Углеводный обмен в организме человека: особенности, описание и значение. Углеводный обмен в организме человека Обмен углеводов в организме кратко

В течение жизни человек съедает около 10 т углеводов. Углеводы поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов.

Углеводы - главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счет углеводов. Конечные продукты обмена углеводов - углекислый газ и вода.

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов - без участия кислорода (анаэробно) и с его участием (аэробно).

Углеводы и их функции

Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии. Функции углеводов в организме:

· Углеводы являются непосредственным источником энергии для организма.

· Участвуют в пластических процессах метаболизма.

· Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды. Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза). Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза). Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

Расщепление углеводов в организме

Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза -- мальтозу. При этом образуются более низкомолекулярные углеводы -- декстрины, частично -- мальтоза и глюкоза.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена. Процесс всасывания моносахаридов в кишечнике регулируется нервной и гормональной системами. Под действием нервной системы может измениться проницаемость кишечного эпителия, степень кровоснабжения слизистой оболочки кишечной стенки и скорость движения ворсинок, в результате чего меняется скорость поступления моносахаридов в кровь воротной вены. В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150--200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря -- пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9-- 10,0 ммоль/л (160--180 мг%).

При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.

По мере убыли глюкозы в крови происходят расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови

Гликоген откладывается также в мышцах, где его содержится около 1--2%. Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Захват глюкозы разными органами из притекающей крови неодинаков: мозг задерживает 12% глюкозы, кишечник-- 9%, мышцы -- 7%, почки -- 5% (Е. С. Лондон).

Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО2 и Н2O. Повышение температуры окружающей среды до 35--40 °С угнетает, а понижение до 25 °С -- усиливает всасывание углеводов, что связано, по-видимому, со стимуляцией энергетического обмена углеводов.

Регуляция обмена углеводов

Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4--6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин -- гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин -- гормон мозгового слоя надпочечников; глюкокортикоиды -- гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин -- гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».

Углеводный обмен отвечает за процесс усвоения углеводов в организме, их расщепление с образованием промежуточных и конечных продуктов, а также новообразование из соединений, не являющихся углеводами, или превращение простых углеводов в более сложные. Основная роль углеводов определяется их энергетической функцией.

Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках.

При снижении уровня глюкозы в крови развиваются:

    Судороги;

    потеря сознания;

    вегетативные реакции (усиленное потоотделение, изменение просвета кожных сосудов).

Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

Метаболизм углеводов в организме человека состоит из следующих процессов:

    Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника вкровь.

    Синтез и распад гликогена в тканях (гликогенез и гликогенолиз).

    Гликолиз (распад глюкозы).

    Анаэробный путь прямого окисления глюкозы (пентозный цикл).

    Взаимопревращение гексоз.

    Анаэробный метаболизм пирувата.

    Глюконеогенез — образование углеводов из неуглеводных продуктов.

Нарушения углеводного обмена

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. В результате у пациента развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Причины нарушения углеводного обмена, вследствие нарушения гидролиза и всасывания углеводов:

    Гипоксия

    нарушение функций печени - нарушение образования гликогена из молочной кислоты - ацидоз (гиперлакцидемия).

    гиповитаминоз В1.


Нарушение синтеза и расщепления гликогена

Синтез гликогена может изменяться в сторону патологического усиления или снижения. Усиление распада гликогена происходит при возбуждении центральной нервной системы. Импульсы по симпатическим путям идут к депо гликогена (печень, мышцы) и активируют гликогенолиз и мобилизацию гликогена. Кроме того, в результате возбуждения центральной нервной системы повышается функция гипофиза, мозгового слоя надпочечников, щитовидной железы, гормоны которых стимулируют распад гликогена.

Повышение распада гликогена при одновременном увеличении потребления мышцами глюкозы происходит при тяжелой мышечной работе. Снижение синтеза гликогена происходит при воспалительных процессах в печени: гепатитах , в ходе которых нарушается ее гликоген-образовательная функция.

При недостатке гликогена тканевая энергетика переключается на жировой и белковый обмены. Образование энергии за счет окисления жира требует много кислорода; в противном случае в избытке накапливаются кетоновые тела и наступает интоксикация. Образование же энергии за счет белков ведет к потере пластического материала. Гликогеноз это нарушение обмена гликогена, сопровождающееся патологическим накоплением гликогена в органах.

Болезнь Гирке гликогеноз, обусловленный врожденным недостатком глюкозо-6-фосфатазы - фермента, содержащегося в клетках печени и почек.

Гликогеноз при врожденном дефиците α-глюкозидазы. Этот фермент отщепляет глюкозные остатки от молекул гликогена и расщепляет мальтозу. Он содержится в лизосомах и разобщен с фосфорилазой цитоплазмы.

При отсутствии α-глюкозидазы в лизосомах накапливается гликоген, который оттесняет цитоплазму, заполняет всю клетку и разрушает ее. Содержание глюкозы в крови нормальное. Гликоген накапливается в печени, почках, сердце. Обмен веществ в миокарде нарушается, сердце увеличивается в размерах. Больные дети рано умирают от сердечной недостаточности.

Нарушения промежуточного обмена углеводов

К нарушению промежуточного обмена углеводов могут привести:

Гипоксические состояния (например, при недостаточности дыхания или кровообращения, при анемиях), анаэробная фаза превращения углеводов преобладает над аэробной фазой. Происходит избыточное накопление в тканях и крови молочной и пировиноградной кислот. Содержание молочной кислоты в крови возрастает в несколько раз. Возникает ацидоз. Нарушаются ферментативные процессы. Снижается образование АТФ.

Расстройства функции печени, где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени этот ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз.

Гиповитаминоз В1. Нарушается окисление пировиноградной кислоты, так как витамин B1 входит в состав кофермента, участвующего в этом процессе. Пировиноградная кислота накапливается в избытке и частично переходит в молочную кислоту, содержание которой также возрастает. При нарушении окисления пировиноградной кислоты снижается синтез ацетилхолина и нарушается передача нервных импульсов. Уменьшается образование из пировиноградной кислоты ацетилкоэнзима А. Пировиноградная кислота является фармакологическим ядом для нервных окончаний. При увеличении ее концентрации в 2-3 раза возникают нарушения чувствительности, невриты, параличи и др.

