Какие свойства характерны для гидроксида кальция. Кальций

Структурная формула

Молекулярная масса: 74,094

Гидрокси́д ка́льция, Ca(OH) 2 гашёная известь или «пушонка» - химическое вещество, сильное основание. Представляет собой порошок белого цвета, плохо растворимый в воде.

Тривиальные названия

  • Гашёная известь - так как её получают путём «гашения» (то есть взаимодействия с водой) «негашеной» извести (оксида кальция).
  • Известковое молоко - взвесь (суспензия), образуемая при смешивании избытка гашёной извести с водой. Похожа на молоко.
  • Известковая вода - прозрачный раствор гидроксида кальция, получаемый при фильтровании известкового молока.

Получение

Получают путём взаимодействия оксида кальция (негашёной извести) с водой (процесс получил название «гашение извести»). Эта реакция экзотермическая, идёт с выделением 16 ккал (67 кДж) на моль.

Свойства

Внешний вид - белый порошок, мало растворимый в воде. Гидроксид кальция является довольно сильным основанием, из-за чего водный раствор имеет щелочную реакцию. Растворимость падает с ростом температуры. Как и все основания, реагирует с кислотами; как щелочь - является компонентом реакции нейтрализации (см. реакция нейтрализации) с образованием соответствующих солей кальция. По этой же причине раствор гидроксида кальция мутнеет на воздухе, так как гидроксид кальция, как и другие сильные основания, реагирует с растворённым в воде углекислым газом. Если продолжить обработку углекислым газом, выпавший осадок растворится, так как образуется кислая соль - гидрокарбонат кальция, причём при нагревании раствора гидрокарбонат снова разрушается и выпадает осадок карбоната кальция. Гидроксид кальция реагирует с оксидом углерода при температуре около 400 °C. Как сильное основание реагирует с солями, но только если в результате реакции выпадает осадок.

Применение

  • При побелке помещений.
  • Для приготовления известкового строительного раствора. Известь применялась для строительной кладки с древних времён. Смесь обычно приготавливают в такой пропорции: к одной части смеси гидроксида кальция (гашёной извести) с водой добавляют три-четыре части песка (по массе). В ходе реакции выделяется вода. Это является отрицательным фактором, так как в помещениях, построенных с помощью известкового строительного раствора, долгое время сохраняется повышенная влажность. В связи с этим, а также благодаря ряду других преимуществ перед гидроксидом кальция, цемент практически вытеснил его в качестве связующего строительных растворов.
  • Для приготовления силикатного бетона. Состав силикатного бетона аналогичен составу известкового строительного раствора, однако его твердение происходит на несколько порядков быстрее, так как смесь оксида кальция и кварцевого песка обрабатывается не водой, а перегретым (174,5-197,4 °C) водяным паром в автоклаве при давлении 9-15 атмосфер.
  • Для устранения карбонатной жёсткости воды (умягчение воды).
  • Для производства хлорной извести.
  • Для производства известковых удобрений и нейтрализации кислых почв.
  • Каустификация карбоната натрия и калия.
  • Дубление кож.
  • Получение других соединений кальция, нейтрализация кислых растворов (в том числе сточных вод производств), получение органических кислот и проч.
  • В пищевой промышленности зарегистрирован в качестве пищевой добавки E526.
  • Известковая вода - прозрачный раствор гидроксида кальция. Она используется для обнаружения углекислого газа. При взаимодействии с ним она мутнеет.
  • Известковое молоко - взвесь (суспензия) гидроксида кальция в воде, белая и непрозрачная. Она используется для производства сахара и приготовления смесей для борьбы с болезнями растений, побелки стволов.
  • В стоматологии - для дезинфекции корневых каналов зубов.
  • В электротехнике - при устройстве очагов заземления в грунтах с высоким сопротивлением, в качестве добавки, снижающей удельное сопротивление грунта.
  • Известковое молоко используется как основа при приготовлении классического фунгицида - бордоской жидкости.

