Относительная погрешность в процентах. Как найти погрешность – вычисление. По причине возникновения

Измерения многих величин, встречающихся в природе, не может быть точным. Измерение дает число, выражающее величину с той или иной степенью точности (измерение длины с точностью до 0,01 см, вычисление значения функции в точке с точностью до и т.д.), то есть приближенно, с некоторой погрешностью. Погрешность может быть задана наперед, или, наоборот, ее требуется найти.

Теория погрешностей имеет объектом своего изучения в основном приближенные числа. При вычислениях вместо обычно используют приближенные числа: (если точность не особо важна), (если точность важна). Как проводить вычисления с приближенными числами, определять их погрешности – этим занимается теория приближенных вычислений (теория погрешностей).

В дальнейшем точные числа будем обозначать заглавными буквами , а соответствующие им приближенные – строчными

Погрешности, возникающие на том или ином этапе решения задачи можно условно разделить на три типа:

1) Погрешность задачи. Этот тип погрешности возникает при построении математической модели явления. Далеко не всегда оказывается возможным учесть все факторы и степень их влияния на окончательный результат. То есть, математическая модель объекта не является его точным образом, не является точным его описание. Такая погрешность является неустранимой.

2) Погрешность метода. Эта погрешность возникает в результате подмены исходной математической модели более упрощенной, например, в некоторых задачах корреляционного анализа приемлемой является линейная модель. Такая погрешность является устранимой, так как на этапах вычисления она может свестись к сколь угодно малой величине.

3) Вычислительная («машинная») погрешность. Возникает при выполнении арифметических операций компьютером.

Определение 1.1. Пусть – точное значение величины (числа), – приближенное значение той же величины (). Истинной абсолютной погрешностью приближенного числа называется модуль разности точного и приближенного значений:

. (1.1)

Пусть, например, =1/3. При вычислении на МК дали результат деления 1 на 3 как приближенное число =0,33. Тогда .

Однако в действительности в большинстве случаев точное значение величины не известно, а значит, нельзя применять (1.1), то есть нельзя найти истинную абсолютную погрешностью. Поэтому вводят другую величину, служащей некоторой оценкой (верхней границей для ).

Определение 1.2. Предельной абсолютной погрешностью приближенного числа , представляющее неизвестное точное число , называется такое возможно меньшее число, которого не превосходит истинная абсолютная погрешность , то есть . (1.2)

Для приближенного числа величин , удовлетворяющих неравенству (1.2), существует бесконечно много, но самым ценным из них будет наименьшее из всех найденных. Из (1.2) на основании определения модуля имеем , или сокращенно в виде равенства


. (1.3)

Равенство (1.3) определяет границы, в которых находится неизвестное точное число (говорят, что приближенное число выражает точное с предельной абсолютной погрешностью). Нетрудно видеть, что чем меньше , тем точнее определяются эти границы.

Например, если измерения некоторой величины дали результат см, при этом точность этих измерений не превосходила 1 см, то истинная (точная) длина см.

Пример 1.1. Дано число . Найти предельную абсолютную погрешность числа числом .

Решение: Из равенства (1.3) для числа ( =1,243; =0,0005) имеем двойное неравенство , то есть

Тогда задача ставится так: найти для числа предельную абсолютную погрешность , удовлетворяющую неравенству . Учитывая условие (*), получим (в (*) вычитаем из каждой части неравенства)

Так как в нашем случае , то , откуда =0,0035.

Ответ: =0,0035.

Предельная абсолютная погрешность часто плохо дает представление о точности измерений или вычислений. Например, =1 м при измерениях длины здания укажет, что они проводились не точно, а та же погрешность =1 м при измерениях расстояния между городами дает очень качественную оценку. Поэтому вводят другую величину.

Определение 1.3. Истинной относительной погрешностью числа , являющегося приближенным значением точного числа , называется отношение истинной абсолютной погрешности числа к модулю самого числа :

. (1.4)

Например, если соответственно точное и приближенное значения, то

Однако формула (1.4) неприменима, если не известно точное значение числа. Поэтому по аналогии с предельной абсолютной погрешностью вводят предельную относительную погрешность.

Определение 1.4. Предельной относительной погрешностью числа , являющегося приближенным значением неизвестного точного числа , называется возможно меньшее число , которого не превосходит истинная относительная погрешность , то есть

. (1.5)

Из неравенства (1.2) имеем ; откуда, учитывая (1.5)

Формула (1.6) имеет большую практическую применимость по сравнению с (1.5), так как в ней не участвует точное значение. Учитывая (1.6), (1.3), можно найти границы, в которых заключается точное значение неизвестной величины.

