Какие постоянные величины характеризуют колебательное движение. Величины, характеризующие колебательное движение

какие величины характеризуют колебательное движение? в каких единицах они измеряются?

  1. Любые колебания характеризуются следующими параметрами:
    Смещение (х) - отклонение колеблющейся точки от положения равновесия в данный момент времени м.
    Амплитуда колебаний (А) наибольшее смещение от положения равновесия м. Если колебания незатухающие, то амплитуда постоянна.
    Период колебаний (Т)- время, за которое совершается одно полное колебание. Выражается в секундах с.
    Частота колебаний (v) - число полных колебаний за единицу времени. В СИ измеряется в герцах (Гц) .
    Единица измерения названа так в честь известного немецкого физика Генриха Герца (1857...1894).
    1 Гц это одно колебание в секунду. Примерно с такой частотой бьется человеческое сердце. Слово херц по-немецки означает сердце.
    Фаза колебаний - физическая величина, определяющая смещение x в данный момент времени. Измеряется в радианах (рад) .
    Период и частота колебаний связаны между собой обратно пропорциональной зависимостью:
    T = 1/v.
  2. В какие величины характеризуют колебательное движение:
    1. А (амплитуда) - метры, сантиметры, градусы.
    2. Т (период) - секунды.
    3. V (частота) -Гц.
  1. Загрузка... кто придумал паркур? Давид Белль Паркур возник во Франции в конце XX века, его прообразом являются тренировки французских солдат или пожарных по преодолению полосы...
  2. Загрузка... что такое Модификация Модификация (позднелат. modificatio установление меры, от лат. modus мера, вид, образ, преходящее свойство и лат. facio делать) , преобразование, усовершенствование, видоизменение...
  3. Загрузка... Можно ли дарить часы на новый год?? Легко. Можно. Работаю в часовом магазине около 15 лет. Примерно 60% покупают в подарок. А на новый...
  4. Загрузка... чем занимается прокурор обвинением следит)))))) за всеми))) Прокуратура правоохранительный орган системы следствия и поддержания государственного обвинения в судопроизводстве, а также надзора за соблюдением...
  5. Загрузка... понятие чести - понятие морального сознания и категория этики, по своему содержанию и природе отражаемого в ней морального отношения, аналогично понятию достоинства Подобно достоинству,...
  6. Загрузка... Кто имеет право получить награды Национального Наградного Фонда Российской Федерации? А сколько эта, так называемая "награда" вам обойдется?? ? Это одна из многих "шарашкиных"...

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Величины, характеризующие колебательное движение». На этом уроке вы узнаете, как и какими величинами характеризуются колебательные движения. Будет дано определение таких величин, как амплитуда и смещение, период и частота колебания.

Обсудим количественные характеристики колебаний. Начнем с самой очевидной характеристики – амплитуды. Амплитуда обозначается большой буквой А и измеряется в метрах.

Определение

Амплитудой называют максимальное смещение от положения равновесия.

Часто амплитуду путают с размахом колебаний. Размах – это когда тело совершает колебание из одной крайней точки в другую. А амплитуда – это максимальное смещение, т. е. расстояние от точки равновесия, от линии равновесия до крайней точки, в которую оно попало. Помимо амплитуды, существует еще одна характеристика – смещение. Это текущее отклонение от положения равновесия.

А – амплитуда –

х – смещение –

Рис. 1. Амплитуда

Посмотрим, как отличаются амплитуда и смещение на примере. Математический маятник находится в состоянии равновесия. Линия расположения маятника в начальный момент времени – линия равновесия. Если отвести маятник в сторону – это и будет его максимальное смещение (амплитуда). В любой другой момент времени расстояние не будет амплитудой, а будет просто смещением.

Рис. 2. Отличие амплитуды и смещения

Следующая характеристика, к которой мы переходим, называется период колебаний .

Определение

Периодом колебаний называется промежуток времени, в течение которого совершается одно полное колебание.

Обратите внимание, что величина «период» обозначается большой буквой , определяется она следующим образом: , .

Рис. 3. Период

Стоит добавить, что чем больше мы берем число колебаний за большее время, тем точнее мы определим период колебаний.

Следующая величина - это частота .

Определение

Число колебаний, совершенных за единицу времени, называют частотой колебаний.

