Формулы всех кислот по химии. Классификация, получение и свойства кислот

  • Физические и химические выражения порций, долей и количества вещества. Атомная единица массы, а.е.м. Моль вещества, постоянная Авогадро. Молярная масса. Относительные атомная и молекулярная масса вещества. Массовая доля химического элемента
  • Строение вещества. Ядерная модель строения атома. Состояние электрона в атоме. Заполнение электронами орбиталей, принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда
  • Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.
  • Периодическая система Менделеева. Высшие оксиды. Летучие водородные соединения. Растворимость, относительные молекулярные массы солей, кислот, оснований, оксидов, органических веществ. Ряды электроотрицательности, анионов, активности и напряжений металлов
  • Электрохимический ряд активности металлов и водорода таблица, электрохимический ряд напряжений металлов и водорода, ряд электроотрицательности химических элементов, ряд анионов
  • Химическая связь. Понятия. Правило октета. Металлы и неметаллы. Гибридизация электронных орбиталей. Валентные электроны, понятие валентности, понятие электроотрицательности
  • Виды химической связи. Ковалентная связь - полярная, неполярная. Характеристики, механизмы образования и виды ковалентной связи. Ионная связь. Степень окисления. Металлическая связь. Водородная связь.
  • Химические реакции. Понятия и признаки, Закон сохранения массы, Типы (соединения, разложения, замещения, обмена). Классификация: Обратимые и необратимые, Экзотермические и эндотермические, Окислительно-восстановительные, Гомогенные и гетерогенные
  • Вы сейчас здесь: Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ.
  • Химия неметаллов. Галогены. Сера. Азот. Углерод. Инертные газы
  • Химия металлов. Щелочные металлы. Элементы IIА группы. Алюминий. Железо
  • Закономерности течения химических реакций. Скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Катализ
  • Растворы. Электролитическая диссоциация. Понятия, растворимость, электролитическая диссоциация, теория электролитическoй диссоциации, степень диссоциации, диссоциация кислот, оснований и солей, нейтральная, щелочная и кислая среда
  • Реакции в растворах электролитов + Окислительно-восстановительные реакции. (Реакции ионного обмена. Образование малорастворимого, газообразного, малодиссоциирующего вещества. Гидролиз водных растворов солей. Окислитель. Восстановитель.)
  • Классификация органических соединений. Углеводороды. Производные углеводородов. Изомерия и гомология органических соединений
  • Важнейшие производные углеводородов: спирты, фенолы, карбонильные соединения, карбоновые кислоты, амины, аминокислоты
  • Кислоты можно классифицировать исходя из разных критериев:

    1) Наличие атомов кислорода в кислоте

    2) Основность кислоты

    Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

    4) Растворимость

    5) Устойчивость

    7) Окисляющие свойства

    Химические свойства кислот

    1. Способность к диссоциации

    Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

    либо в таком виде: HCl = H + + Cl —

    либо в таком: HCl → H + + Cl —

    По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

    В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

    CH 3 COOH CH 3 COO — + H +

    Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

    H 3 PO 4 H + + H 2 PO 4 —

    H 2 PO 4 — H + + HPO 4 2-

    HPO 4 2- H + + PO 4 3-

    Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

    Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

    H 2 SO 4 2H + + SO 4 2-

    2. Взаимодействие кислот с металлами

    Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

    H 2 SO 4(разб.) + Zn ZnSO 4 + H 2

    2HCl + Fe FeCl 2 + H 2

    Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

    3. Взаимодействие кислот с основными и амфотерными оксидами

    Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

    H 2 SO 4 + ZnO ZnSO 4 + H 2 O

    6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

    H 2 SiO 3 + FeO ≠

    4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

    HCl + NaOH H 2 O + NaCl

    3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

    5. Взаимодействие кислот с солями

    Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

    H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

    CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

    HCOONa + HCl HCOOH + NaCl

    6. Специфические окислительные свойства азотной и концентрированной серной кислот

    Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

    Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

    В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

    Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

    7. Восстановительные свойства бескислородных кислот

    Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

    4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

    18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

    14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

    Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

    6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

    2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

    Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.

