сетью. Просвет сосуда едва пропускает один эритроцит – настолько он мал. Однако данный диаметр просвета обеспечивает максимальный по площади и длительности контакт эритроцита с окружающими тканями. При прохождении крови по капиллярам, эритроциты выстраиваются в очередь по одному и медленно движутся, попутно обмениваясь с окружающими тканями газами. Газообмен и обмен органическими веществами, ток жидкости и перемещение электролитов происходит сквозь тонкую стенку капилляра. Потому, данный вид сосудов очень важен с функциональной точки зрения.
Итак, газообмен, обмен веществ происходит именно на уровне капилляров - потому у данного вида сосудов отсутствует средняя (мышечная ) оболочка.

Что такое малый и большой круги кровообращения?

Малый круг кровообращения – это, по сути, кровеносная система легкого. Начинается малый круг самым крупным сосудом - легочным стволом. По этому сосуду кровь поступает из правого желудочка в кровеносную систему легочной ткани. Далее происходит разветвление сосудов – вначале на правую и левую легочные артерии, и далее на более мелкие. Артериальная система сосудов заканчивается альвеолярными капиллярами, которые как сетка обволакивают наполненные воздухом альвеолы легкого. Именно на уровне этих капилляров приходит удаление из крови углекислого газа и присоединение к молекуле гемоглобина (гемоглобин находится внутри эритроцитов ) кислорода.
После обогащения кислородом и удаления углекислого газа кровь возвращается по легочным венам в сердце – в левое предсердие.

Большой круг кровообращения – это вся совокупность кровеносных сосудов, не входящих в кровеносную систему легкого. По данным сосудам происходит движение крови от сердца к периферическим тканям и органам, а так же обратный ток крови к правым отделам сердца.

Начало большой круг кровообращения берет от аорты, далее кровь продвигается по сосудам следующего порядка. Разветвления основных сосудов направляют кровь к внутренним органам, к головному мозгу , конечностям. Перечислять названия данных сосудов не имеет смысла, однако важным является регуляция распределения нагнетаемого сердцем тока крови по всем тканям и органам организма. По достижению кровоснабжаемого органа происходит сильное ветвление сосудов и формирование кровеносной сети из мельчайших сосудов – микроциркуляторное русло . На уровне капилляров происходят обменные процессы и кровь, утратившая кислород и часть органических веществ необходимых для работы органов, обогащается веществами, образовавшимися в результате работы клеток органа и углекислым газом.

В результате такой непрерывной работы сердца, малого и большого круга кровообращения происходит непрерывные обменные процессы во всем организме – осуществляется интеграция всех органов и систем в единый организм. Благодаря кровеносной системе есть возможность снабжения отдаленных от легкого органов кислородом, удаление и обезвреживание (печенью , почками ) продуктов распада и углекислого газа. Кровеносная система позволяет в кротчайшие сроки распространять по всему организму гормоны , достигать иммунными клетками любого органа и ткани. В медицине кровеносная система используется как главный распространяющий медикаментозное средство элемент.

Распределение кровотока по тканям и органам

Интенсивность кровоснабжения внутренних органов не равномерна. Во многом это зависит от интенсивности и энергоемкости производимой ими работы. К примеру, наибольшая интенсивность кровоснабжения наблюдается в головном мозге, сетчатке глаза, сердечной мышце и почках. Органы со средним уровнем кровоснабжения представлены печенью, пищеварительным трактом, большинством эндокринных органов. Малая интенсивность кровотока присуща скелетным тканям, соединительной ткани, подкожной жировой сетчатке. Однако при определенных условиях кровоснабжение того или иного органа может многократно усиливаться или сокращаться. К примеру – мышечная ткань при регулярных физических нагрузках может кровоснабжаться более интенсивно, при резкой массивной кровопотере, как правило, кровоснабжение сохраняется лишь в жизненно важных органах - центральная нервная система, легкие, сердце (остальным органам кровоток частично ограничивается ).

Потому понятно, что кровеносная система это не только система сосудистых магистралей – это высоко интегрированная система, активно участвующая в регуляции работы организма, попутно выполняющая множество функций – транспортную, иммунную, терморегулирующую, регулирующую скорость кровотока различных органов.

Кровообращение - процесс циркуляции крови по организму. Кровь поддерживает гомеостаз - оптимальную среду для жизни и функционирования клеток - и переносит гормоны, регулирующие деятельность систем и органов.

Кровообращение осуществляется в сердечно-сосудистой (кровеносной) системе, которая доставляет кровь, несущую питательные вещества и кислород, всем тканям организма. Оттекая, кровь уносит с собой продукты обмена веществ, которые кровеносная система транспортирует в почки или легкие для выведения.

Центральным органом сердечно-сосудистой системы является сердце - мышечный орган, сокращения которого выбрасывают кровь в артерии. Крупные артерии разветвляются на более мелкие, затем на артериолы и, наконец, на капилляры. Точно так же ветвятся вены, возвращающие кровь к сердцу. Мельчайшие из них называются венулами и делятся на венозные капилляры. Артериальная и венозная системы сообщаются через анастомозы. Особенно важны капиллярные анастомозы, поскольку именно там происходит процесс обмена между кровью и тканями. Кровь, вернувшаяся к сердцу, направляется в малый круг кровообращения через легкие, где снова насыщается кислородом.