Рис. 4. Частота

Обозначается частота греческой буквой , которая читается как «ню». Частота - это отношение числа колебаний ко времени, за которое эти колебания произошли: .

Единицы измерения частоты . Эту единицу называют «герц» в честь немецкого физика Генриха Герца. Обратите внимание, что период и частота связаны через число колебаний и время, в течение которых это колебание совершается. Для каждой колебательной системы частота и период есть величины постоянные. Связь между этими величинами довольно проста: .

Кроме понятия «частота колебаний» нередко пользуются понятием «циклическая частота колебаний», то есть количество колебаний за секунд. Обозначается она буквой и измеряется в радианах за секунду .

Графики свободных незатухающих колебаний

Мы уже знаем решение главной задачи механики для свободных колебаний - закон синуса или косинуса. Также мы знаем, что графики являются мощнейшим инструментом исследования физических процессов. Поговорим о том, как будут выглядеть графики синусоиды и косинусоиды в применении к гармоническим колебаниям.

Для начала определимся с особыми точками во время колебаний. Это необходимо для того, чтобы правильно выбрать масштаб построения. Рассмотрим математический маятник. Первый вопрос, который возникает: какую функцию использовать - синус или косинус? Если колебание начинается с верхней точки - максимального отклонения, законом движения будет закон косинуса. Если же начать движение с точки равновесия - законом движения будет закон синуса.

Если законом движения будет закон косинуса, то через четверть периода маятник будет находиться в положении равновесия, еще через четверть - в крайней точке, еще через четверть - опять в положении равновесия, и еще через одну четверть вернется в начальное положение.

Если маятник колеблется по закону синуса, то через четверть периода он будет находиться в крайней точке, еще через четверть - в положении равновесия. Потом опять в крайней точке, но с другой стороны, и через еще четверть периода вернется в положение равновесия.

Итак, масштабом времени будет не произвольные значение 5 с, 10 с и т. д., а доли периода. Мы будем строить график по четвертям долей периода.

Перейдем к построению. меняется либо по закону синуса, либо по закону косинуса. Ось ординат - , ось абсцисс - . Масштаб времени равен четвертям периода: График будет лежать в пределах от до .

Рис. 5. Графики зависимости

График для колебания по закону синуса выходит из нуля и обозначен темно-синим цветом (рис. 5). График для колебания по закону косинуса выходит из положения максимального отклонения и обозначен голубым цветом на рисунке. Графики выглядят абсолютно идентично, но сдвинуты по фазе относительно друг друга на четверть периода или радиан.

Аналогичный вид будут иметь графики зависимости и , ведь они тоже меняются по гармоническому закону.

Особенности колебаний математического маятника

Математический маятник - это материальная точка массой , подвешенная на длинной нерастяжимой невесомой нити длиной .

Обратите внимание на формулу периода колебаний математического маятника: , где - длина маятника, - ускорение свободного падения.

Чем больше длина маятника, тем больше период его колебаний (рис. 6). Чем длиннее нить, тем дольше маятник раскачивается.

Рис. 6 Зависимость периода колебаний от длины маятника

Чем больше ускорение свободного падения, тем меньше период колебаний (рис. 7). Чем больше ускорение свободного падения, тем сильнее небесное тело притягивает грузик и тем быстрее он стремится вернуться в положение равновесия.

Рис. 7 Зависимость периода колебаний от ускорения свободного падения

Обратите внимание, что период колебаний не зависит от массы груза и амплитуды колебаний (рис. 8).

Рис. 8. Период колебаний не зависит от амплитуды колебаний

Первым на этот факт обратил внимание Галилео Галилей. На основании этого факта предложен механизм маятниковых часов.

Следует отметить, что точность формулы максимальна лишь для малых, сравнительно небольших отклонений. Например, для отклонения погрешность формулы составляет . Для более крупных отклонений точность формулы не столь велика.

Рассмотрим качественные задачи, которые описывают математический маятник.

Задача. Как изменится ход маятниковых часов, если их: 1) перевезти из Москвы на Северный полюс; 2) перевезти из Москвы на экватор; 3) поднять высоко в гору; 4) вынести из нагретого помещения на мороз.

Для того чтобы правильно ответить на вопрос задачи, необходимо понять, что имеется в виду под «ходом маятниковых часов». Маятниковые часы основаны на математическом маятнике. Если период колебаний часов будет меньше, чем нам нужно, часы начнут спешить. Если же период колебаний станет больше, чем необходимо, часы будут отставать. Задача сводится к ответу на вопрос: что произойдет с периодом колебаний математического маятника в результате всех перечисленных в задаче действий?