При гиповитаминозе B1 нарушается также и пентозофосфатный путь обмена углеводов, в частности образование рибозы.


Гипергликемия

Гипергликемия это повышение уровня сахара крови выше нормального. В зависимости от этиологических факторов различают следующие виды гипергликемий:

Алиментарная гипергликемия. Развивается при приеме больших количеств сахара. Этот вид гипергликемии используют для оценки состояния углеводного обмена (так называемая сахарная нагрузка). У здорового человека после одномоментного приема 100-150 г сахара содержание глюкозы в крови нарастает, достигая максимума - 1,5-1,7 г/л (150-170 мг%) через 30-45 мин. Затем уровень сахара крови начинает падать и через 2 ч снижается до нормы (0,8-1,2 г/л), а через 3 ч оказывается даже несколько сниженным.

Эмоциональная гипергликемия. При резком преобладании в коре головного мозга раздражительного процесса над тормозным возбуждение иррадиирует на нижележащие отделы центральной нервной системы. Поток импульсов по симпатическим путям, направляясь к печени, усиливает в ней распад гликогена и тормозит переход углеводов в жир. Одновременно возбуждение воздействует через гипоталамические центры и симпатическую нервную систему на надпочечники. Происходит выброс в кровь больших количеств адреналина, стимулирующего гликогенолиз.

Гормональные гипергликемии. Возникают при нарушении функции эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена. Например, гипергликемия развивается при повышении продукции глюкагона - гормона α-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладает адреналин. К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы и активирует инсулиназу печени).

Гипергликемии при некоторых видах наркоза. При эфирном и морфинном наркозах происходит возбуждение симпатических центров и выход адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гликогенообразовательной функции печени.

Гипергликемия при недостаточности инсулина является наиболее стойкой и выраженной. Ее воспроизводят в эксперименте путем удаления поджелудочной железы. Однако при этом дефицит инсулина сочетается с тяжелым расстройством пищеварения. Поэтому более совершенной экспериментальной моделью инсулиновой недостаточности является недостаточность, вызванная введением аллоксана (C4H2N2O4), который блокирует SH-группы. В β-клетках островков Лангерганса поджелудочной железы, где запасы SH-групп невелики, быстро наступает их дефицит и инсулин становится неактивным.

Экспериментальную недостаточность инсулина можно вызвать дитизоном, блокирующим цинк в β-клетках островков Лангерганса, что ведет к нарушению образования гранул из молекул инсулина и его депонирования. Кроме того, в β-клетках образуется дитизонат цинка, который повреждает молекулы инсулина.

Недостаточность инсулина может быть панкреатической и внепанкреатической. Оба эти вида инсулиновой недостаточности могут вызвать сахарный диабет .


Панкреатическая инсулиновая недостаточность

Этот тип недостаточности развивается при разрушении поджелудочной железы:

    Опухолями;

    туберкулезным/сифилитическим процессом;

    панкреатитом.

В этих случаях нарушаются все функции поджелудочной железы, в том числе и способность вырабатывать инсулин. После панкреатита в 16-18% случаев развивается инсулиновая недостаточность в связи с избыточным разрастанием соединительной ткани, которая нарушает снабжение клеток кислородом.

К инсулиновой недостаточности ведет местная гипоксия островков Лангерганса (атеросклероз, спазм сосудов), где в норме очень интенсивное кровообращение. При этом дисульфидные группы в инсулине переходят в сульфгидрильные и он не оказывает гипогликемического эффекта). Предполагают, что причиной инсулиновой недостаточности может послужить образование в организме при нарушении пуринового обмена аллоксана, близкого по структуре к мочевой кислоте.

Инсулярный аппарат может истощаться после предварительного повышения функции, например при излишнем употреблении в пищу легкоусвояемых углеводов, вызывающих гипергликемию, при переедании. В развитии панкреатической инсулиновой недостаточности важная роль принадлежит исходной наследственной неполноценности инсулярного аппарата.

Внепанкреатическая инсулиновая недостаточность

Этот тип недостаточности может развиться при повышенной активности инсулиназы: фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания.

К недостаточности инсулина могут привести хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин.

Избыток гидрокортизона, тормозящего гексокиназу, снижает действие инсулина. Активность инсулина снижается при избытке в крови неэстерифицированных жирных кислот, которые оказывают на него непосредственное тормозящее влияние.

Причиной недостаточности инсулина может послужить чрезмерно прочная его связь с переносящими белками в крови. Инсулин, связанный с белком, не активен в печени и мышцах, но оказывает обычно действие на жировую ткань.

В ряде случаев при сахарном диабете содержание инсулина в крови нормально или даже повышено. Предполагают, что диабет при этом обусловлен присутствием в крови антагониста инсулина, однако природа этого антагониста не установлена. Образование в организме антител против инсулина ведет к разрушению этого гормона.

Сахарный диабет

Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

    Резко снижен синтез глюкокиназы, которая при диабете почти полностью исчезает из печени, что ведет к уменьшению образования глюкозо-6-фосфата в клетках печени. Этот момент наряду со сниженным синтезом гликогенсинтетазы обусловливает резкое замедление синтеза гликогена. Происходит обеднение печени гликогеном. При недостатке глюкозо-6-фосфата тормозится пентозофосфатный цикл;

    Активность глюкозо-6-фосфатазы резко возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы;

    Тормозится переход глюкозы в жир;

    Понижается прохождение глюкозы через клеточные мембраны, она плохо усваивается тканями;

    Резко ускоряется глюконеогенез - образование глюкозы из лактата, пирувата, аминокислот жирных кислот и других продуктов неуглеводного обмена. Ускорение глюконеогенеза при сахарном диабете обусловлено отсутствием подавляющего влияния (супрессии) инсулина на ферменты, обеспечивающие глюконеогенез в клетках печени и почек: пируваткарбоксилазу, глюкозо-6-фосфатазу.