Оксид кальция (СаO) – негашеная или жженая известь – белое огнестойкое вещество, образованное кристаллами. Кристаллизуется в кубической гранецентрированной кристаллической решетке. Температура плавления – 2627 °C, температура кипения – 2850 °C.

Называется жженой известью из-за способа его получения – обжигание карбоната кальция. Обжиг производят в высоких шахтных печах. В печь закладывают слоями известняк и топливо, а затем разжигают снизу. При накаливании происходит разложение карбоната кальция с образованием оксида кальция:

Так как концентрации веществ в твердых фазах неизменны, то константу равновесия этого уравнения можно выразить так: K = .

При этом концентрация газа может быть выражена с помощью его парциального давления, то есть равновесие в системе устанавливается при определенном давлении диоксида углерода.

Давление диссоциации вещества – равновесное парциальное давление газа, получающееся при диссоциации вещества.

Чтобы спровоцировать образование новой порции кальция, необходимо повысить температуру или удалить часть получившегося CO2 , при этом уменьшится парциальное давление. Поддерживая постоянное более низкое парциальное давление, чем давление диссоциации, можно добиться непрерывного процесса получения кальция. Для этого при обжигании извести в печах делают хорошую вентиляцию.

Получение:

1) при взаимодействии простых веществ: 2Ca + O2 = 2CaO;

2) при термическом разложении гидроксида и солей: 2Ca(NO3)2 = 2CaO + 4NO2? + O2?.

Химические свойства:

1) взаимодействует с водой: СаO + H2O = Са(OH)2;

2) реагирует с оксидами неметаллов: СаO + SO2 = CaSO3;

3) растворяется в кислотах, образуя соли: CaO + 2HCl = CaCl2 +H2O.

Гидроксид кальция (Ca(OH)2 – гашеная известь, пушонка) – белое кристаллическое вещество, кристаллизуется в гексагональной кристаллической решетке. Является сильным основанием, плохо растворимым вводе.

Известковая вода – насыщенный раствор гидроксида кальция, имеющий щелочную реакцию. На воздухе мутнеет в результате поглощения углекислого газа, образуя карбонат кальция .

Получение:

1) образуется при растворении кальция и оксида кальция вводе: CaO + H2O = Са(OH)2 + 16 ккал;

2) при взаимодействии солей кальция со щелочами: Ca(NO3)2 + 2NaOH = Ca(OH)2 + 2NaNO3.

Химические свойства:

1) при нагревании до 580 °C разлагается: Са(OH)2 = СаO + H2O;

2) реагирует с кислотами: Ca(OH)2 + 2HCl = CaCl2 + 2H2O.

58. Жесткость воды и способы ее устранения

Так как кальций широко распространен в природе, его соли в большом количестве содержатся в природных водах. Вода, имеющая в своем составе соли магния и кальция, называется жесткой водой . Если соли присутствуют в воде в небольших количествах или отсутствуют, то вода называется мягкой . В жесткой воде мыло плохо пенится, поскольку соли кальция и магния образуют с ним нерастворимые соединения. В ней плохо развариваются пищевые продукты. При кипячении на стенках паровых котлов образуется накипь, которая плохо проводит теп-лоту, вызывает увеличение расхода топлива и изнашивание стенок котла. Жесткой водой нельзя пользоваться, проводя ряд технологических процессов (крашение). Образование накипи: Са + 2НСО3 = Н2О + СО2 + СаСО3?.

Перечисленные выше факторы указывают на необходимость удаления из воды солей кальция и магния. Процесс удаления этих солей называется водоумягчением , является одной из фаз обработки воды (водоподготовки).

Водоподготовка – обработка воды, используемая для различных бытовых и технологических процессов.