Рассмотрим первую ситуацию. Математический маятник переносится из Москвы на Северный полюс. Вспоминаем, что Земля имеет форму геоида, то есть сплюснутого у полюсов шара (рис. 9). Это значит, что на полюсе величина ускорения свободного падения несколько больше, чем в Москве. А раз ускорение свободного падения больше, то период колебаний станет несколько меньше и маятниковые часы начнут спешить . Здесь мы пренебрегаем тем, что на Северном полюсе холоднее.

Рис. 9. Ускорение свободного падения больше на полюсах Земли

Рассмотрим вторую ситуацию. Переносим часы из Москвы на экватор, предполагая, что температура не меняется. Ускорение свободного падения на экваторе несколько меньше, чем в Москве. Это значит, что период колебаний математического маятника увеличится и часы начнут отставать .

В третьем случае часы поднимают высоко в гору, тем самым увеличивая расстояние до центра Земли (рис. 10). Это значит, что ускорение свободного падения на вершине горы меньше. Период колебаний увеличивается, часы будут отставать .

Рис. 10 Ускорение свободного падения больше на вершине горы

Рассмотрим последний случай. Часы выносят из теплой комнаты на мороз. При понижении температуры линейные размеры тел уменьшаются. Это значит, что длина маятника немного сократится. Раз длина стала меньше, то период колебаний также уменьшился. Часы будут спешить .

Мы рассмотрели самые типичные ситуации, которые позволяют разобраться с тем, как работает формула периода колебаний математического маятника.

В заключение рассмотрим еще одну характеристику колебаний - фазу . О том, что такое фаза, более подробно мы будем говорить в старших классах. Сегодня мы должны рассмотреть, с чем можно эту характеристику сравнить, сопоставить и как ее для себя определить. Удобнее всего фазу колебаний сопоставить со скоростью движения маятника.

На рисунке 11 представлены два одинаковых маятника. Первый маятник отклонили влево на определенный угол, второй тоже отклонили влево на определенный угол, такой же, как и первый. Оба маятника будут совершать абсолютно одинаковые колебания. В этом случае можно сказать, что маятники совершают колебания с одинаковой фазой, поскольку скорости маятника имеют одно направление и равные модули.

На рисунке 12 два таких же маятника, но один отклонен влево, а другой - вправо. У них тоже одинаковые по модулю скорости, но направление противоположное. В этом случае говорят, что маятники совершают колебания в противофазе.

Во всех других случаях, как правило, упоминают о разности фаз.

Рис. 13 Разница фаз

Фазу колебаний в произвольный момент времени можно рассчитать по формуле , то есть как произведение циклической частоты на время, прошедшее с начала колебаний. Измеряется фаза в радианах.

Особенности колебаний пружинного маятника

Формула колебаний пружинного маятника: . Таким образом, период колебаний пружинного маятника зависит от массы груза и жесткости пружины.

Чем больше масса груза, тем больше его инертность. То есть маятник будет медленнее разгоняться, период его колебаний будет больше (рис. 14).

Рис. 14 Зависимость периода колебаний от массы

Чем больше жесткость пружины, тем быстрее она стремится вернуться в положение равновесия. Период пружинного маятника будет меньше.

Рис. 15 Зависимость периода колебаний от жесткости пружины

Рассмотрим применение формулы на примере задачи.

Рис. 17 Период колебаний

Если подставить теперь все необходимые значения в формулу для вычисления массы, получим:

Ответ: масса грузика составляет приблизительно 10 г.

Так же, как и в случае с математическим маятником, для пружинного маятника период колебаний не зависит от его амплитуды. Естественно, что это справедливо только для небольших отклонений от положения равновесия, когда деформация пружины является упругой. Этот факт был положен в основу устройства пружинных часов (рис. 18).

Рис. 18 Пружинные часы

Заключение

Конечно, кроме колебаний и тех характеристик, о которых мы говорили, существуют и другие не менее важные характеристики колебательного движения. Но о них мы поговорим в старшей школе.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «abitura.com» ()
  2. Интернет-портал «phys-portal.ru» ()
  3. Интернет-портал «fizmat.by» ()

Домашнее задание

  1. Что такое математический и пружинный маятники? Какая разница между ними?
  2. Что такое гармоническое колебание, период колебания?
  3. Груз массой 200 г колеблется на пружине с жесткостью 200 Н/м. Найдите полную механическую энергию колебаний и наибольшую скорость движения груза, если амплитуда колебаний 10 см (трением пренебречь).

Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени.

Свободными (собственными) колебаниями называются колебания, которые происходят в отсутствии переменных внешних воздействий на колебательную систему и возникают вследствие какого-либо начального отклонения этой системы от состояния устойчивого равновесия; колебания, которые совершаются за счёт первоначально сообщённой энергии при последующем отсутствии внешних воздействий на колебательную систему.

Вынужденными называются колебания, возникающие в какой либо системе под влиянием переменного внешнего воздействия.

Период колебаний (T ) - наименьший промежуток времени, по истечении которого система, совершающая колебания, снова возвращается в то же состояние, в котором она находилась в начальный произвольно выбранный момент.

Частота колебаний – число полных колебаний, совершаемых в единицу времени. ν=1/T.

Амплитуда колебаний – это максимальное значение колеблющейся величины.

Фаза колебаний – это значение колеблющейся величины в произвольный момент времени (ω 0 t+φ).

Наиболее важными величинами, характеризующими механические колебания, являются:

    число колебаний за некоторый промежуток времени t . Обозначается буквой N ;

    координата материальной точки или ее смещение (отклонение) - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени. Обозначается буквой x , измеряется в метрах (м);

    амплитуда - максимальное смещение тела или системы тел из положения равновесия. Обозначается буквой A или x max , измеряется вметрах (м);

    период - время совершения одного полного колебания. Обозначается буквой T , измеряется в секундах (с);

    частота - число полных колебаний в единицу времени. Обозначается буквой ν, измеряется в герцах (Гц);

    циклическая частота , число полных колебаний системы в течение 2π секунд. Обозначается буквой ω, измеряется в радиан в секунду (рад/с);

    фаза - аргумент периодической функции, определяющий значение физической величины в любой момент времени t . Обозначается буквой φ, измеряется в радианах (рад);

    начальная фаза - аргумент периодической функции, определяющий значение физической величины в начальный момент времени (t = 0). Обозначается буквой φ 0 , измеряется в радианах (рад).

Эти величины связаны между собой следующими соотношениями:

T =tN , ν =1T =Nt ,

ω =2π ν =2πT , φ =ω t +φ 0.

Гармонические колебания

Гармонические колебания - это колебания, при которых координата (смещение) тела изменяется со временем по закону косинуса или синуса и описывается формулами:

x =A ⋅sin(ω t +φ 0) или x =A ⋅cos(ω t +φ 0).

Зависимость координаты от времени x (t ) называется кинематическим законом гармонического колебания (законом движения).

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

Пусть тело совершает гармонические колебания по закону x =A ⋅cosω t (φ 0 = 0). На рисунке 2, а представлен график зависимости координатыx от времени t .

Выясним, как изменяется проекция скорости колеблющейся точки со временем. Для этого найдем производную по времени от закона движения:

υx =x ′=(A ⋅cosω t )′=−ω A ⋅sinω t =ω A ⋅cos(ω t +π 2),

где ω A =υx max - амплитуда проекции скорости на ось x .

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось x изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на π/2 (рис. 2, б).

Для выяснения зависимости ускорения a x (t ) найдем производную по времени от проекции скорости:

ax =υ x =x ′′=(A ⋅cosω t )′′=(−ω A ⋅sinω t )′= =−ω 2⋅A ⋅cosω t =ω 2⋅A ⋅cos(ω t +π ), (1)

где ω 2⋅A =ax max - амплитуда проекции ускорения на ось x .

При гармонических колебаниях проекция ускорения опережает смещение по фазе на π (рис. 2, в).

Аналогично можно построить графики зависимостей x (t ), υ x (t ) и a x (t ), если x =A ⋅sinω t (φ 0 = 0).

Учитывая, что A ⋅cosω t =x , из уравнения (1) для ускорения можно записать

ax =−ω 2⋅x ,

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, ускорение направлено в сторону, противоположную смещению. Данное соотношение можно переписать в виде

ax +ω 2⋅x =0.

Последнее равенство называют уравнением гармонических колебаний .

