Миелограмма в норме - цитология исследования костного мозга. Миелограмма — расшифровка мазка костного мозга Мегакариоциты в костном мозге нет

Миелограмма - процентное соотношение клеточных элементов в мазках, приготовленных из пунктатов красного костного мозга. Костный мозг содержит две группы клеток: клетки ретикулярной стромы (фибробласты, остеобласты, жировые и эндотелиальные клетки), составляющие абсолютное меньшинство по численности, и клетки кроветворной ткани (паренхимы). Референтные показатели миелограммы приведены в табл..

В настоящее время биопсия красного костного мозга - обязательный метод диагностики в гематологии, так как позволяет оценивать тканевые взаимоотношения в костном мозге.

Исследование красного костного мозга проводят для подтверждения или установления диагноза различных форм гемобластозов и анемий. Миело-грамму необходимо оценивать, сопоставляя её с картиной периферической крови. Диагностическое значение имеет исследование костного мозга при поражении его лимфогранулематозом, туберкулёзом, болезнью Гоше, Нимана-Пика, метастазами опухолей, висцеральным лейшманиозом. Это исследование широко используется в динамике для оценки эффективности проводимой терапии.

Элементы красного костного мозга

Количество,%

Миелобласты

Нейтрофилы

Промиелоциты

Миелоциты

Метамиелоциты

Палочкоядерные

Сегментоядерные

Все нейтрофильные элементы

Индекс созревания нейтрофилов

Эозинофилы (всех генераций)

Базофилы

Лимфоциты

Моноциты

Плазматические клетки

Эритробласты

Пронормоциты

Нормоциты:

базофильные

полихроматофильные

оксифильные

Все эритроидные элементы

Ретикулярные клетки

Индекс созревания эритрокариоцитов

Лейкоэритробластическое отношение

Количество миелокариоцитов

41,6-195,0х10 9 /л

Количество мегакариоцитов

0,05-0,15х10 9 /л или 0,2-0,4%

Для исследования красного костного мозга производят пункцию грудины или подвздошной кости, из пунктата готовят мазки для цитологического анализа. При аспирации костного мозга всегда происходит попадание крови, тем больше, чем больше получено аспирата. Пунктат обычно оказывается разведённым периферической кровью не более чем в 2,5 раз. Признаки большей степени разведения костного мозга периферической кровью следующие.

■ Бедность пунктата клеточными элементами.

■ Отсутствие мегакариоцитов.

■ Резкое увеличение лейко-/эритробластического соотношения (при соотношении 20:1 и выше исследование пунктата не проводят).

■ Снижение индекса созревания нейтрофилов до 0,4-0,2.

■ Приближение относительного содержания сегментоядерных нейтро-филов и/или лимфоцитов к таковому в периферической крови.

При исследовании красного костного мозга подсчитывают процентное содержание костномозговых элементов, а также определяют абсолютное содержание миелокариоцитов и мегакариоцитов.

■ Миелокариоциты. Уменьшение содержания миелокариоцитов наблюдают при гипопластических процессах различной этиологии, воздействии на организм человека ионизирующего излучения, некоторых химических веществ и ЛС и др. Особенно резко количество ядерных элементов снижается при апластических процессах. При развитии миелофиброза, миелосклероза костномозговой пунктат скуден и количество ядерных элементов в нём также снижено. При наличии между костномозговыми элементами синцитиальной связи (в частности, при миеломной болезни) костномозговой пунктат получают с трудом, поэтому содержание ядерных элементов в пунктате может не соответствовать истинному количеству миелокариоцитов в костном мозге. Высокое содержание миелокариоцитов наблюдают при лейкозах, витамин В 12 -дефицитных анемиях, гемолитических и постгеморрагических анемиях, то есть при заболеваниях, сопровождающихся гиперплазией костного мозга.

■ Мегакариоциты и мегакариобласты выявляют в небольших количествах, они располагаются по периферии препарата, определение их процентного отношения в миелограмме не отражает истинного положения, поэтому их не подсчитывают. Обычно проводят лишь ориентировочную, субъективную оценку относительного сдвига в направлении более молодых или зрелых форм. Увеличение количества мегакариоцитов и мегакариобластов могут вызывать миелопролиферативные процессы и метастазы злокачественных новообразований в костный мозг (особенно при раке желудка). Содержание мегакариоцитов возрастает также при идиопатической аутоиммунной тромбоцитопении, лучевой болезни в период восстановления, хроническом миелолейкозе. Уменьшение количества мегакариоцитов и мегакариобластов (тромбоцито-пении) могут вызывать гипопластические и апластические процессы, в частности, при лучевой болезни, иммунные и аутоиммунные процессы, метастазы злокачественных новообразований (редко). Содержание мегакариоцитов снижается также при острых лейкозах, В 12 -дефицит-ных анемиях, миеломной болезни, СКВ.

■ Бластные клетки: увеличение их количества с появлением полиморфных уродливых форм на фоне клеточного или гиперклеточного красного костного мозга характерно для острых и хронических лейкозов.