Жесткость воды подразделяется на:

1) карбонатную жесткость (временную), которая вызывается наличием гидрокарбонатов кальция и магния и устраняется с помощью кипячения;

2) некарбонатную жесткость (постоянную), которая вызывается присутствием в воде сульфитов и хлоридов кальция и магния, которые при кипячении не удаляются, поэтому она называется постоянной жесткостью.

Верна формула: Общая жесткость = Карбонатная жесткость + Некарбонатная жесткость.

Общую жесткость ликвидируют добавлением химических веществ или при помощи катиони-тов. Для полного устранения жесткости воду иной раз перегоняют.

При применении химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты:

Более модернизированный процесс устранения жесткости воды – при помощи катионитов .

Катиониты – сложные вещества (природные соединения кремния и алюминия, высокомолекулярные органические соединения), общая формула которых – Na2R, где R – сложный кислотный остаток.

При пропускании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg: Са + Na2R = 2Na + CaR.

Ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Чтобы восстановить использованный катионит, его необходимо промыть раствором поваренной соли. При этом происходит обратный процесс: 2Na + 2Cl + CaR = Na2R + Ca + 2Cl.

Инструкция

Обладая всеми характерными свойствами оснований, гидроксид легко вступает в реакцию с кислотами и кислотными оксидами. Являясь достаточно сильным основанием, он может реагировать и с солями, но только если в результате образуется малорастворимый продукт, например:
Ca(OH)2 + K2SO3 = 2KOH + CaSO3 ( кальция, выпадает в осадок).

В лабораторных условиях гидроксид кальция можно получить и некоторыми другими способами. Например, поскольку кальций – весьма щелочноземельный металл, он легко с водой, вытесняя водород:
Са + 2Н2О = Са(ОН)2 + Н2 Эта реакция протекает, конечно, не столь бурным образом, как в случаях с щелочными первой группы.

Можно также получить гидроксид кальция, смешав раствор какой-либо его соли с сильной щелочью (например, натриевой или калиевой). Более легко вытесняют кальций, занимая его место и, соответственно, отдавая ему «свои» гидроксид-ионы. Например:
2КОН + СаSO4 = Ca(OH)2 + K2SO4
2NaOH + CaCl2 = 2NaCl + Ca(OH)2

Полезный совет

Гидроксид кальция широко применяется, главным образом – в ремонтно-строительных работах, как компонент штукатурки, цемента, растворов, а также при производстве удобрений, хлорной извести. Используется в кожевенной промышленности, как дубитель, в целлюлозно-бумажной промышленности и т.д. Хорошо известен садоводам, как компонент «бордосской жидкости», применяемой в борьбе с различными вредителями растений. Используется в качестве пищевой добавки.

Оксид кальция - это обычная негашеная известь. Но, несмотря на столь нехитрую природу, это вещество весьма широко используется в хозяйственной деятельности. От строительства, в качестве основы для известкового цемента, до кулинарии, в качестве пищевой добавки E-529, оксид кальция находит применение. И в промышленных и в домашних условиях можно получить оксид кальция из карбоната кальция реакцией термического разложения.

Вам понадобится

  • Карбонат кальция в виде известняка или мела. Керамический тигель для отжига. Пропановая или ацетиленовая горелка.

Инструкция

Подготовьте тигель для отжига карбоната . Прочно установите его на огнеупорных подставках или специальных приспособлениях. Тигель должен быть прочно установлен и, при возможности, закреплен.

Измельчите карбонат кальция . Измельчение нужно произвести для лучшей теплопередачи внутри . Не обязательно измельчать известняк или мел в пыль. Достаточно произвести грубое неоднородное измельчение.

Наполните тигель для отжига измельченным карбонатом кальция . Не заполнять тигель полностью, поскольку при выделении углекислого газа, часть вещества может быть выброшена наружу. Заполните тигель примерно на треть или меньше.

Приступите к нагреву тигля. Хорошо установите и закрепите его. Осуществите плавный прогрев тигля с разных сторон во избежание его разрушения вследствие неравномерного термического расширения. Продолжайте нагревать тигель на газовой горелке. Через некоторое начнется термического распада карбоната кальция .