Таким образом, при сахарном диабете имеют место избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание сахара в крови при тяжелых формах может достигать 4-5 г/л (400-500 мг%) и выше. При этом резко возрастает осмотическое давление крови, что ведет к обезвоживанию клеток организма. В связи с обезвоживанием глубоко нарушаются функции центральной нервной системы (гиперосмолярная кома).

Сахарная кривая при диабете по сравнению с таковой у здоровых значительно растянута во времени. Значение гипергликемии в патогенезе заболевания двояко. Она играет адаптивную роль, так как при ней тормозится распад гликогена и частично усиливается его синтез. При гипергликемии глюкоза лучше проникает в ткани и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение.

При ней повышается концентрация глюко- и мукопротеидов, которые легко выпадают в соединительной ткани, способствуя образованию гиалина. Поэтому для сахарного диабета характерно раннее поражение сосудов атеросклерозом. Атеросклеротический процесс захватывает коронарные сосуды сердца (коронарная недостаточность), сосуды почек (гломерулонефриты). В пожилом возрасте сахарный диабет может сочетаться с гипертонической болезнью.

Глюкозурия

В норме глюкоза содержится в провизорной моче. В канальцах она реабсорбируется в виде глюкозофосфата, для образования которого необходима гексокиназа, и после дефосфорилирования поступает в кровь. Таким образом, в окончательной моче сахара в нормальных условиях не содержится.

При диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах почек не справляются с избытком глюкозы в первичной моче. Развивается глюкозурия. При тяжелых формах сахарного диабета содержание сахара в моче может достигать 8-10%. Осмотическое давление мочи повышено; в связи с этим в окончательную мочу переходит много воды.

Суточный диурез возрастает до 5-10 л и более (полиурия). Развивается обезвоживание организм, развивается усиленная жажда (полидипсия). При нарушении углеводного обмена следует обратиться к эндокринологу за профессиональной помощью. Врач подберет необходимое медикаментозное лечение и разработает индивидуальную диету.

Продолжая рассматривать тонкую настройку нашего организма путем изменения основ плана питания, нужно рассматривать все типы . И сегодня мы рассмотрим один из самых важных элементов в питании. Как наш организм проводит обмен углеводов, и как правильно питаться так, чтобы это пошло на пользу вашим спортивным целям и достижениям, а вовсе не наоборот?

Общие сведения

Регуляция углеводного обмена – одна из самых сложных структур в нашем организме. Организм работает на углеводах, как на основном источнике для топлива. Происходит наладка системы, которая позволяет употреблять углеводы, как приоритетный источник питания, с максимальной энергетической эффективностью.

Наш организм потребляет энергию исключительно из углеводов. И только в том случае, если энергии недостаточно, он будет перенастраивать , или использовать в качестве источника топлива белковую ткань.

Этапы углеводного обмена

Основные этапы обмена углеводов делятся на 3 основные группы:

  1. Преобразование углеводов в энергию.
  2. Инсулиновая реакция.
  3. Использование энергии и выведения продуктов жизнедеятельности.

Первый этап – ферментация углеводов

В отличие от жировой ткани, или белковых продуктов, преобразование и разложение углеводов на простейшие моносахариды, происходят уже на этапе пережевывания. Под воздействием слюны, любой сложный углевод трансформируется в простейшую молекулу десктрозы.

Для того чтобы не быть голословными, предлагаем провести эксперимент. Возьмите кусочек несладкого хлеба и начните его долго жевать. На определенном этапе вы почувствуете сладкий вкус. Это означает, что гликемический индекс хлеба под воздействием слюны вырос и стал даже выше, чем у сахара. Далее, все, что не было измельчено, переваривается уже в желудке. Для этого используется желудочный сок, который с разной скорость расщепляет те или иные структуры до уровня простейшей глюкозы. Декстроза же напрямую отправляется в кровеносную систему.

Второй этап – распределение полученной энергии в печени

Практически вся поступающая пища проходит этап инфильтрации кровью в печени. Они попадают в кровеносную систему именно из клеток печени. Там, под воздействием гормонов, начинается глюкагоновая реакция и дозировка насыщения углеводами транспортный клеток в кровеносной системе.

Третий этап – это переход всего сахара в кровь

Печень способна обрабатывать только 50-60 грамм чистой глюкозы за определенное время, сахар практически в неизменном виде попадает в кровь. Далее он начинает циркуляцию по всем органам, наполняя их энергией для нормального функционирования. В условиях большого потребления карбогидратов с высоким гликемическим индексом происходят следующие изменения:

  • Клетки сахара замещают кислородные клетки. Это начинает вызывать кислородное голодание тканей и понижение активности.
  • При определенном насыщении, кровь сгущается. Это затрудняет её перемещение по сосудам, увеличивает нагрузку на сердечную мышцу, и как следствие ухудшает функционирование организма в целом.

Четвертый этап – инсулиновая реакция

Он является адаптационной реакцией нашего организма на чрезмерное насыщение сахаром крови. Для того чтобы этого не происходило, при определенном пороге в кровь начинает впрыскиваться инсулин. Этот гормон является основным регулятором уровня сахара в крови, и при его недостатке у людей развивается сахарный диабет.

Инсулин связывает клетки глюкозы, превращая их в гликоген. – это несколько молекул сахара, связанных между собой. Они являются внутренним источником питания для всех тканей. В отличие от сахара, они не связывают воду, а, значит, могут свободно перемещаться, не вызывая гипоксию или сгущение крови.

Чтобы гликоген не закупоривал транспортные каналы в организме, инсулин открывает клеточную структуру внутренних тканей, и все углеводы полностью запираются в этих клетках.

Для связывания молекул сахара в гликоген задействуется печень, скорость переработки которой ограничена. Если углеводов чрезмерно много – запускается резервный способ преобразования. В кровь впрыскиваются алкалоиды, которые связывают углеводы и превращают их в липиды, которые откладываются под кожей.