■ Мегалобласты и мегалоциты разных генераций, крупные нейтрофиль-ные миелоциты, метамиелоциты, гиперсегментированные нейтрофилы характерны для витамин В 12 -дефицитной и фолиеводефицитной анемий.

■ Миелоидные элементы: увеличение количества их зрелых и незрелых форм (реактивный костный мозг) вызывают интоксикации, острое воспаление, гнойные инфекции, шок, острая кровопотеря, туберкулёз, злокачественные новообразования. Промиелоцитарно-миелоцитарный костный мозг с уменьшением количества зрелых гранулоцитов на фоне клеточной или гиперклеточной реакции может вызвать миелотоксичес-кие и иммунные процессы. Резкое уменьшение содержания гранулоци-тов на фоне снижения миелокариоцитов характерно для агранулоци-тоза.

■ Эозинофилия костного мозга возможна при аллергии, глистных инвазиях, злокачественных новообразованиях, острых и хронических мие-лоидных лейкозах, инфекционных заболеваниях.

■ Моноцитоидные клетки: увеличение их количества выявляют при острых и хронических моноцитарных лейкозах, инфекционном мононук-леозе, хронических инфекциях, злокачественных новообразованиях.

■ Атипичные мононуклеары: увеличение их количества на фоне уменьшения зрелых миелокариоцитов могут вызывать вирусные инфекции (инфекционный мононуклеоз, аденовирус, грипп, вирусный гепатит, краснуха, корь и др.).

■ Лимфоидные элементы: увеличение их количества, появление голоядер-ных форм (тени Гумпрехта) при повышении клеточности красного костного мозга могут вызывать лимфопролиферативные заболевания (хронический лимфолейкоз, макроглобулинемия Вальденстрёма, лим-фосаркомы).

■ Плазматические клетки: увеличение их количества с появлением полиморфизма, двуядерных клеток, изменение окраски цитоплазмы могут вызывать плазмоцитомы (плазмобластомы, а также реактивные состояния).

■ Эритрокариоциты: увеличение их количества без нарушения созревания наблюдают при эритремии. Увеличение содержания эритрокариоцитов и уменьшение лейкоэритросоотношения могут вызывать постгеморрагические анемии и большинство гемолитических анемий. Уменьшение содержания эритрокариоцитов при снижении общего количества ми-елокариоцитов и небольшого (относительного) увеличения бластных клеток, лимфоцитов, плазмоцитов вызывают гипоапластические процессы.

■ Раковые клетки и их комплексы выявляют при метастазах злокачественных опухолей.

Для оценки миелограммы важно не столько определение количества костномозговых элементов и их процентного содержания, сколько их взаимное соотношение. Судить о составе миелограммы следует по специально рассчитанным костномозговым индексам, характеризующим эти соотношения.

■ Индекс созревания эритрокариоцитов характеризует состояние эритро-идного ростка, представляет собой отношение процентного содержания нормобластов, содержащих Hb (то есть полихроматофильных и оксифильных), к общему процентному содержанию всех нормоблас-тов. Уменьшение этого индекса отражает задержку гемоглобинизации, что наблюдают при железодефицитных и иногда при гипопластических анемиях.

■ Индекс созревания нейтрофилов характеризует состояние гранулоцитар-ного ростка. Он равен отношению процентного содержания молодых элементов зернистого ряда (промиелоцитов, миелоцитов и метамиело-цитов) к процентному содержанию зрелых гранулоцитов (палочкоядер-ных и сегментоядерных). Увеличение этого индекса при богатом клетками красном костном мозге свидетельствует о задержке созревания нейтрофилов, при бедном клетками костном мозге - о повышенном выходе зрелых клеток из костного мозга и истощении гранулоцитарно-

го резерва [Соболева Т.Н. и др., 1994]. Увеличение индекса созревания нейтрофилов наблюдают при миелолейкозах, лейкемоидных реакциях миелоидного типа, некоторых формах агранулоцитоза; его уменьшение - при задержке созревания на стадии зрелых гранулоцитов или задержке их вымывания (при гиперспленизме, некоторых инфекционных и гнойных процессах).

■ Лейкоэритробластическое соотношение представляет собой отношение суммы процентного содержания всех элементов гранулоцитарного ростка к сумме процентного содержания всех элементов эритроидного ростка костного мозга. В норме это соотношение составляет 2: 1-4: 1, то есть в нормальном костном мозге количество белых клеток в 2-4 раза превышает количество красных. Увеличение индекса при высокой клеточности красного костного мозга (более 150х10 9 /л) свидетельствует о гиперплазии лейкоцитарного ростка (хронический лейкоз); при низкой клеточности (менее 80х10 9 /л) - о редукции красного ростка (апластическая анемия) или большой примеси периферической крови. Уменьшение индекса при высокой клеточности красного костного мозга свидетельствует о гиперплазии красного ростка (гемолитическая анемия), при низкой клеточности - о преимущественной редукции гранулоцитарного ростка (агранулоцитоз). Лейкоэритробластическое соотношение уменьшается при гемолитических, железодефицитных, постгеморрагических, В 12 -дефицитных анемиях, увеличивается при лейкозах и, иногда, при угнетении эритроидного ростка у больных с гипопластической анемией.