Кровяное давление

Кровяное давление - это давление крови на стенки кровеносных сосудов и камер сердца.

Оно измеряется в миллиметрах ртутного столба (мм рт. ст.) и, реже, в килопаскалях (кПа).

Кровяное давление выражается двумя числами, например 150/110. Первое (систолическое или верхнее) означает давление в артерии в момент сокращения сердца (систолы). Второе (диастолическое или нижнее) означает давление в артериях в то время, когда сердце расслаблено (диастола). Диастолическое давление часто оценивается как клинически более важное, особенно при диагностике гипертензии (повышенного кровяного давления), потому что систолическое давление очень сильно зависит от такого фактора, как эмоциональное состояние.

Кровяное давление измеряется с помощью тонометра -прибора, состоящего из надувной манжетки, накладываемой на руку и соединенной с измерительным прибором. Гипертензией страдают миллионы людей во всем мире. В большинстве случаев причина неизвестна. Однако своевременное выявление и лечение гипертензии снижает риск развития инфаркта или инсульта.

Кровоток

Кровоток - это объем крови, проходящий через систему кровоснабжения органа или отдельный кровеносный сосуд за определенный период времени.

Кровоток через кровеносный сосуд определяется разницей давления между его концами и гидродинамическим сопротивлением движению крови. Однако из двух параметров - давление и сопротивление - именно сопротивление имеет большее влияние на кровоток. Артерии и вены Общий кровоток в системе кровообращения взрослого - в среднем около пяти литров в минуту. Он также называется минутным объемом сердца.

Кровяное давление максимально в сосудах, расположенных ближе всего к сердцу, то есть в аорте и легочной артерии.

По мере удаления от сердца давление падает.

Кровоток в тканях зависит от их потребности в кровоснабжении. При нагрузке некоторым тканям может потребоваться в 20-30 раз больший объем крови, чем в состоянии покоя. При этом минутный объем сердца может увеличиваться всего в 4-7 раз. Поскольку организм не может просто увеличить общий кровоток, кровоснабжение отдельных тканей контролируется внутренними регуляторными механизмами. Кровь распределяется в зависимости от потребностей, перенаправляясь от тканей и органов, не требующих усиленного кровоснабжения, к испытывающим повышенную нагрузку.

Венозный кровоток

Пульсовая волна, создаваемая ударами сердца, не проходит через тончайшие капилляры, поэтому в венах пульса нет.

Тем не менее, кровь течет через венозную систему обратно к сердцу. Это происходит благодаря сразу нескольким процессам - сокращениям скелетных мышц, работе венозных клапанов и дыхательного процесса, который помогает перекачивать кровь по венам в направлении грудной клетки.

Распределение крови

В кровеносной системе кровь движется в организме по двум сетям, начинающимся и заканчивающимся в сердце.

Большой круг кровообращения (системная циркуляция)

Большой круг кровообращения содержит большую часть циркулирующей крови - около 84%. Однако только 7% от общего объема крови находится в капиллярном ложе, где, собственно, и происходит обмен между кровью и тканями. Капилляры имеют проницаемые стенки, состоящие из единственного слоя клеток, что позволяет небольшим молекулам проникать из крови в ткани и обратно. Из крови в ткани поступают главным образом питательные вещества и кислород, в то время как из тканей через капиллярные стенки диффундируют продукты обмена веществ. Они затем переносятся к специализированным органам для выведения из организма.

Малый круг кровообращения (легочная циркуляция)

Легочная циркуляция позволяет вывести некоторые продукты обмена из крови через легкие и абсорбировать кислород из воздуха. Кровь, вернувшаяся из крупных вен организма в правую половину сердца, затем поступает через легочную артерию в легкие. Здесь артерии подразделяются на мелкие артериолы, а затем капилляры, которые пронизывают ткань легкого. Легочные вены несут обогащенную кислородом кровь обратно к сердцу.

Кровеносная система - это единое анатомо-физиологическое образование, главная функция которого – кровообращение, то есть движение крови в организме.
Благодаря кровообращению происходит газообмен в легких. Во время этого процесса углекислота удаляется из крови, а кислород из вдыхаемого воздуха обогащает ее. Кровь доставляет кислород и полезные вещества ко всем тканям, удаляя из них продукты метаболизма (распада).
Кровеносная система участвует и в процессах теплообмена, обеспечивая жизнедеятельность организма в разных условиях внешней среды. Также эта система система участвует в гуморальной регуляции деятельности органов. Гормоны выделяются эндокринными железами и доставляются в восприимчивые к ним ткани. Так кровь объединяет все части организма в единое целое.

Части сосудистой системы

Сосудистая система неоднородна по морфологии (структуре) и выполняемой функции. Ее можно с небольшой долей условности разделить на следующие части:

  • аортоартериальная камера;
  • сосуды сопротивления;
  • обменные сосуды;
  • артериоловенулярные анастомозы;
  • емкостные сосуды.