Пятый этап – вторичное использование накопленных запасов

В организме у атлетов имеются специальные гликогеновые депо, которые человек может использовать в качестве источника резервного «быстрого питания». Под воздействием кислорода и увеличившихся нагрузок, организм может проводить аэробный гликолиз из клеток, находящихся в гликогеновом депо.

Вторичное разложение углеводов происходит без инсулина, так как организм в состоянии самостоятельно регулировать уровень того, сколько молекул гликогена ему нужно разложить для получения оптимального количества энергии.

Последний этап – выведение продуктов жизнедеятельности

Так как сахар в процессе использования его организмом подвергается химическим реакциям с выделением тепловой и механической энергии, на выходе остается продукт жизнедеятельности, который по своему составу наиболее приближен к чистому углю. Он связывается с остальными продуктами жизнедеятельности человека, и выводиться из кровеносной системы сначала в желудочно-кишечный тракт, где пройдя полное преобразование выводиться через прямую кишку наружу.

Отличия метаболизма глюкозы от фруктозы

Метаболизм фруктозы, которая имеет отличную от глюкозы структуры, проходит несколько иначе, поэтому нужно учитывать следующие факторы:

  • Фруктоза – единственный доступный источник быстрых углеводов для людей, страдающих от сахарного диабета.
  • фруктов ниже, чем у любого другого продукта. Например, арбуз – один из самых сладких и больших фруктов, обладает гликемической нагрузкой порядка 2. А это значит, что на килограмм арбуза, приходиться всего 20 грамм фруктозы. Чтобы достичь оптимальной дозировки, при которой он будете превращен в жировую ткань необходимо съесть порядка 2.5 килограмм этого сладкого фрукта.
  • На вкус фруктоза слаще сахара, а, значит, используя сахарозаменители на её основе, можно потреблять меньше углеводов в целом.

А теперь рассмотрим, чем отличается метаболизм углеводов до фруктозы и глюкозы соответственно.

Метаболизм глюкозы Метаболизм фруктозы
Происходит абсорбирование части поступающего сахара в клетках печени. Практически не абсорбируется в печени.
Активирует инсулиновую реакцию. .В процессе метаболизма выделяются алкалоиды, отравляющие организм.
Активирует глюкагоновую реакцию. Не участвуют в переходе источников питания на внешний сахар.
Является предпочтительным источником энергии для организма. Переходят в жировую ткань без участия инсулина.
Участвует в создании клеток гликогена. Не могут участвовать в создании гликогеновых запасов из-за более сложной структуры и завершенной формы моносахарида.
Низкая чувствительность и возможность превращения в триглицериды. Высокая вероятность превращения в жировую ткань при относительно небольшом потреблении.

Функции углеводов

Рассматривая основы обмена углеводов, упомянем основные функции сахара в нашем организме.

  1. Энергетическая функция. Углеводы являются предпочтительным энергетическим источником в виду их структуры.
  2. Открывающая функция. Углевод вызывает инсулин, и может открыть клетки без их разрушения для проникновения других нутриентов. Именно поэтому гейнеры более популярны в сравнении с чистыми протеиновыми коктейлями.
  3. Запасающая функция. Организм использует их и накапливает их на случай экстренной стрессовой ситуации. Ему не нужны транспортные белки, а, значит, окислить молекулу у него получается значительно быстрее.
  4. Улучшение работы мозговых клеток. Мозговая жидкость может работать только в том случае, если в крови находится достаточно количество сахара. Попробуйте начать учить что-то на голодный желудок, и вы поймете, что все ваши мысли заняты едой, а вовсе не учебой или развитием.

Итог

Зная особенности обмена и основные функции углеводов в нашем организме, трудно переоценивать их важность. Чтобы успешно худеть или набирать мышечную массу, нужно соблюдать правильный энергетический баланс. И помните, если вы ограничиваете углеводы в своем питании, создавая , организм в первую очередь начнет есть мышцы, а вовсе не жировые отложения. Если хотите узнать об этом подобнее, узнайте об особенностях метаболизма жиров.

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (диастаза панкреатического сока и др.). При этом углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов также страдает при нарушении фосфорилирования глюкозы в кишечной стенке . Этот процесс нарушается при воспалении кишечной стенки, отравлении флоридзином, монойодацетатом, блокирующими фермент гексокиназу. Глюкоза не превращается в глюкозофосфат, не проходит через стенку кишечника и не поступает в кровь.

Нарушение синтеза и расщепления гликогена

Синтез гликогена может изменяться в сторону понижения или патологического усиления.



Снижение синтеза гликогена . Синтез гликогена снижается при усиленном его распаде, при недостаточном образовании либо при сочетании этих факторов.

Усиление распада гликогена происходит при возбуждении центральной нервной системы; импульсы по симпатическим путям идут к депо гликогена и активируют его распад. В результате возбуждения центральной нервной системы повышается функция мозгового слоя надпочечников, гипофиза, щитовидной железы, гормоны которых стимулируют гликогенолиз.

Повышение распада гликогена и потребления мышцами глюкозы происходит при тяжелой мышечной работе.

Снижение синтеза гликогена наблюдается при гипоксии, когда уменьшаются запасы АТФ, необходимой для образования гликогена.

Сочетанное уменьшение синтеза гликогена и усиление его распада происходит при гепатитах, в ходе которых нарушается гликогенообразовательная функция печени.

При недостатке гликогена тканевая энергетика переключается на жировой и белковый обмен. Образование энергии за счет окисления жира требует много кислорода; при недостатке его накапливаются в избытке кетоновые тела и наступает интоксикация. Образование энергии за счет белков ведет к потере пластического материала.

Гликогеноз - патологическое накопление гликогена в органах при недостаточности ферментов гликогенолиза. Приводим наиболее часто встречающиеся виды гликогенозов.