  • Опыт использования Кембриджского питания более чем в 50-ти клиниках России и стран СНГ выявил его высокую эффективность при заболеваниях, прямо
  • Миелограмма - процентное соотношение клеточных элементов в мазках, приготовлен­ных из пунктатов костного мозга. Костный мозг содержит две группы клеток: клетки ретику­лярной стромы (фибробласты, остеобласты, жировые и эндотелиальные клетки), составляю­щие абсолютное меньшинство по численности, и клетки кроветворной ткани (паренхимы) костного мозга с их производными зрелыми клетками крови.

    Элементы костного мозга Количество, %
    Бласты 0,1-1,1
    Миелобласты 0,2-1,7
    :
    промиелоциты 1,0-4,1
    миелоциты 7,0-12,2
    метамиелоциты 8,0-15,0
    палочкоядерные 12,8-23,7
    сегментоядерные 13,1-24,1
    Все нейтрофильные элементы 52,7-68,9
    0,5-0,9
    Эозинофилы (всех генераций) 0,5-5,8
    Базофилы 0-0,5
    Лимфоциты 4,3-13,7
    Моноциты 0,7-3,1
    Плазматические клетки 0,1-1,8

    В настоящее время биопсия костного мозга - обязательный метод диагностики в гема­тологии, так как позволяет оценивать тканевые взаимоотношения в костном мозге.

    Костный мозг исследуют для подтверждения или установления диагноза различных форм гемобластозов и анемий. Миелограмму необходимо оценивать, сопоставляя ее с карти­ной периферической крови. Диагностическое значение имеет исследование костного мозга при поражении его лимфогранулематозом, туберкулезом, болезнью Гоше, Нимана-Пика, метастазами опухолей, висцеральным лейшманиозом. Это исследование широко используют в динамике для оценки эффективности проводимой терапии.

    Для исследования костного мозга проводят пункцию грудины или подвздошной кости, из пунктата готовят мазки для цитологического анализа. При аспирации костного мозга всегда насасывание крови тем больше, чем больше получено аспирата. Обычно разведение пунктата периферической кровью не превышает 2,5 раза. Признаки большой степени разве­дения костного мозга периферической кровью следующие:

    • бедность пунктата клеточными элементами;
    • отсутствие мегакариоцитов;
    • резкое увеличение лейкоэритробластического соотношения (при соотношении 20:1 и
      выше пунктат не исследуют);
    • снижение индекса созревания нейтрофилов до 0,4-0,2;
    • приближение процентного содержания сегментоядерных нейтрофилов и/или лимфо­
      цитов к их числу в периферической крови.

    При исследовании костного мозга определяют абсолютное содержание миелокариоци­тов (ядерных элементов костного мозга), мегакариоцитов, подсчитывают процентное содер­жание элементов костного мозга.

    Уменьшение содержания миелокариоцитов наблюдают при гипопластических процессах различной этиологии, воздействии на организм человека ионизирующего излучения, некото­рых химических и лекарственных веществ и др. Особенно резко количество ядерных элемен­тов снижается при апластических процессах. При развитии миелофиброза, миелосклероза костномозговой пунктат скуден и количество ядерных элементов в нем также снижено. При наличии между костномозговыми элементами синцитиальной связи (в частности, при миеломной болезни) пунктат получают с трудом, поэтому содержание ядерных элементов в пунктате может не соответствовать истинному количеству миелокариоцитов в костном мозге.

    Высокое содержание миелокариоцитов наиболее выражено при лейкозах, В 12 -дефицитных анемиях, гемолитических и постгеморрагических анемиях, т.е. при заболеваниях, сопро­вождающихся гиперплазией костного мозга.

    Мегакариоциты и мегакариобласты встречаются в препаратах костного мозга в неболь­шом количестве, они располагаются по периферии препарата; процентное отношение их в миелограмме не отражает истинного положения, поэтому их не подсчитывают. Обычно про­водят лишь ориентировочную, субъективную оценку относительного сдвига в направлении более молодых или зрелых форм.

    Увеличение количества мегакариоцитов и мегакариобластов может вызывать миелопро-лиферативные процессы и метастазы злокачественных новообразований в костный мозг (особенно при раке желудка). Содержание мегакариоцитов возрастает также при идиопатической аутоиммунной тромбоцитопении, лучевой болезни в период восстановления, хрони­ческом миелолейкозе.

    Уменьшение количества мегакариоцитов и мегакариобластов (тромбоцитопении) может вызывать гипопластические и апластические процессы, в частности при лучевой болезни, иммунные и аутоиммунные процессы, метастазы злокачественных новообразований (редко). Содержание мегакариоцитов снижается также при острых лейкозах, В 12 -дефицитных анеми­ях, миеломной болезни, системной красной волчанке.