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором , а уравнение гармонических колебаний - уравнением гармонического осциллятора .














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • познакомить учащихся с величинами, характеризующими колебательное движение, выяснить от чего зависит период колебаний;
  • развить умения применять знания на практике, включать в разрешение учебных проблемных ситуаций, развивать логическое мышление;
  • воспитать познавательный интерес, активность, интерес к познанию нового учебного материала.

Тип урока: изучение нового материала.

Оборудование: компьютер, экран, мультимидийный проектор, штативы, секундомеры, линейка, циркуль, шарик с нитью.

Демонстрации: маятник пружинный, маятник нитяной.

ХОД УРОКА

I. Организационный момент

Объявление темы и цели урока. (Cлайд 1)

II. Актуализация опорных знаний

Фронтальный опрос: продолжите фразу: (Слайды 2, 3)

1. Движение, при котором тело откланяется то в одну то в другую сторону, называется …
2. Основной признак …
3. Колеблется тело на нити или тело на пружине …
4. Математическим маятником называется …
5. Колебания, происходящие только благодаря начальному запасу энергии, называются …
6. Свободно колеблющиеся тела взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется …
7. Одно из основных общих свойств колебательных систем заключается в …

Выберите правильный ответ: (Слайд 4)

1. Какие из перечисленных ниже движений являются механическими колебаниями?

А. Движение качелей.
Б. Движение мяча, падающего на землю.
В. Движение звучащей струны гитары

2. Свободными называют колебания, которые происходят под действием…

А. … силы трения
Б. … внешних сил
В. … внутренних сил

Беседа (Слайд 5)

1. Как вы понимаете утверждение, что колебательное движение периодично?
2. Какой общей чертой (кроме периодичности) обладают движения тел, изображенных на рис. 48, стр. 87.
3. Какие тела входят в колебательную систему, называемую пружинным маятником?

III. Основная часть. Изучение нового материала

Демонстрации колебаний тела на пружине и на нити. Введем основные характеристики колебательного движения: амплитуда, период, частота и фаза колебаний: (Слайд 6)

Амплитуда – максимальное отклонение относительно положения равновесия (А, м)
Период – время полного колебания (Т, с)
Частота – число колебаний за единицу времени (v , Гц)
Фаза колебания – угловая мера времени

Формулы: (Слайд 7)

Т = 1/v ; Т = t/n – период { с }
v = 1/Т; v = n/t – частота { Гц }
А – амплитуда { м }
– фаза { рад }

IV. Закрепление: (Слайд 8)

1. Определить период и частоту материальной точки, совершающей 50полных колебаний за 20 с.
2. Сколько колебаний совершит материальная точка за 5с при частоте колебаний 440 Гц.

Перед классом ставится задача: выяснить, от чего зависит период колебаний математического маятника. Разбивается класс на 3 группы «экспериментаторов». (Слайд 9) Каждая руппа получает задание:

Задание для группы 1. Определить опытным путем зависит ли период колебаний математического маятника от его массы.
Оборудование: штатив с муфтой, нить, набор грузов, секундомер.

Задание для группы 2. Определить, зависит ли период колебаний математического маятника от амплитуды колебаний.
Оборудование: штатив с муфтой, маятник произвольной длины, транспортир, секундомер.

Задание для группы 3. Определить, зависит ли период колебаний математического маятника от его длины.
Оборудование: штатив с муфтой, маятник произвольной длины, сантиметровая лента, секундомер.

Учащиеся самостоятельно приходят к выводу: период колебаний математического маятника не зависит от массы тела, не зависит от амплитуды колебаний, а зависит только от длины математического маятника.

V. Обобщение: (Cлайды 10, 11)

От чего зависит период колебаний математического маятника:

Подвешенный на нити груз совершает малые колебания. Укажите все правильные утверждения:

А. Чем длиннее нить, тем больше период колебаний.
Б. Частота колебаний зависит от массы груза.
В. Груз проходит положение равновесия через равные интервалы времени

Подвешенный на нити груз совершает малые незатухающие колебания, укажите все правильные утверждения

А. Чем длиннее нить, тем больше частота колебаний
Б. При прохождении грузом положения равновесия скорость груза максимальна
В. Груз совершает периодическое движение

Характеристики колебательного движения: амплитуда, период и частота. (Слайд 12)

Период колебаний математического маятника не зависит ни от амплитуды, ни от массы груза, а зависит от длины нити и ускорения свободного падения

VI. Домашнее задание: § 26, упр. 24 (2, 3, 4). (Слайд 13)

Подготовить доклад или сообщение на тему «Как используется в геологоразведке зависимость периода колебаний математического маятникам от ускорения свободного падения?»