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и – известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

.

.

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Как уже говорилось ранее, когда мы сравниваем точность измерения некоторой приближенной величины, мы используем абсолютную погрешность.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения - это модуль разности точного значения и приближенного значения.
Абсолютную погрешность можно применять для сравнения точности приближений одинаковых величин, а если мы собираемся сравнивать точности приближения различных величин, тогда одной абсолютной погрешности недостаточно.

Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.

Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.

При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.

Понятие относительной погрешности

Здесь для оценки качества приближения вводится новое понятие относительная погрешность. Относительная погрешность - это частное от деления абсолютной погрешности на модуль приближенного значений измеряемой величины. Обычно, относительную погрешность выражают в процентах. В нашем примере мы получили две относительных погрешности равные 0.33% и 0.15%.

Как вы уже догадались, относительная погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность всегда положительная величина, и мы делим её на модуль, а модуль тоже всегда положителен.

Абсолютная и относительная погрешности

С приближенными числами нам приходится иметь дело при вычислениях значений каких-либо функций, либо при измерениях и обработке физических величин, получаемых в результате экспериментов. В том и другом случае нужно уметь правильно записывать значения приближенных чисел и их погрешность.

Приближенным числом а называется число, которое незначительно отличается от точного числа А и заменяет последнее в вычислениях . Если известно, что а < А , то а называется приближенным значением числа А по недостатку; если а > А , – то по избытку. Если а есть приближенное значение числа А , то пишут а ≈ А .

Под ошибкой или погрешностью А приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближенным, т.е.

Чтобы получить точное число А , нужно к приближенному значению числа прибавить его ошибку , т.е.

Во многих случаях знак ошибки неизвестен. Тогда целесообразно пользоваться абсолютной погрешностью приближенного числа

Из приведенной записи следует, что абсолютной погрешностью приближенного числа а называется модуль разности между соответствующими точным числом А и его приближенным значением а , т.е.

Точное число А чаще всего бывает неизвестно, поэтому найти ошибку или абсолютную погрешность не представляется возможным. В этом случае полезно вместо неизвестной теоретической погрешности ввести ее оценку сверху, так называемую предельную абсолютную погрешность.

Под предельной абсолютной погрешностью приближенного числа а понимается всякое число , не меньшее абсолютной погрешности этого числа, т.е.

Если в последней записи вместо использовать формулу (1,1), то можно записать

(1.2)

Отсюда следует, что точное число А заключено в границах

Следовательно, разность есть приближение числа А по недостатку, а – приближение числа А по избытку. В этом случае для краткости пользуются записью

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее, чем положительное число, тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи число ,удовлетворяющее неравенству (1.2).

Например, если в результате измерения получили длину отрезка l = 210 см ± 0,5 см., то здесь предельная абсолютная погрешность = 0,5 см, а точная величина l отрезка заключена в границах 209,5см≤l≤ 210,5см.

Абсолютная погрешность недостаточна для характеристики точности измерения или вычисления. Так, например, если при измерении длин двух стержней получены результаты l 1 = 95,6см ± 0,1см и l 2 =8,3 ± 0,1 см, то, несмотря на совпадение предельных абсолютных погрешностей, точность первого измерения выше, чем второго. Отсюда видно, что для точности измерений важнее не абсолютная, а относительная погрешность, которая зависит от значений измеряемых величин.

Относительной погрешностью δ приближенного числа а называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа А, т.е.

Аналогично предельной абсолютной погрешности используют также определение и для предельной относительной погрешности. Предельной относительной погрешностью данного приближенного числа а называется всякое число, не меньшее относительной погрешности этого числа

т.е. откуда следует

Таким образом, за предельную абсолютную погрешность числа а можно принять

Так как на практике А≈а ,то вместо формулы (1.3) часто пользуются формулой

1.2 Десятичная запись приближенных чисел

Всякое положительное десятичное число а может быть представлено в виде конечной или бесконечной дроби

где – десятичные цифры числа а ( = 0,1,2,...,9), причем старшая цифра а m – число разрядов в записи целой части числа а , а n – число разрядов в записи дробной части числа а . Например:

5214,73... = 5 · 10 3 + 2 · 10 2 + 1 · 10 1 + 4 · 10 0 +7 · 10 -1 + 3 · 10 -2 ... (1.5)

Каждая цифра , стоящая на определенном месте в числе а , написанном в виде (1.4), имеет свой вес. Так, цифра, стоящая на первом месте (т.е. ), весит 10 m , на втором – 10 m -1 и т.д.