Аортоартериальная камера представлена аортой и крупными артериями (общие подвздошные, бедренные, плечевые, сонные и другие). В стенке этих сосудов присутствуют и мышечные клетки, но преобладают эластичные структуры, препятствующие их спадению во время диастолы сердца. Сосуды эластического типа поддерживают постоянство скорости кровотока, независимо от пульсовых толчков.
Сосуды сопротивления - это мелкие артерии, в стенке которых преобладают мышечные элементы. Они способны быстро изменять свой просвет с учетом потребностей органа или мышцы в кислороде. Эти сосуды участвуют в поддержании артериального давления. Они активно перераспределяют объемы крови между органами и тканями.
Обменные сосуды – это капилляры, мельчайшие веточки кровеносной системы. Их стенка очень тонкая, сквозь нее легко проникают газы и другие вещества. Кровь может поступать из мельчайших артерий (артериол) в венулы в обход капилляров, по артериоловенулярным анастомозам. Эти «соединительные мостики» играют большую роль в теплообмене.
Емкостные сосуды называются так, потому что они способны вместить значительно больше крови, чем артерии. К этим сосудам относятся венулы и вены. По ним кровь поступает обратно к центральному органу кровеносной системы – сердцу.


Круги кровообращения

Круги кровообращения описаны еще в XVII веке Уильямом Гарвеем.
Из левого желудочка выходит аорта, начинающая большой круг кровообращения. От нее отделяются артерии, несущие кровь ко всем органам. Артерии делятся на все более мелкие веточки, охватывающие все ткани организма. Тысячи мельчайших артерий (артериол) распадаются на огромное количество самых мелких сосудов – капилляров. Их стенки характеризуются высокой проницаемостью, поэтому в капиллярах происходит газообмен. Здесь артериальная кровь трансформируется в венозную. Венозная кровь поступает в вены, которые постепенно объединяются и в итоге образуют верхнюю и нижнюю полые вены. Устья последних открываются в полость правого предсердия.
В малом круге кровообращения кровь проходит через легкие. Она попадает туда по легочной артерии и ее ветвям. В капиллярах, оплетающих альвеолы, происходит газообмен с воздухом. Обогащенная кислородом кровь по легочным венам идет в левые отделы сердца.
Некоторые важные органы (головной мозг, печень, кишечник) имеют особенности кровоснабжения – регионарное кровообращение.

Строение сосудистой системы

Аорта, выходя из левого желудочка, образует восходящую часть, от которой отделяются коронарные артерии. Затем она изгибается, и от ее дуги отходят сосуды, направляющие кровь в руки, голову, грудную клетку. Затем аорта идет вниз вдоль позвоночника, где делится на сосуды, несущие кровь к органам брюшной полости, таза, ног.

Вены сопровождают одноименные артерии.
Отдельно нужно упомянуть воротную вену. Она отводит кровь от органов пищеварения. В ней, помимо питательных веществ, могут содержаться токсины и другие вредные агенты. Воротная вена доставляет кровь в печень, где проходит удаление токсических веществ.

Строение сосудистых стенок

Артерии имеют наружный, средний и внутренний слои. Наружный слой – соединительная ткань. В среднем слое есть эластические волокна, поддерживающие форму сосуда, и мышечные. Мышечные волокна могут сокращаться и изменять просвет артерии. Изнутри артерии выстланы эндотелием, обеспечивающим спокойный поток крови без препятствий.

Стенки вен значительно тоньше, чем артерий. В них очень мало эластической ткани, поэтому они легко растягиваются и спадаются. Внутренняя стенка вен образует складки: венозные клапаны. Они препятствуют движению венозной крови вниз. Отток крови по венам обеспечивается также за счет движения скелетных мышц, «выжимающих» кровь при ходьбе или беге.

Регуляция деятельности кровеносной системы

Кровеносная система практически мгновенно отвечает на изменения внешних условий и внутренней среды организма. При стрессе или нагрузке она отвечает учащением сердечных сокращений, повышением артериального давления, улучшением кровоснабжения мышц, снижением интенсивности кровотока в органах пищеварения и так далее. В период покоя или сна происходят обратные процессы.

Регуляция функции сосудистой системы осуществляется нейрогуморальными механизмами. Регуляторные центры высшего уровня находятся в коре головного мозга и в гипоталамусе. Оттуда сигналы поступают в сосудодвигательный центр, отвечающий за тонус сосудов. Через волокна симпатической нервной системы импульсы поступают в стенки сосудов.

В регуляции функции кровеносной системы очень важен механизм обратной связи. В стенках сердца и сосудов расположено большое количество нервных окончаний, воспринимающих изменения давления (барорецепторы) и химического состава крови (хеморецепторы). Сигналы от этих рецепторов поступают в высшие центры регуляции, помогая кровеносной системе быстро приспособиться к новым условиям.

Гуморальная регуляция возможна с помощью эндокринной системы. Большинство гормонов человека так или иначе влияет на деятельность сердца и сосудов. В гуморальном механизме участвуют адреналин, ангиотензин, вазопрессин и многие другие активные вещества.