Дождитесь полного прохождения термического распада. В ходе реакции верхние слои вещества в тигле могут плохо прогреваться. Их можно несколько раз перемешать стальной лопаткой.

Видео по теме

Обратите внимание

Будьте осторожны при работе с газовой горелкой и нагретым тиглем. При прохождении реакции тигель будет нагрет до температуры выше 1200 градусов Цельсия.

Полезный совет

Вместо попыток собственноручного производства больших количеств оксида кальция (например, для последующего получения известкового цемента), лучше купить готовый продукт на специализированных торговых площадках.

Источники:

  • Запишите уравнения реакций, с помощью которых можно

Гидроксиды являются соединениями веществ и гидроксогрупп OH. Они применяются во многих областях промышленности и быта. Электролит в щелочных аккумуляторах и гашеная известь, которой красят стволы деревьев весной - это гидроксиды. Несмотря на кажущуюся сложность химических терминов и формул, получить гидроксид можно в домашних условиях. Это достаточно просто и вполне безопасно. Проще всего получить гидроксид натрия.

Вам понадобится

  • Гидрокарбонат натрия (пищевая сода), вода. Посуда для прокаливания. Газовая гарелка. Стеклянная посуда для получения раствора щелочи. Стеклянная или стальная палочка, лопатка или ложка.

Инструкция

Подготовьте посуду для прокаливания. Лучше если это будет посуда из огнеупорного стекла или керамический тигель. Можно также использовать стальные емкости. В крайнем случае, подойдет обычная ложка или пустая консервная банка. Для обязателен держатель, исключающий ожог рук при ее .

Проведите термического разложения гидрокарбоната натрия. Поместите немного гидрокарбоната натрия в посуду для прокаливания. Нагревайте посуду на газовой горелке. Можно производить нагрев на среднем огне бытовой газовой - будет достаточна. О прохождении реакции можно судить по некоторому "кипению" порошка в посуде из-за быстрого выделения углекислого газа. Дождитесь прохождения реакции. В посуде образовался оксид натрия.

Остудите посуду с оксидом натрия до комнатной температуры. Просто переставьте посуду на огнеупорную подставку, либо выключите газовую горелку. Дождитесь полного остывания.

Получите натрия в виде водного раствора. При постоянном помешивании всыпьте оксид натрия мелкими порциями в воду. Помешивание производите стеклянной или стальной палочкой или лопаткой.

Обратите внимание

Не используйте для прокаливания гидрокарбоната натрия пробирки. Из-за быстрого прохождения реакции термического разложения, часть вещества может быть выброшена из пробирки под давлением образовывающегося углекислого газа. Работайте в перчатках и защитных очках. Избегайте попадания оксида натрия на кожу тела. Он прореагирует с влагой кожи с образованием гидроксида. Возможен ожог. Избегайте попадания раствора гидроксида натрия на кожу по той же причине.

Полезный совет

Для того чтобы проверить щелочную реакцию полученного раствора гидроксида натрия, можно использовать раствор фенолфталеина. Таблетки фенолфталеина свободно продаются в аптеках. Разведите таблетку в небольшом количестве этилового спирта, и вы получите индикатор щелочного состояния среды.

Источники:

  • получение гидроксида натрия

Водород является первым элементом таблицы Менделеева. Он представляет собою бесцветный газ. Широко применяется в химической и пищевой промышленности (гидрирование различных соединений), а также как компонент ракетного топлива. Водород весьма перспективен в качестве топлива для автомобилей, поскольку при сгорании не загрязняет окружающую среду.

Вам понадобится

  • - реакционная емкость (лучше всего – плоскодонная коническая колба);
  • - резиновая пробка, плотно закрывающая горловину колбы, с пропущенной через нее изогнутой стеклянной трубкой;
  • - емкость для сбора водорода (пробирка);
  • - емкость, заполненная водой («гидрозатвор»);
  • - кусочек кальция.