На практике мы обычно не пользуемся записью в форме (1.4), а используем сокращенную запись чисел в виде последовательности коэффициентов при соответствующих степенях 10. Так, например, в записи (1.5) мы пользуемся левой от знака равенства формой, а не правой, представляющей разложение этого числа по степеням 10.

На практике преимущественно приходится иметь дело с приближенными числами в виде конечных десятичных дробей. Для корректного сравнения различных вычислительных и экспериментальных результатов вводят понятие значащей цифры в записи результата. Все сохраняемые десятичные значения (i = m , m- 1,…, m-n+ 1), отличные от нуля, и нуль, если он стоит между значащими цифрами или является представителем сохраненного десятичного разряда в конце числа называются значащими цифрами приближенного числа а . При этом нули, связанные с множителем 10 n к значащим не относятся.

При позиционном обозначении числа а в десятичной системе счисления иногда приходится вводить лишние нули в начале или в конце числа. Например,

а = 7·10 -3 + 0·10 -4 + 1·10 -5 + 0·10 -6 = 0,00 7010

b = 2·10 9 + 0·10 8 + 0·10 7 + 3·10 6 + 0·10 5 = 2003000000.

Такие нули (в приведенных примерах они подчеркнуты) не считаются значащими цифрами.

Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля , а также и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда. Все остальные нули, входящие в состав приближенного числа и служащие лишь для обозначения его десятичных разрядов, не причисляются к значащим числам.

Например, в числе 0,002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими цифрами, так как первый из них находиться между значащими цифрами 2 и 8, а второй указывает на то, что в приближенном числе сохранен десятичный разряд 10 -6 . В случае, если в данном числе 0,002080 последняя цифра не является значащей, то это число должно быть записано в виде 0,00208. С этой точки зрения числа 0,002080 и 0,00208 не равноценны, так как первое из них содержит четыре значащих цифры, а второе лишь три.



Кроме понятия значащей цифры важным является понятие верной цифры. Следует отметить, что это понятие существует в двух определениях – в узком и широком смыслах .

Определение (в широком смысле). Говорят, что n первых значащих цифр числа (считая слева направо) являются верными в широком смысле, если абсолютная погрешность этого числа не превосходит единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес 1 равен 10; 1 10 0 – здесь вес 1 равен 1; 1 10 -1 – здесь вес 1 равен 0,1; 1 10 -2 – здесь вес 1 равен 0,01 и т.д.).

Определение (в узком смысле). Говорят, что n первых значащих цифр приближенного числа являются верными, если абсолютная погрешность этого числа не превосходит половины единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес половины 1 равен 5; 1 10 0 – здесь вес половины 1 равен 0,5; 1 10 -1 – равен 0,05 и т.д.).

Например, в приближенном числе исходя из первого определения, значащие цифры 3,4 и 5 верные в широком смысле, а цифра 6 – сомнительна. Исходя из второго определения, значащие цифры 3 и 4 являются верными в узком смысле, а цифры 5 и 6 – сомнительные. Важно подчеркнуть, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр .

Как в теоретических рассуждениях, так и в практических применениях большее применение находит определение верной цифры в узком смысле.

Таким образом, если для приближенного числа а, заменяющего число А , известно, что

(1.6)

то, по определению, первые n цифр этого числа являются верными.

Например, для точного числа А = 35,97 число а = 36,00 является приближенным с тремя верными знаками. К этому результату приводят следующие рассуждения. Так как абсолютная погрешность нашего приближенного числа составляет величину 0,03, то по определению она должна удовлетворять условию

(1.7)

В нашем приближенном числе 36,00 цифра 3 является первой значащей цифрой (т.е. ), поэтому m = 1. Отсюда очевидно, что условие (1.7) будет выполняться при n = 3.

Обычно принято при десятичной записи приближенного числа писать только верные цифры. Если известно, что данное приближенное число записано правильно, то по записи можно определить предельную абсолютную погрешность. Именно при правильной записи абсолютная погрешность не превышает половины младшего разряда, который следует за последним верным разрядом (или половины единицы последнего верного разряда, что одно и то же)

Например, даны приближенные числа, записанные правильно: а = 3,8; b = 0,0283; с = 4260. Согласно определению, предельные абсолютные погрешности этих чисел будут: = 0,05; = 0,00005; = 0,5.