    Названия некоторых неорганических кислот и солей

    Формулы кислот Названия кислот Названия соответствующих солей
    HClO 4 хлорная перхлораты
    HClO 3 хлорноватая хлораты
    HClO 2 хлористая хлориты
    HClO хлорноватистая гипохлориты
    H 5 IO 6 иодная периодаты
    HIO 3 иодноватая иодаты
    H 2 SO 4 серная сульфаты
    H 2 SO 3 сернистая сульфиты
    H 2 S 2 O 3 тиосерная тиосульфаты
    H 2 S 4 O 6 тетратионовая тетратионаты
    H NO 3 азотная нитраты
    H NO 2 азотистая нитриты
    H 3 PO 4 ортофосфорная ортофосфаты
    H PO 3 метафосфорная метафосфаты
    H 3 PO 3 фосфористая фосфиты
    H 3 PO 2 фосфорноватистая гипофосфиты
    H 2 CO 3 угольная карбонаты
    H 2 SiO 3 кремниевая силикаты
    HMnO 4 марганцовая перманганаты
    H 2 MnO 4 марганцовистая манганаты
    H 2 CrO 4 хромовая хроматы
    H 2 Cr 2 O 7 дихромовая дихроматы
    HF фтороводородная (плавиковая) фториды
    HCl хлороводородная (соляная) хлориды
    HBr бромоводородная бромиды
    HI иодоводородная иодиды
    H 2 S сероводородная сульфиды
    HCN циановодородная цианиды
    HOCN циановая цианаты

    Напомню кратко на конкретных примерах, как следует правильно называть соли.


    Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.

    Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.

    Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!

    Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.

    Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.

    В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.

    Бескислородные: Основность Название соли
    HCl - хлористоводородная (соляная) одноосновная хлорид
    HBr - бромистоводородная одноосновная бромид
    HI - йодистоводородная одноосновная йодид
    HF - фтористоводородная (плавиковая) одноосновная фторид
    H 2 S - сероводородная двухосновная сульфид
    Кислородсодержащие:
    HNO 3 – азотная одноосновная нитрат
    H 2 SO 3 - сернистая двухосновная сульфит
    H 2 SO 4 – серная двухосновная сульфат
    H 2 CO 3 - угольная двухосновная карбонат
    H 2 SiO 3 - кремниевая двухосновная силикат
    H 3 PO 4 - ортофосфорная трёхосновная ортофосфат

    Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.

    Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные

    Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.

    При диссоциации дают только катионы металла (или NH 4 +). Например:

    Na 2 SO 4 ® 2Na + +SO

    CaCl 2 ® Ca 2+ + 2Cl -

    Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.

    При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:

    NaHCO 3 ® Na + + HCO « H + +CO .

    Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.

    При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.

    Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .

    Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.

    KAl(SO 4) 2 ® K + + Al 3+ + 2SO

    Комплексны соли содержат комплексные катионы или анионы.

    Br ® + + Br - « Ag + +2 NH 3 + Br -

    Na ® Na + + - « Na + + Ag + + 2 CN -

    Генетическая связь между различными классами соединений

    ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

    Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.

    Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.

    Порядок выполнения работы

    1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.

    Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?

    Написать уравнения

    Выводы: 1.К какому типу оксидов относится ZnO?

    2. Какими свойствами обладают амфотерные оксиды?

    Получение и свойства гидроксидов

    2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.

    Наблюдения: Записать значение рН раствора.

    2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.

    Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.

    Написать уравнения происходящих реакций (в молекулярном и ионном виде).

    Выводы: Какими способами могут быть получены гидроксиды металлов?

    2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.

    Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?

    Написать уравнения происходящих реакций (в молекулярном и ионном виде).

    Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?

    2. Какими свойствами обладают амфотерные гидроксиды?

    Получение солей.

    3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).

    Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?

    Написать уравнение окислительно-восстановительной реакции.

    Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.

    3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.

    Наблюдения: Происходят ли выделение газа?

    Написать уравнение

    Выводы: Объясните данный способ получения солей?

    3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.

    Наблюдения: Происходит ли выделение газа?

    Написать уравнение происходящей реакции (в молекулярном и ионном виде).

    Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?

    2.Какие вещества являются продуктами этой реакции?

    3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.

    Наблюдения: Укажите изменения цвета осадков в реакциях.

    Написать уравнение происходящей реакции (в молекулярном и ионном виде).

    Вывод: 1. В результате каких реакций образуются основные соли?

    2. Как можно перевести основные соли в средние?

    Контрольные задания:

    1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
    Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .

    2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .

    3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.

    4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.


    Лабораторная работа № 2 (4 ч.)

    Тема: Качественный анализ катионов и анионов

    Цель: освоить технику проведения качественных и групповых реак­ций на катионы и анионы.

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды). В настоящей работе рассматривается качественный анализ неорганических веществ, являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.

    В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.

    Существуют два принципиально разных подхода к качественному анализу: дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.

    Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.

    Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, од­нако преимущество его заключается в легкой формализации всех дейст­вий, укладывающихся в четкую схему (методику).

    Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпаде­ние нежелательных осадков и т. д.). Во избежание этого в дробном ана­лизе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные усло­вия, в частности, рН. Очень часто в дробном анализе приходится прибе­гать к маскировке, т. е. к переводу ионов в соединения, не способные да­вать аналитический эффект с выбранным реактивом. Например, для об­наружения иона никеля используется диметилглиоксим. Сходный анали­тический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окис­ляют до Fе 3+ , например, пероксидом водорода.

    Дробный анализ используют для обнаружения ионов в более про­стых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной ме­тодике все возможные случаи взаимного влияния ионов на характер на­блюдаемых аналитических эффектов достаточно сложно.

    В аналитической практике часто применяют так называемый дроб­но-систематический метод. При таком подходе используется минималь­ное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.

    По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделени­ем газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.

    При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости про­водят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.

    Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.

    В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.

    В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экс­тракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.

    Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

    Классификация

    Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

    • кислородные, содержащие кислород;
    • бескислородные, состоящие только из водорода и неметалла.

    Основной список неорганических кислот в соответствии с типом представлен в таблице.

    Тип

    Название

    Формула

    Кислородные

    Азотистая

    Дихромовая

    Йодноватая

    Кремниевые - метакремниевая и ортокремниевая

    H 2 SiO 3 и H 4 SiO 4

    Марганцовая

    Марганцовистая

    Метафосфорная

    Мышьяковая

    Ортофосфорная

    Сернистая

    Тиосерная

    Тетратионовая

    Угольная

    Фосфористая

    Фосфорноватистая

    Хлорноватая

    Хлористая

    Хлорноватистая

    Хромовая

    Циановая

    Бескислородные

    Фтороводородная (плавиковая)

    Хлороводородная (соляная)

    Бромоводородная

    Йодоводородная

    Сероводородная

    Циановодородная

    Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

    • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
    • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
    • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

    Рис. 1. Схема классификации кислот.

    Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

    Получение

    Основные методы получения кислот представлены в таблице.

    Свойства

    Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

    Рис. 2. Хромовая кислота.

    Кислоты - активные вещества, реагирующие:

    • с металлами:

      Ca + 2HCl = CaCl 2 + H 2 ;

    • с оксидами:

      CaO + 2HCl = CaCl 2 + H 2 O;

    • с основанием:

      H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

    • с солями:

      Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

    Все реакции сопровождаются образованием солей.

    Возможна качественная реакция с изменением цвета индикатора:

    • лакмус окрашивается в красный;
    • метил оранж - в розовый;
    • фенолфталеин не меняется.

    Рис. 3. Цвета индикаторов при взаимодействии кислоты.

    Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

    Что мы узнали?

    Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.4 . Всего получено оценок: 120.