Инструкция

Пробирка, куда собирается водород, должна быть абсолютно целой, даже малейшая трещинка недопустима! Перед тем как проводить опыт с тлеющей лучиной, лучше для предосторожности обмотайте пробирку плотной тканью.

В плоскодонную колбу налейте немного воды, в нее небольшой кусочек и тотчас же плотно закройте пробкой. Изогнутое «колено» трубки, проходящей через пробку, должно находиться в емкости с водой «гидрозатворе», а кончик трубки - немного выступать над поверхностью воды. Быстро накройте этот кончик перевернутой верх дном пробиркой, куда будет собираться водород (край пробирки должен быть в воде).

Чтобы продемонстрировать, что получен именно водород, вытащите пробку и поднесите к краю пробирки тлеющую лучинку. Раздастся характерный хлопок.

Видео по теме

Обратите внимание

Кальций хоть и менее активен, чем щелочные металлы, но при работе с ним тоже нужна осторожность. Хранят его в стеклянной емкости под слоем керосина, или жидкого парафина, извлекают непосредственно перед началом опыта (лучше всего – длинным пинцетом). В ходе реакции образуется щелочь, являющаяся едким веществом, берегитесь ожогов! По возможности используйте резиновые перчатки.

При смешивании с воздухом или кислородом, водород взрывоопасен.

Гидроксиды алюминия в виде тонкого порошка

Существует метод получения алюминия в виде тонкого порошка. Прекурсор алюминия перемешивают с веществом, которое применяется в качестве затравочного материала для образования кристаллов гидроксида. Затем смесь прокаливают в атмосфере, содержащей хлористый водород. Данный способ неудобен из-за необходимости фильтрации, при этом для получения мелкодисперсного порошка нужно проводить размол и экструдирование.

Получение гидроксида из металлического алюминия

Удобнее получать гидроксиды при взаимодействии металлического алюминия с водой, однако реакция замедляется из-за образования оксидной пленки на поверхности металла. Для того чтобы этого избежать, используют различные добавки. Для активации процесса взаимодействия алюминия, а также его соединений с водородом использую установку, которая включает в себя , мешалку, сепаратор, теплообменник и фильтр для разделения суспензии. Для образования гидроксидов необходимо добавлять вещества, которые способствуют взаимодействию реагентов, например, органические амины в каталитических количествах. При этом нет возможности получить чистый гидроксид.

Получение в форме бемита

Иногда гидроксид алюминия получают в форме бемита. Для этого используют установку с реактором и мешалкой, в которой есть отверстие для ввода порошкообразного алюминия и воды, также необходим отстойник и конденсатор для приема парогаза. Реакцию проводят в автоклаве, в нее предварительно загружают воду и мелкодисперсные частицы алюминия, после чего смесь нагревают до 250-370оС. Затем при той же температуре смесь начинают перемешивать под давлением, достаточным для того, чтобы вода оставалась в жидкой фазе. Перемешивание прекращают, когда весь алюминий вступил в реакцию, автоклав охлаждают, после этого отделяют полученный гидроксид алюминия.

Кальций - элемент 4-го периода и ПА-группы Периодической системы, порядковый номер 20. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +2 и 0. Относится к щелочноземельным металлам. Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде. В природе — шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.Недостаток кальция в почве восполняется внесением известковых удобрений (СаС0 3 , СаО, цианамид кальция CaCN 2 и др.). Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение ).

Кальций Са

Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод — кальцийтермия ):

Получение кальция в промышленности :

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО

Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Ca 2+ O 2- . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо- эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности — обжиг известняка (900-1200 °С):

СаСО3 = СаО + СО2

Гидроксид кальция Са(ОН) 2

Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН —) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше — в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ — пропускание углекислого газа через известковую воду с появлением осадка СаС0 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена. Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов — тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.