    Увеличение количества бластных клеток с появлением полиморфных уродливых форм на фоне клеточного или гиперклеточного костного мозга характерно для острых и хронических лейкозов.

    Мегалобласты и мегалоциты различных генераций, крупные нейтрофильные миелоциты, метамиелоциты, гиперсегментированные нейтрофилы характерны для В 12 -дефицитной и фолиеводефицитной анемий.

    Увеличение количества миелоидных элементов , их зрелых и незрелых форм (реактивный костный мозг), вызывает интоксикации, острое воспаление, гнойные , шок, ост­рую кровопотерю, туберкулез, злокачественные новообразования.

    Промиелоцитарно-миелоцитарный костный мозг с уменьшением числа зрелых гранулоцитов на фоне клеточной или гиперклеточной реакции может вызывать миелотоксические и иммунные процессы.

    Резкое уменьшение содержания гранулоцитов на фоне снижения миелокариоцитов ха­рактерно для агранулоцитоза.

    Эозинофилия костного мозга возможна при аллергии, глистных инвазиях, злокачествен­ных новообразованиях, острых и хронических миелоидных лейкозах, инфекционных заболе­ваниях.

    Увеличенное количество моноцитоидных клеток находят при острых и хронических моноцитарных лейкозах, инфекционном мононуклеозе, хронических инфекциях, злокачест­венных новообразованиях.

    Повышение содержания атипичных мононуклеаров на фоне уменьшения зрелых миелока­риоцитов может вызывать вирусные инфекции (инфекционный мононуклеоз, аденовирус, грипп, вирусный гепатит, краснуха, корь и др.).

    Увеличение количества лимфоидных элементов , появление голоядерных форм (тени Гум-прехта) при клеточном костном мозге могут давать лимфопролиферативные заболевания (хронический лимфолейкоз, макроглобулинемия Вальденстрема, лимфосаркома).

    Повышение содержания плазматических клеток с появлением их полиморфизма, двуядерных клеток, изменением окраски цитоплазмы могут вызывать плазмоцитомы (плазмобластомы, а также реактивные состояния).

    Увеличение количества эритрокариоцитов без нарушения созревания возможно при эритремии.

    Увеличение содержания эритрокариоцитов и уменьшение лейкоэритробластического соотношения могут вызывать постгеморрагические анемии и большинство гемолитических анемий.

    Уменьшение содержания эритрокариоцитов при снижении общего количества миелока­риоцитов и небольшого (относительного) увеличения бластных клеток, плазмоцитов наблюдается при гипоапластических процессах.

    Раковые клетки и их комплексы выявляют при метастазах злокачественных опухолей.

    Для оценки миелограммы важно не столько определение количества костномозговых элементов и их процентного содержания, сколько их взаимное соотношение. Судить о соста­ве миелограммы следует по специально рассчитанным костномозговым индексам, характе­ризующим эти соотношения.

    Индекс созревания эритрокариоцитов , характеризуя состояние эритроидного ростка, представляет собой отношение процентного содержания нормобластов, содержащих гемог­лобин (т.е. полихроматофильных и оксифильных), к общему процентному содержанию всех нормобластов. Уменьшение этого индекса отражает задержку гемоглобинизации, преоблада­ние молодых базофильных форм (например, В12-дефицитная анемия).

    Индекс созревания эритрокариоцитов снижается при железодефицитных и иногда при гипопластических анемиях.

    Индекс созревания нейтрофилов характеризует состояние гранулоцитарного ростка. Он равен отношению процентного содержания молодых элементов зернистого ряда (промиелоцитов, миелоцитов и метамиелоцитов) к процентному содержанию зрелых гранулоцитов (палочкоядерных и сегментоядерных). Увеличение этого индекса при богатом костном мозге свидетельствует о задержке созревания нейтрофилов, при бедном костном мозге - о повы­шенном выходе зрелых клеток из костного мозга и истощении гранулоцитарного резерва.

    Увеличение индекса созревания нейтрофилов фиксируют при миелолейкозах, лейкемоидных реакциях миелоидного типа, некоторых формах агранулоцитоза; его уменьшение - при задержке созревания на стадии зрелых гранулоцитов или задержке их вымывания (при гиперспленизме, некоторых инфекционных и гнойных процессах).

    Лейкоэритробластическое соотношение представляет собой отношение суммы процент­ного содержания всех элементов гранулоцитарного ростка к сумме процентного содержания всех элементов эритроидного ростка костного мозга. В норме это соотношение составляет 2:1-4:1, т.е. в нормальном костном мозге число белых клеток в 2-4 раза превышает крас­ных. Увеличение индекса при богатом костном мозге (>150*10 9 /л) свидетельствует о гипер­плазии лейкоцитарного ростка (хронический лейкоз); при бедном пунктате (< 80*10 9 /л) - о редукции красного ростка (апластическая анемия) или большой примеси периферической крови. Уменьшение индекса при богатом костном мозге свидетельствует о гиперплазии красного ростка (гемолитическая анемия), при бедном пунктате - о преимущественной ре­дукции гранулоцитарного ростка (агранулоцитоз).