Гликогеноз, обусловленный недостатком глюкозо-6-фосфатазы (болезнь Гирке). Это врожденное заболевание, в основе которого лежит недостаточность вплоть до полного отсутствия этого фермента в почках и печени. Активность всех остальных ферментов обмена гликогена нормальная. Глюкозо-6-фосфатаза вызывает отщепление свободной глюкозы из глюкозо-6-фосфата, способствуя поддержанию нормального уровня глюкозы в крови. Поэтому при недостаточности глюкозо-6-фосфатазы развивается гипогликемия. В печени и почках накапливается гликоген нормальной структуры и эти органы увеличиваются. Происходит перераспределение гликогена внутри клетки и значительное накопление его в ядре. Возрастает содержание молочной кислоты в крови (ацидоз), в которую усиленно переходит глюкозо-6-фос-фат при блокировании перехода его в глюкозу (рис. 53). Организм страдает от углеводного голодания. Больные дети, как правило, рано умирают.

Гликогеноз при врожденном дефиците кислой альфа-глюкозидазы . Этот фермент отщепляет глюкозные остатки от молекул гликогена и расщепляет мальтозу. Он содержится в лизосомах и разобщен с фосфорилазой цитоплазмы. При отсутствии кислой альфа-глюкозидазы в лизосомах накапливается гликоген, который оттесняет цитоплазму, заполняет всю клетку и разрушает ее. Содержание глюкозы в крови нормальное. Гликоген накапливается в печени, почках, сердце. Обмен веществ в миокарде нарушается, сердце увеличивается в размерах. Больные дети обычно рано умирают от сердечной недостаточности.

Гликогеноз при недостатке амило-1,6-глюко-зидазы . Фермент переносит глюкозу на гликоген. При этом расщепление гликогена блокируется на уровне декстринов, образования глюкозо-1-фосфата и глюкозо-6-фосфата не происходит. Развивается гипогликемия, однако она выражена нерезко, так как при наличии глюкозо-6-фосфатазы идет образование глюкозы за счет глюконеогенеза. Под влиянием амило (1,4-1,6)-трансглюкозидазы эта глюкоза используется, происходит удлинение цепей гликогена и дальнейшее их разветвление. Накапливается гликоген необычной структуры с избытком внутренних разветвлений. Постепенно развивается цирроз печени с ее недостаточностью. Появляются желтуха, отеки, кровоточивость. Заболевают дети в конце первого года жизни.

Более редкие формы гликогенозов связаны с недостаточностью амило (1,4-1,6)-трансглюкозидазы (фермент ветвления), мышечной фосфорилазы. Описаны смешанные формы гликогенозов.

Нарушение межуточного обмена углеводов

К нарушению межуточного обмена углеводов могут привести:

  • 1) гипоксические состояния (например, при недостаточности дыхания или кровообращения, при анемиях и др.), когда анаэробная фаза распада углеводов преобладает над аэробной фазой. Происходит избыточное накопление в крови пировиноградной и молочной кислот. Развивается гиперлакцидемия. Содержание молочной кислоты в крови возрастает до 100 мг% вместо 10-15 мг% в норме. Возникает ацидоз. Снижается образование АТФ;
  • 2) расстройства функции печени , где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени этот ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз;
  • 3) гиповитаминоз В 1 . Нарушается окисление пировиноградной кислоты, так как витамин В 1 входит в состав кофермента, участвующего в ее декарбоксилировании. Накапливается в избытке пировиноградная кислота, которая частично переходит в молочную кислоту. При нарушении окисления пировиноградной кислоты снижается синтез ацетил-холина и нарушается передача нервных импульсов. Уменьшается образование из пировиноградной кислоты ацетилкоэнзима А. При этом тормозится аэробная фаза гликолиза. Поскольку для ткани мозга глюкоза является основным источником энергии, то в результате нарушений углеводного обмена возникают расстройства функций нервной системы: потеря чувствительности, невриты, параличи и др. Кроме того, токсическое влияние на нервную систему оказывает избыток пировиноградной кислоты.

При гиповитаминозе В 1 нарушается и пентозофосфатный путь обмена углеводов, в частности образование рибозы. Это нарушение связано с недостаточностью фермента транскетолазы, обеспечивающего образование рибозы неокислительным путем, коферментом которого является пирофосфат тиамина.

Гипергликемия

Гипергликемия - повышение уровня сахара крови выше 120 мг%. В зависимости от этиологических факторов различают следующие виды гипергликемий.

  • 1. Алиментарная гипергликемия . Развивается при приеме больших количеств сахара. Этот вид гипергликемии используют для оценки состояния углеводного обмена (так называемая сахарная нагрузка). У здорового человека после одномоментного приема 100-150 г сахара содержание глюкозы в крови нарастает, достигая максимума (150-170 мг%) через 30-45 минут. Затем уровень сахара крови начинает падать и через 2 часа снижается до нормы, а через 3 часа оказывается даже несколько сниженным (рис. 54).
  • 2. Эмоциональная гипергликемия . При действии различных психогенных факторов поток импульсов по симпатическим путям идет к надпочечникам и щитовидной железе. Происходит выброс в кровь больших количеств адреналина и тироксина, стимулирующих гликогенолиз.
  • 3. Гормональные гипергликемии . Возникают при нарушении функции эндокринных желез. Так, гипергликемия развивается при повышенной продукции глюкагона - гормона альфа-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладают тироксин и адреналин (активирует также фосфорилазу мышц). К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы и активирует инсулиназу печени).
  • 4. Гипергликемии при некоторых видах наркоза . При эфирном и морфинном наркозе происходит возбуждение симпатических центров и выход адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гликогенообразовательной функции печени.
  • 5. Гипергликемия при недостаточности инсулина является наиболее стойкой и выраженной. Ее воспроизводят в эксперименте для получения модели сахарного диабета.

Экспериментальные модели инсулиновой недостаточности . В эксперименте инсулиновую недостаточность воспроизводят путем удаления поджелудочной железы. Однако при этом дефицит инсулина сочетается с расстройствами пищеварения. Поэтому более совершенной экспериментальной моделью является инсулиновая недостаточность, вызванная введением аллоксана, который повреждает бета-клетки островков Лангерганса поджелудочной железы.

Экспериментальную недостаточность инсулина можно вызвать дитизоном, который не действует на поджелудочную железу, но связывает цинк, входящий в состав инсулина, и таким образом инактивирует инсулин.