VII. Рефлексия. Подведение итогов урока: (Cлайд 14)

Ваше настроение на уроке:

1. Нет впечатлений
2. Хорошее
3. Плохое

Литература :

1. Оснащение школы техническими средствами в современных условиях. Под ред. Л. С. Зазнобиной. – М.: УЦ «Перспектива», 2000.
2. Горлова Л.А. «Нетрадиционные уроки, внеурочные мероприятия по физике» – М.: «ВАКО», 2006.
3. Перышкин А.В., Гутник Е.М. Физика-9, М: «Дрофа», 2003

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Величины, характеризующие колебательное движение». На этом уроке вы узнаете, как и какими величинами характеризуются колебательные движения. Будет дано определение таких величин, как амплитуда и смещение, период и частота колебания.

Тема: Механические колебания и волны. Звук

Урок 29. Величины, характеризующие колебательные движения

Ерюткин Евгений Сергеевич

Давайте обсудим количественные характеристики колебаний. Начнем с самой очевидной характеристики, с амплитуды. Амплитуда обозначается большой буквой А и измеряется в метрах.

Определение: амплитудой называют максимальное смещение от положения равновесия.

Часто амплитуду путают с размахом колебаний. Размах – это когда тело совершило колебание из одной крайней точки в другую. А амплитуда – это смещение, т.е. расстояние от точки равновесия, от линии равновесия до крайней точки, в которую попало. Помимо амплитуды, существует еще одна характеристика – смещение. Это текущее отклонение от положения равновесия.

А – амплитуда – [м]

х – смещение – [м]

Рис. 1. Отличие амплитуды от смещения

Следующая характеристика, к которой мы переходим, называется .

Определение: периодом колебаний называется промежуток времени, в течение которого совершается одно полное колебание.

Обратите внимание, что величина «период» обозначается большой буквой Т, определяется она следующим образом: . Период измеряется в секундах. Здесь еще хотелось бы добавить одну интересную вещь. Заключается она в том, что, чем больше мы берем колебаний, число колебаний за большее время, тем точнее мы определим период колебаний.

Следующая величина – это . Определение: число колебаний, совершенных за единицу времени, называют частотой колебаний.

Частота – Þ [Гц]

Обозначается частота греческой буквой, которая читается как «ню». Мы определяем частоту, сколько колебаний произошло за единицу времени. Частота измеряется величиной , или . Эту единицу называют герц в честь немецкого физика Генриха Герца. Посмотрите, не случайно мы расположили две величины – период и частоту – рядом. Если вы посмотрите на эти величины, вы увидите, как они между собой связаны: - период [c]. - частота – Þ [Гц]

Период и частота связаны через число колебаний и время, в течение которых это колебание совершается. Для каждой колебательной системы частота и период есть величины постоянные. Связь между этими величинами довольно проста: .

В заключение рассмотрим еще одну характеристику колебаний – фазу . О том, что такое фаза, более подробно мы будем говорить в старших классах. Сегодня мы должны рассмотреть, с чем можно эту характеристику сравнить, сопоставить и как ее для себя определить. Удобнее всего фазу колебаний сопоставить со скоростью движения маятника.

(с одинаковыми фазами)

в противофазе

На нашем примере представлены два различных маятника. Первый маятник отклонили влево на определенный угол, второй тоже отклонили влево на определенный угол, такой же как и первый. Оба маятника будут совершать абсолютно одинаковые колебания. В этом случае можно сказать следующее, что маятники совершают колебания с одинаковой фазой, поскольку скорости маятника одинаковы.

Два таких же маятника, но один отклонен влево, а другой – вправо. У них тоже одинаковые по модулю скорости, а направление противоположное. В этом случае говорят, что маятники совершают колебания в противофазе.

Конечно, кроме колебаний и тех характеристик, о которых мы говорили, существуют и другие не менее важные характеристики колебательного движения. Но о них мы поговорим в старшей школе.

Список дополнительной литературы:

Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
Черноуцан А.И. Гармонические колебания – обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.