    Лейкоэритробластическое соотношение уменьшается при гемолитических, железодефицитных, постгеморрагических, В12-дефицитных анемиях.
    Лейкоэритробластическое соотношение увеличивается при лейкозах и иногда при угне­тении эритроидного ростка при гипопластической анемии.

    Мегакариоциты - гигантские клетки костного мозга - являются родоначальными клетками тромбоцитопоэза. Не­смотря на то, что мегакариоциты идентифицированы как костномозговые "предшественники" тромбоцитов еще в на­
    чале нынешнего столетия, механизмы развития и регуляции этих клеток еще полностью не раскрыты.

    Мегакариобласты обнаруживают в желточном мешке на 5-й неделе эмбрионального развития. Мегакариоциты встре­чаются в сосудах на 8-й неделе, а макротромбоциты обна­руживают в крови на 16-й и 21-й неделе эмбриогенеза.

    Мегакариоциты развиваются из плюрипотентной гемопо- этической стволовой клетки посредством комплекса процессов: 1) коммитации гемопоэтического предшествен­ника на путь мегакариоцитарной дифференцировки; 2) мито­тической амплификации клеток-предшественников мегака- риоцитов; 3) эндомитотического деления ядра, приводящего к возрастанию плоидности; 4) роста цитоплазмы с приобре­тением специфических для тромбоцитов органелл и белков и 5) высвобождения тромбоцитов в циркуляторное русло.

    Родоначальной клеткой, коммитированной исключитель­но по мегакариоцитарному ряду, является колониеобразую­щая единица мегакариоцита, способная проходить 1 -9 мито­зов до вступления в эндомитоз и образовывать колонии зре­лых мегакариоцитов.

    Различают три стадии созревания мегакариоцитов. Первая стадия - мегакариобласты, составляющие не более 10% всей популяции; вторая, промежуточная стадия - про- мегакариоциты (около 15%); третья - зрелые мегакариоциты (75-85%). Они делятся на гранулярные и базофильные фор­мы, проходящие заключительный эндомитоз и тромбоцито- отделение. Синтез ДНК в этом ряду клеток происходит только в мегакариобласте - самой молодой морфологически рас­познаваемой клетке мегакариоцитарного ростка. Процесс преобразования мегакариобластов в мегакариоциты продол­жается около 25 часов. Время созревания мегакариоцита - 25 часов, а жизненный цикл мегакариоцитов составляет 10 суток.

    У взрослого человека мегакариоциты - наиболее круп­ные клетки, их диаметр колеблется от 40 до 100 мкм. По со­держанию ДНК эти клетки являются уникальными: у 2/3 мегакариоцитов содержание ДНК в 8 раз превышает таковое в диплоидных клетках, например в лимфоцитах.

    2.4. Тромбоцитопоэз

    Своеобразие мегакариоцитарных клеток заключается в непрекращающейся цитоплазматической дифференцировке, которая заканчивается тромбоцитообразованием. Каждый мегакариоцит в зависимости от его величины (плоидности) образует от 2000 до 8000 тромбоцитов. Содержание мегакариоцитов в костномозговом пунктате из грудины у здоровых лиц подвержено небольшим колебаниям и состав­ляете"! ,8-216,2 в1 мкл, надолю зрелых мегакариоцитов при­ходится 76%. Образование клеток-предшественников мега- кариоцитопоэза осуществляется по общему для всех грану­лярных клеток принципу: избыток тромбоцитов в циркулиру­ющей крови в норме тормозит тромбоцитопоэз, а тромбоци- топения его стимулирует. Гуморальная регуляция тромбоци- топоэза происходит с участием тромбопоэтина, а также ИЛ-3, ИЛ-6, ИЛ-11. Наиболее быстрый путь увеличения количества тромбоцитов - ускоренное созревание мегакариоцитов и тромбоцитообразование, связанное со способностью ядра мегакариоцита к заключительному эндомитозу. Созревание мегакариоцитов имеет свои закономерности, которые моди­фицируются в экстремальных условиях: ускоряются при усилении нормальной регенерации (при кровопотере), за­медляются под воздействием внешних и внутренних факто­ров (химиотерапевтических препаратов, дефицита витаминов и пищевых ингредиентов, антитромбоцитарных антител). Митотический индекс мегакариоцитов не превышает 0,5%.

    В цитоплазме зрелых мегакариоцитов всегда содержатся морфологически зрелые тромбоциты, по количеству и состо­янию органелл не отличающиеся от периферических тромбо­цитов. Единственным отличием является отсутствие широко­го рыхлого слоя наружной мембраны, гликокаликса, что де­лает тромбоциты, находящиеся в цитоплазме мегакариоцита, морфологически не сформированными. В образовании этого наружного слоя, необходимого для обособления тромбоци­тов, играет роль заключительный эндомитоз, во время кото­рого образуется поверхностная система микротрубочек и гликокапикс тромбоцитов.