Патогенез сахарного диабета

Сахарный диабет может быть следствием как панкреатической, так и внепанкреатической инсулиновой недостаточности.

Панкреатическая инсулиновая недостаточность развивается при разрушении поджелудочной железы опухолями, туберкулезным или сифилитическим процессом, при острых воспалительно-дегенеративных процессах в поджелудочной железе - панкреатитах. В этих случаях нарушаются все функции поджелудочной железы, в том числе способность вырабатывать инсулин.

К инсулиновой недостаточности ведет местная гипоксия островков Лангерганса (атеросклероз, спазм сосудов), где в норме очень богатое кровообращение. При этом дисульфидные группы в инсулине переходят в сульфгидрильные и он не дает гипогликемического эффекта.

Предполагают, что причиной инсулиновой недостаточности может быть образование в организме вследствие нарушений пуринового обмена аллоксана , близкого по структуре к мочевой кислоте (уреид мезоксалевой кислоты).

Инсулярный аппарат может истощаться после предварительного повышения функции, например при злоупотреблении сладким (особенно у тучных людей, у которых углеводы не переходят в жир).

В развитии панкреатической инсулиновой недостаточности немаловажное значение имеет исходная наследственная неполноценность инсулярного аппарата.

Внепанкреатическая инсулиновая недостаточность может развиться при повышении активности инсулиназы - фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания.

Хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин, могут повести к его недостаточности.

Избыток гидрокортизона, тормозящего гексокиназу, значительно снижает эффект от действия инсулина.

Причиной недостаточности инсулина может послужить чрезмерно прочная связь его с переносящими белками в крови. Наконец, образование в организме антител против инсулина ведет к разрушению этого гормона.

При сахарном диабете нарушаются все виды обмена веществ. Особенно выражены изменения углеводного и жирового обмена.

Нарушения углеводного обмена . Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

  • 1) резко снижен синтез глюкокиназы, которая при диабете почти полностью исчезает из печени, что ведет к уменьшению образования глюкозо-6-фосфата в клетках печени. Этот момент наряду со сниженным синтезом гдикоген-синтетазы обусловливает резкое замедление синтеза гликогена. Гликоген почти полностью исчезает из печени. При недостатке глюкозо-6-фосфата тормозится пентозо-фосфатный цикл;
  • 2) активность глюкозо-6-фосфатазы резко возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы;
  • 3) тормозится переход глюкозы в жир;
  • 4) понижается проницаемость клеток для глюкозы, она плохо усваивается тканями;
  • 5) резко ускоряется глюконеогенез - образование глюкозы из лактата, пирувата, аминокислот, жирных кислот и других продуктов неуглеводного обмена. Ускорение глюконеогенеза при сахарном диабете обусловлено выпадением подавляющего влияния (супрессии) инсулина на ферменты, обеспечивающие глюконеогенез в клетках печени и почек: пируваткарбоксилазу, фосфоэнолпируваткарбоксилазу, фруктозодифосфатазу, глюкозо-6-фосфатазу.

Таким образом, при сахарном диабете наблюдается избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание сахара в крови при тяжелых формах может достигать 400-500 мг% и выше. Сахарная кривая по сравнению с таковой у здорового человека характеризуется значительно большей продолжительностью (см. рис. 54). Значение гипергликемии в патогенезе заболевания двояко. Она играет адаптационную роль, так как при ней тормозится распад гликогена и частично усиливается его синтез. При гипергликемии глюкоза.Лучше проникает в ткани и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение, так как при ней повышается концентрация глюко- и мукопротеидов, которые легко выпадают в соединительной ткани, способствуя образованию гиалина и атеросклерозу. При этом возможно поражение почек (гломерулонефриты), коронарных сосудов. При подъеме уровня сахара крови выше 160-200 мг% он начинает переходить в окончательную мочу - возникает глюкозурия.

Глюкозурия . В норме глюкоза содержится в провизорной моче. В канальцах она реабсорбируется в виде глюкозофосфата, для образования которого необходима гексокиназа, и после дефосфорилирования (с помощью фосфатазы) поступает в кровь. Таким образом, в окончательной моче сахара в нормальных условиях не содержимся. При диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах почек отстают в связи с избытком глюкозы и снижением активности гексокиназы. Развивается глюкозурия. Осмотическое давление мочи повышено; в связи с этим в окончательную мочу переходит много воды. Суточный диурез возрастает до 5-10 л и более (полиурия). Развивается обезвоживание организма и как следствие его - усиленная жажда (полидипсия).

Нарушение жирового обмена . При дефиците инсулина снижено образование жира из углеводов, в жировой ткани уменьшен ресинтез триглицеридов из жирных кислот. Усиливается липолитический эффект СТГ и АКТГ, который в норме подавлялся инсулином. При этом повышается выход из жировой ткани неэстерифицированных жирных кислот и снижается отложение в ней жира. Это ведет к исхуданию и повышению содержания в крови неэстерифицированных жирных кислот. Последние ресинтезируются в триглицериды в печени, создавая предпосылку для ее ожирения. Ожирения печени не происходит, если в поджелудочной железе (в клетках эпителия мелких протоков) не нарушена продукция липокаина, который большинство исследователей относит к гормонам. Липокаин стимулирует действие липотропных пищевых веществ, богатых метионином (творог, баранина и др.). Метионин является донатором метильных групп для холина, входящего в состав лецитина. При его посредстве жир выводится из печени. Сахарный диабет, при котором имеется недостаточность инсулина, а продукция липокаина не нарушена, называется островковым; ожирения печени не происходит. Если же инсулиновая недостаточность сочетается с недостаточной продукцией липокаина, развивается тотальный диабет. Он сопровождается ожирением печени. В митохондриях печеночных клеток начинают интенсивно образовываться кетоновые тела (ацетон, ацетоуксусная и бета-оксимасляная кислоты).

Кетоновые тела . В механизме накопления кетоновых тел при сахарном диабете имеют значение следующие факторы:

  • 1) повышенный переход жирных кислот из жировых депо в печень и ускоренное окисление их;
  • 2) задержка ресинтеза жирных кислот из-за дефицита никотинамид-адениндинуклеотидфосфата (НАДФ-Н2);
  • 3) нарушение окисления кетоновых тел, обусловленное подавлением цикла Кребса, от участия в котором в связи с усиленным глюконеогенезом «отвлекаются» щавелевая и альфа-кетоглютаровая кислоты.

Нормальная концентрация кетоновых тел в крови не превышает 4-6 мг%; начиная с уровня в 12-13 мг% (гиперкетонемия) они оказывают токсическое действие. При сахарном диабете концентрация кетоновых тел в крови может повышаться до 150 мг% и выше. Кетоновые тела инактивируют инсулин, усугубляя явления инсулиновой недостаточности. В высокой концентрации кетоновые тела вызывают отравление клеток, подавление ферментов. Они оказывают токсическое, угнетающее влияние на центральную нервную систему, обусловливая развитие тяжелейшего состояния - диабетической комы , сопровождающейся негазовым ацидозом. Щелочные резервы плазмы крови исчерпываются, ацидоз становится некомпенсированным. рН крови падает до 7,1-7,0 и даже ниже.

Кетоновые тела выводятся с мочой в виде натриевых солей (кетонурия). При этом уменьшается концентрация натрия в крови, повышается осмотическое давление мочи, что способствует полиурии.

При сахарном диабете происходит нарушение холестеринового обмена. Избыток ацетоуксусной кислоты идет на образование холестерина - развивается гипёрхолестеринемия.

Нарушения белкового обмена . Белковый обмен при сахарном диабете изучен менее полно.

Синтез белка при диабете снижается, так как:

  • 1) выпадает или резко ослабляется стимулирующее влияние инсулина на энзиматические системы этого синтеза;
  • 2) снижается уровень энергетического обмена, обеспечивающего белковый синтез в здоровом организме.

При недостатке инсулина происходит образование углеводов из аминокислот и жира (глюконеогенез). При этом аминокислоты теряют аммиак, переходя в альфа-кетокислоты, которые и идут на образованю углеводов. Накапливающийся аммиак обезвреживается за счет образования мочевины, а также связывания его альфа-кетоглютаровой кислотой с образованием глютаминовой кислоты. Идет усиленное потребление альфа-кетоглютаровой кислоты, при недостатке которой снижается интенсивность цикла Кребса. Недостаточность цикла Кребса способствует еще большему накоплению ацетилкоэнзима А и, следовательно, кетоновых тел.

В связи с замедлением тканевого дыхания при диабете уменьшается образование АТФ. При недостатке АТФ снижается способность печени синтезировать белки.

В результате нарушения белкового обмена при диабете подавляются пластические процессы, снижается выработка антител, ухудшается заживление ран, понижается устойчивость организма к инфекциям.

Гипогликемия

Гипогликемия - понижение уровня сахара крови ниже 80 мг%. Нарастание уровня сахара в крови после сахарной нагрузки очень невелико (см. рис. 54).

Причины гипогликемии весьма многообразны. К ним относятся:

  • 1) гиперфункция островкового аппарата поджелудочной железы, например при некоторых ее опухолях (аденома, инсулинома);
  • 2) недостаточная продукция гормонов, оказывающих диссимиляторное влияние на углеводный обмен: тироксина, адреналина, глюкокортикоидов (бронзовая болезнь) и др;
  • 3) недостаточное расщепление гликогена при гликогенозах;
  • 4) мобилизация большого количества гликогена из мышц и печени, не восполняющаяся алиментарно (тяжелая мышечная работа);
  • 5) поражение клеток печени;
  • 6) углеводное голодание;
  • 7) нарушение всасывания углеводов;
  • 8) введение больших доз инсулина с лечебной целью (инсулиновый шок в психиатрической практике);
  • 9) так называемый почечный диабет, возникающий при отравлении флоридзином, монойодацетатом, которые блокируют гексокиназу. В почках нарушается фосфорилирование глюкозы, которая не реабсорбируется в канальцах, а переходит в окончательную мочу (глюкозурия). Развивается гипогликемия.

Особенно чувствительна к недостатку глюкозы центральная нервная система, клетки которой не имеют запасов гликогена. Потребление мозгом кислорода резко понижается. При длительных и часто повторяющихся гипогликемиях в нервных клетках происходят необратимые изменения. Сначала нарушаются функции коры головного мозга, а затем и среднего мозга.

Компенсаторно усиливается инкреция гормонов, способствующих повышению уровня глюкозы в крови - глюкокортикоидов, глюкагона, адреналина.

При уровне сахара в крови 80-50 мг% развивается тахикардия, связанная с гиперпродукцией адреналина, чувство голода (возбуждение вентро-латеральных ядер гипоталамуса низким уровнем глюкозы крови), а также связанные с поражением центральной нервной системы слабость, раздражительность, повышенная возбудимость.

При падении содержания сахара ниже 50 мг% в коре головного мозга развивается торможение, а в нижележащих отделах центральной нервной системы - возбуждение. В результате появляются расстройства зрения, сонливость, парезы, усиленное потоотделение, потеря сознания, периодическое дыхание, сначала клонические, а затем тонические судороги. Развивается коматозное состояние.

Пентозурия, фруктозурия, галактозурия

Пентозурия . Пентозурия - выделение с мочой пентоз, которые образуются в основном в ходе пентозного цикла обмена углеводов.

Минимальные количества рибозы могут определяться в моче здоровых людей. Алиментарная пентозурия наступает после употребления в пищу больших количеств фруктов (сливы, черешни, виноград), причем выделяются в основном альфа-арабиноза и альфа-ксилоза. Значительное выделение рибозы с мочой наблюдается при миопатии. При этом заболевании в мышцах происходит распад нуклеотидов, содержащих в своей молекуле рибозу.