    Нормальные тромбоциты представляют собой сферичес­кие структуры диаметром от 1 до 5 мкм. Гиаломер тромбо­
    цитов ограничен трехслойной мембраной, на которой адсор­бируются факторы свертывающей системы. Она играет боль­шую роль в процессах адгезии и агрегации тромбоцитов. Внутри тромбоцитов имеется множество гранул различной структуры, формы и величины, в которых содержатся фосфо­липиды, АТФ, серотонин, ферменты, фибронектин, гистамин, катионные белки, фактор, активирующий фибробласты, трансформирующий ростовой фактор.

    Популяция тромбоци­тов неоднородна. Среди данной популяции различают зрелые тромбоциты (87,0 ± 0,19%), юные (незрелые) (3,2 ± 0,13%), старые (4,5 ± 0,21%) и формы раздражения (2,5 ± 0,1%). Вре­мя циркуляции тромбоцитов - 10-12 суток. Тромбоциты по сравнению с другими клетками периферической крови де­формируются меньше. Двигаясь с током крови, они почти не касаются стенок кровеносного русла. Тромбоциты при кон­такте с эритроцитами не прикрепляются к ним. При исполь­зовании изотопной метки установлено, что 2/3 тромбоцитов находится в циркуляторном русле, 1/3 - в селезенке или в других экстраваскулярных местах. В селезенке тромбоциты "прилипают" к поверхности эндотелиальных клеток, высти­лающих синусы, и кретикулоэндотелиальным клеткам красной пульпы. "Селезеночные" тромбоциты обычно обмениваются с циркулирующими тромбоцитами и мобилизуются после вве­дения эпинефрина. В селезенке обычно секвестрируется большой процент молодых больших тромбоцитов. Увеличе­ние числа тромбоцитов обычно бывает после тяжелой физи­ческой нагрузки. Нет точных данных о мобилизации тромбо­цитов из неселезеночного пула. В норме тромбоциты отсутст­вуют в лимфе и других жидкостях организма. В здоровом организме разрушение тромбоцитов соответствует их про­дукции, что составляет в сутки 35000 ± 4300 пластинок на 1 мкл крови. Поврежденные (старые) тромбоциты накапли­ваются и разрушаются в основном в селезенке.

    Промегакариоцит.

    По размеру в 1,5-2 раза больше мегакариобласта. Ги­гантское ядро, круглое, но с четкой тенденцией к сегменти­рованию. Ядерный хроматин преимущественно грубо-сет-

    2.6. Тромбоцитопоэз

    чатый, имеются ядрышки. Цитоплазма базофильная, с еди­ничными азурофильными гранулами.

    Мегакариоцит.

    Самая большая гемопоэтическая клетка костного мозга. Имеет характерное ядро, с резкими углублениями, может быть самой причудливой формы. Структура хроматина грубо­сетчатая, с утолщениями в узлах сетки. Цитоплазма окси- фильная, с нежными гранулами.

    Во многих клетках видно отделение тромбоцитов от цитоплазмы.

    Рис. 41. Тромбоцит.

    Самая маленькая частица крови (1/4-1/5) размера эрит­роцита). Имеет светло-голубую цитоплазму (гиаломер) и внутреннюю зернистую часть фиолетового цвета - (грануло- мер).

    В препарате тромбоциты обычно встречаются группами, что обусловлено их физиологической склонностью к агрега­ции.

    Рис. 43. Основные характеристики тромбоцитарного ростка.

    Клетки мегакариоцитопоэза - самые крупные клетки крови человека.

    Тромбоциты - единственный тип клеток, являющийся исключительно продуктом созревания цитоплазмы.

    Все клетки мегакариоцитопоэза обладают специфичес­кой способностью к агрегации с тромбоцитами, которые часто обнаруживаются прилежащими к краю цитоплазмы мате­ринской клетки.

    Повышение числа тромбоцитов - тромбоцитоз - явля­ется ведущим симптомом первичной тромбоцитемии, что наблюдается при миелопролиферативных заболеваниях, а
    также вторичной тромбоцитемии при хронических воспали­тельных процессах (ревматоидный артрит, туберкулез, сар- коидоз, колит и энтерит), острых инфекциях, гемолизе, ане­миях, злокачественных новообразованиях, после спленэкто­мии.