Выделение с мочой альфа-ксилулозы (альфа-ксилулозурия) наблюдается при расстройствах метаболического пути глюкуроновой кислоты. При этом нарушается переход альфа-ксилулозы в ксилитол под влиянием НАДФ-ксилитолдегидрогеназы. Причиной этого расстройства может послужить избыток в организме трийодтиронина, амидопуринов и др.

Наблюдаются наследственные формы пентозурии, передающиеся по рецессивному типу.

Фруктозурия . Фруктозурия - выделение с мочой фруктозы. В больших количествах она содержится во фруктах. С помощью фруктокиназы фруктоза в печени фосфорилируется до фруктозо-6-фосфата, который в результате сложных превращений переходит в глюкозу и затем в гликоген. Порог выделения фруктозы очень низок (15 мг%).

Гиперфруктоземия и фруктозурия - одно из первых проявлений недостаточности печени; неспособность ее усваивать глюкозу присоединяется позднее.

Фруктозурия возникает при заболевании (эссенциальная фруктозурия), в основе которого лежит недостаточность фруктокиназы, активирующей синтез фруктозо-1 -фосфата (рис. 55). Обмен фруктозы при этом может идти только путем фосфорилирования до фруктозо-6-фосфата. Однако эта реакция блокируется глюкозой, поэтому тормозится нормальный обмен фруктозы и возникают гиперфруктоземия (до 40-80мг%) и фруктозурия.



Наследственная непереносимость фруктозы - тяжелое заболевание, которое связано с отсутствием фермента фруктозо-1-фосфаталъдолазы (рис. 55) и понижением активности фруктозо-1,6-дифосфатальдолазы в печени, почках, слизистой оболочке кишечника. Развивается гиперфруктоземия, которая вызывает усиление инкреции инсулина с последующей гипогликемией. Возникает недостаточность функций печени и почек.

Галактозурия . Галактозурия развивается вследствие галактоземии - содержания в крови больших количеств (до 200 мг%) галактозы. Галактоземия наблюдается у грудных детей при недостаточности фермента галактозо-1-фосфатуридилтр ансферазы.

У родителей страдающих галактоземией детей часто выявляется снижение активности этого фермента, что свидетельствует о наследственной природе данного заболевания.

При дефиците галактозо-1-фосфатуридилтрансферазы обмен галактозы задерживается на уровне галактозо-1-фосфата и он не переходит в глюкозу (рис. 56). Нарушается обмен глюкозы, так как галактозо-1-фосфат оказывает тормозящее действие на фосфоглюкомутазу печени. Содержание глюкозы в крови падает.

Галактозо-1-фосфат накапливается в хрусталике, печени и других органах и тканях, чему в норме препятствует наличие в них активной галактозо-1-фосфатуридилтрансферазы. В результате развивается катаракта, увеличивается селезенка и печень с последующим ее циррозом. Наблюдается исхудание, задержка развития. Резко выражена умственная отсталость, так как из-за недостатка глюкозы страдает головной мозг и особенно его кора. Если не исключить галактозу из пищи ребенка, он умирает в течение нескольких месяцев. С возрастом непереносимость галактозы проходит, так как появляется отсутствующий у новорожденных фермент - уридиндифосфатгалактозопирофосфорилаза, при посредстве которого галактоза включается в обычный цикл превращений.

Не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.

Для чего нужны углеводы

Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.

Основными задачами углеводов является выполнение следующих функций:

  1. Энергетическая — приблизительно 70% калорийности приходится на углеводы. Для того, чтобы реализовался процесс окисления 1 г углеводов организму требуется 4,1 ккал энергии.
  2. Строительная — принимают участие в построении клеточных компонентов.
  3. Резервная — создают депо в мышцах и печени в виде гликогена.
  4. Регуляторная — некоторые гормоны по своей природе являются гликопротеинами. Например, гормоны щитовидной железы и гипофиза — одна структурная часть таких веществ белковая, а другая — углеводная.
  5. Защитная — гетерополисахариды принимают участие в синтезе слизи, которая покрывает слизистые оболочки дыхательных путей, органов пищеварения, мочеполового тракта.
  6. Принимают участие в распознавании клеток.
  7. Входят в состав мембран эритроцитов.
  8. Являются одними из регуляторов свертываемости крови, так как являются частью протромбина и фибриногена, гепарина ( — учебник «Биологическая химия», Северин).

Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.

@ Evgeniya
adobe.stock.com

Этапы расщепления сахаридов

Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый , который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.


Этап 1 — предварительное расщепление слюной

В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.

Этап 2 — влияние желудочной кислоты на дальнейшее расщепление

Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.

Этап 3 — всасывание глюкозы в кровь

На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.

Этап 4 — насыщение и инсулиновая реакция

Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию — уменьшение количества углеводов в крови.

В плазму поступает инсулин и глюкагон из поджелудочной железы.

Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин «дырявит» основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.

Этап 5 — метаболизм углеводов в печени

На пути к полному перевариванию углеводы сталкиваются с главным защитником организма — клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.

Этап 6 — гликоген или жир

Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, «забывает» переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.

Этап 7 — вторичное расщепление

В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость ( — «Википедия»).

Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.

Особенности метаболизма по ГИ

Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их , который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.

Примерная таблица гликемического индекса с общим составом углеводов в продукте:

Особенности метаболизма по ГН

Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает . Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.

Примерная таблица гликемической нагрузки с общей калорийностью:

Инсулиновая и глюкагоновая реакция

В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.

Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.

Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.

Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье — состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.

Последующее распределение энергии

Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:

  1. У нетренированного человека с медленным обменом веществ. Гликогеновые клетки при снижении уровня глюкагона возвращаются в печень, где перерабатываются в триглицериды.
  2. У спортсмена. Гликогеновые клетки под воздействием инсулина массово запираются в мышцах, давая запас энергии для следующих упражнений.
  3. У неспортсмена с быстрым обменом веществ. Гликоген возвращается в печень, транспортируясь назад до уровня глюкозы, после чего насыщает кровь до пограничного уровня. Этим он провоцирует состояние истощения, так как несмотря на достаточное питание энергетическими ресурсами, клетки не имеют соответствующего количества кислорода.

Итог

Энергетический обмен — процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).