    Снижение числа тромбоцитов - тромбоцитопения - от­мечается при угнетении мегакариоцитопоэза (острые и хро­нические лейкозы, аппастическая анемия, пароксизмальная ночная гемоглобинурия), нарушении продукции тромбоцитов (алкоголизм, мегалобластная анемия). Тромбоцитопения наблюдается при сппеномегалии (цирроз печени, болезнь Гоше), повышенной деструкции и/или утилизации тромбо­цитов (идиопатическая тромбоцитопеническая пурпура, пост- трансфузионная, лекарственная, неонатальная тромбоцито­пения, вторичная тромбоцитопения при лейкозах, лимфомах, системной красной волчанке). Повреждение тромбоцитов может быть индуцировано тромбином (диссеминированное внутрисосудистое свертывание крови, осложнения при ро­дах, сепсисе, черепно-мозговой травме). Тромбоцитопения наблюдается при массивных переливаниях крови и кровеза­менителей за счет гемодилюции. Нарушение функции тромбоцитов может быть обусловлено генетическими, либо внешними факторами. Генетические дефекты лежат в основе болезни Виллебранда и ряда редких синдромов, связанных с недостаточностью АДФ, нарушениями системы тромбоксана А2 или реакциями на него, изменением мембранных глико­липидов и другими молекулярными изменениями.


    0

    Мегакариоциты в норме находятся в костном мозгу и в пунктате из него составляют 0,2% всех клеточных элементов.

    1 - Индифферентная мезенхимальная клетка;

    2 - Лимфоидно-ретикулярная клетка;

    3 - Гистиоцит;

    4 - Моноцит;

    5 - Плазмобласт;

    6 - Плазматическая клетка;

    7 - Гемогистиобласт;

    8 - Гемогистиоцит;

    9 - Промегалобласт;

    10 - Базофильный мегалобласт;

    11 - Полихроматофильный мегалобласт;

    12 - Оксифильный мегалобласт;

    13 - Мегалоцит;

    14 - Проэритробласт;

    15 - Базофильный эритробласт;

    16 - Полихроматофильный эритробласт;

    17 - Оксифильный эритробласт;

    18 - Нормоцит;

    19 - Лимфобласт;

    20 - Пролимфоцит;

    21 - Большой лимфоцит;

    22 - Средний лимфоцит;

    23 - Малый лимфоцит;

    24 - Гемоцитобласт;

    25 - Моноцит;

    26 - Лейкобласт;

    27 - Промиелоцит;

    28 - Эозинофильный миелоцит;

    29 - Эозинофильный юный лейкоцит;

    30 - Эозинофильный палочкоядерный лейкоцит;

    31 - Эозинофильный сегментоядерный лейкоцит;

    32 - Нейтрофильный миелоцит;

    33 - Нейтрофильный юный лейкоцит;

    34 - Нейтрофильный палочкоядерный лейкоцит;

    35 - Нейтрофильный сегментоядерный лейкоцит;

    36 - Базофильный миелоцит;

    37 - Базофильный юный лейкоцит;

    38 - Базофильный палочкоядерный лейкоцит;

    39 - Базофильный сегментоядерный лейкоцит;

    40 - Мегакариобласт;

    41 - Промегакариоцит;

    42 - Мегакариоцит;

    43 - Тромбоциты.

    Это большие образования от 20 до 40 μ, а иногда и больше с характерным ядром и протоплазмой. Ядро имеет сложную и неправильную форму и в общем бедно хроматином, дающим явственную сеть из тонких и более толстых нитей с утолщениями в виде частиц, лежащих на разном расстоянии друг от друга. В ядре могут находиться многочисленные нуклеолы. Протоплазма у зрелых клеток очень слабо базофильна и содержит обильную то более, то менее крупную азурофильную зернистость. В менее зрелых мегакариоцитах густая мелкая зернистость выполняет протоплазму вокруг ядра так, что получается впечатление розовой зоны вокруг ядра и голубой по периферии, иногда же наоборот, мелкая зернистость выполняет периферию и тогда остается беззернистая голубая зона вокруг ядра. Зрелый мегакариоцит образуется из менее крупной по величине предстадии - мегакариобласта. Протоплазма мегакариобласта резко базофильна, ядро сетчатое, близкое по структуре к гемоцитобластическому, но построенного из более грубых нитей хроматина и окрашивается интенсивнее. Протоплазма не содержит зернистости.

    Почти все признают, что кровяные пластинки происходят из мегакариоцитов путем отшнуровывания от их протоплазмы. В крови мегакариоцитов не находят, но в случаях хронических лейкемий они встречаются в ней достаточно часто, но, главным образом, в виде малых мегакариобластов. При острых лейкозах они попадаются значительно реже.


    Мегакариоциты - это гигантские клетки костного мозга . Они имеют крупное ядро . От них отшнуровываются тромбоциты , представляющие собой фрагменты цитоплазмы мегакариоцитов, окруженные мембраной.

    Мегакариоцит
    Ткань соединительная
    История дифференцировки клетки Миелобласт → Мегакариобласт → Промегакариоцит → Мегакариоцит
    Возможности для дальнейшей дифференцировки Тромбоцит
    Мегакариоцит на Викискладе

    Отшнуровывание тромбоцитов от мегакариоцитов усиливается тромбопоэтином , глюкокортикоидами .

    Мегакариоциты высокочувствительны к воздействию цитостатических препаратов , поэтому при химиотерапии злокачественных опухолей часто развивается тромбоцитопения . Однако мегакариоциты менее чувствительны к цитостатическим воздействиям, чем гранулоцитарный росток костного мозга, поэтому обычно при химиотерапии опухолей более серьёзную проблему представляет выраженная лейкопения , в особенности нейтропения.

    Формирование клеток мегакариоцитарного ряда происходит поэтапно. В практической медицине выявления состояния мегакариоцитарного ростка имеет диагностическое значение, а также важно при терапии.

    Первой дифференцируемой клеткой ряда является мегакариобласт. Подобно бластам прочих ростков, он имеет диаметр 12-20 мкм, большое ядро (индекс соотношения ядра к цитоплазме - от 5:1 и более), цитоплазма хорошо воспринимает базофильные красители. Функционально эта клетка уже способна к тромбоцитопоэзу, но фактически способна лишь на неэффективный тромбоцитопоэз. Дифференциальным признаком при сравнении с бластами других ростков выступают: большое, доминирующее над цитоплазмой ядро с неровной поверхностью; цитоплазма, имеющая вид узкого ободка; форма клетки - неровная, зачастую с «оборванными» контурами и «отшнуровывающимися» пластинками.

    Следующая клетка мегакариоцитарного ряда - промегакариоцит. Величина клетки достигает 18-25 мкм, ядро её грубеет и испытывает тенденции к полиморфизму (вдавлениям, шнурованиям). Цитоплазма клетки остаётся чувствительной к базофильным красителям, сохраняя зернистость. Для дифференцировки от бласта используются признаки: более грубое ядро, имеющее полиморфизмы; большее количество отшнуровывающихся пластинок, свидетельствующее о функциональном созревании клетки; наличие перинуклеарного ободка цитоплазмы. Размер клетки не является решающим критерием, поскольку диапазоны размеров нормальных бластов и промегакариоцитотв перекрываются, а при патологии формируются клетки нестандартных размеров.

    Последняя стадия формирования носит название собственно мегакариоцита. Однако, выделяется 3 под-стадии мегакариоцита, что связывается с функциональной зрелостью и имеет значение при диагностике и терапии патологий, ведущих к изменению состава костного мозга.

    Мегакариоцит базофильный - неспособная к эффективному тромбоцитопоэзу клетка. Размер составляет 25-40 мкм, ядро занимает меньший объём и имеет большую степень неоднородности, отшнуровывание тромбоцитов остаётся на уровне промегакариоцита. Дифференциальными критериями при отличении от ранних форм выступают: необычная форма ядра, в практических руководствах и атласах сравниваемая с «лопастями» и «бабочками». Обнаружение ядра такой формы однозначно позволяет отнести клетку к зрелым цитам. Цитоплазма клетки на этой стадии уменьшает способность воспринимать базофильные красители, но не теряет её окончательно, вследствие чего при окрашивании приобретает светло-синий, реже - голубой цвет, с азурофильной зернистостью. Соотношение объёмов ядра к цитоплазме смещается в сторону последней, достигая отношений 2:1 или даже 1:1, что так же свидетельствует о принадлежности клетки к зрелым цитам. Размер клетки, не перекрывающийся с размерами предыдущих стадий, так же может служить дифференциальным признаком.

    Мегакариоцит полихроматофильный - практически зрелая клетка, способная к эффективному тромбоцитопоэзу. Размер колеблется в пределах 40-50 мкм, ядро многоугольное (иногда свёрнутое в клубок) и с признаками пикноза . Цитоплазма приобретает сродство к эозинофильным красителям и практически утрачивает сродство к базофильным, отчего при крашении становится голубовато-розовой, редко с отливом синевы. В цитоплазме обнаруживаются неравномерно распределённые азурофильные гранулы, а также красные и фиолетовые вкрапления. Дифференциальным признаком от более ранних стадий выступает причудливая, необычная, закрученная форма ядра, а также его пикноз. Так же важно преобладание объёма цитоплазмы над объёмом ядра, достигающее отношений 1:2 в пользу цитоплазмы. Полноценные тромбоциты, красно-фиолетовая зернистость и большой размер клетки (вплоть до половины поля зрения при иммерсионной микроскопии на увеличении 1000) так же помогают отнести исследуемую клетку к полихроматофильным мегакариоцитам.

    Мегакариоцит оксифильный - последняя стадия, являющаяся функционально зрелой клеткой. Диаметр клетки достигает 60-70 мкм, в ряде случаев занимая всё поле зрения при микроскопии препарата. Ядро приобретает сегментацию, становится резко-пикнотическим и ярко-фиолетовым. Цитоплазма теряет сродство к базофильным красителям и всегда имеет розовый или лиловый оттенок. Дифференцировать зрелый мегакариоцит - несложная задача даже для новичка вследствие гигантских размеров, смещения ядерно-цитоплазматического соотношения за предел 1:2, ярко выраженного пикноза ядра, розовой окраски цитоплазмы и многочисленных отшнуровывающихся тромбоцитов.