Круги кровообращения у человека: эволюция, строение и работа большого и малого, дополнительные, особенности. Большой и малый круг кровообращения Пищеварение, роль пищеварительных желез. Значение всасывания питательных веществ

Сосуды в организме человека образуют две замкнутые системы кровообращения. Выделяют большой и малый круги кровообращения. Сосуды большого круга снабжают кровью органы, сосуды малого круга обеспечивают газообмен в легких.

Большой круг кровообращения : артериальная (насыщенная кислородом) кровь течет от левого желудочка сердца через аорту, далее по артериям, артериальным капиллярам ко всем органам; от органов венозная кровь (насыщенная углекислым газом) течет по венозным капиллярам в вены, оттуда через верхнюю полую вену (от головы, шеи и рук) и нижнюю полую вену (от туловища и ног) в правое предсердие.

Малый круг кровообращения : венозная кровь течет от правого желудочка сердца через легочную артерию в густую сеть капилляров, оплетающих легочные пузырьки, где кровь насыщается кислородом, далее артериальная кровь течет по легочным венам в левое предсердие. В малом круге кровообращения артериальная кровь течет по венам, венозная - по артериям. Начинается в правом желудочке и оканчивается в левом предсердии. Из правого желудочка выходит легочный ствол, несущий венозную кровь в легкие. Здесь легочные артерии распа­даются на сосуды более мелкого диаметра, переходящие в капилляры. Кровь, насыщенная кислородом, оттекает по четырем легочным венам в левое предсердие.

Кровь движется по сосудам благодаря ритмичной работе сердца. Во время сокращения желудочков кровь под давлением нагнетается в аорту и легочный ствол. Здесь развивается самое высокое давление- 150 мм рт. ст. По мере продвижения крови по артериям давле­ние снижается до 120 мм рт. ст., а в капиллярах - до 22 мм. Самое низкое давление в венах; в крупных венах оно ниже атмосферного.

Кровь из желудочков выбрасывается порциями, а непрерывность ее течения обеспечивается эластич­ностью стенок артерий. В момент сокращения желудоч­ков сердца стенки артерий растягиваются, а затем в силу эластической упругости возвращаются в исходное состояние еще до очередного поступления крови из же­лудочков. Благодаря этому кровь продвигается вперед. Ритмические колебания диаметра артериальных сосу­дов, вызываемые работой сердца, называются пульсом. Он легко прощупывается в местах, где артерии лежат на кости (лучевая, тыльная артерия стопы). Считая пульс, можно определить частоту сердечных сокращений и их силу. У взрослого здорового человека в состоянии покоя частота пульса равна 60-70 ударам в минуту. При раз­личных заболеваниях сердца возможна аритмия - пе­ребои пульса.

С наибольшей скоростью кровь течет в аорте - око­ло 0,5 м/с. В дальнейшем скорость движения падает и в артериях достигает 0,25 м/с, а в капиллярах - прибли­зительно 0,5 мм/с. Медленное течение крови в капилля­рах и большая протяженность последних благоприятст­вуют обмену веществ (общая длина капилляров в орга­низме человека достигает 100 тыс. км, а общая поверх­ность всех капилляров тела - 6300 м 2). Большая раз­ница в скорости течения крови в аорте, капиллярах и венах обусловлена неодинаковой шириной общего сече­ния кровяного русла в его различных участках. Самый узкий такой участок - аорта, а суммарный просвет капилляров в 600-800 раз превышает просвет аорты. Этим объясняется замедление тока крови в капил­лярах.

Движение крови по сосудам регулируется нервно-гуморальными факторами. Импульсы, посылаемые по нервным окончаниям, могут вызывать или сужение, или расширение просвета сосудов. К гладкой мускулатуре стенок сосудов подходят два вида сосудодвигательных нервов: сосудорасширяющие и сосудосуживающие.

Импульсы, идущие по этим нервным волокнам, возника­ют в сосудодвигательном центре продолговатого мозга. При обычном состоянии организма стенки артерий несколько напряжены и их просвет сужен. Из сосудо-двигательного центра по сосудодвигательным нервам непрерывно поступают импульсы, которые и обусловли­вают постоянный тонус. Нервные окончания в стенках сосудов реагируют на изменения давления и химическо­го состава крови, вызывая в них возбуждение. Это возбуждение поступает в центральную нервную систе­му, результатом чего служит рефлекторное изменение деятельности сердечно-сосудистой системы. Таким об­разом, увеличение и уменьшение диаметров сосудов происходит рефлекторным путем, но тот же эффект мо­жет возникнуть и под влиянием гуморальных факто­ров - химических веществ, которые, находятся в крови и поступают сюда с пищей и из различных внутренних органов. Среди них имеют значение сосудорасширя­ющие и сосудосуживающие. Например, гормон гипо­физа - вазопрессин, гормон щитовидной железы - тироксин, гормон надпочечников - адреналин сужива­ют сосуды, усиливают все функции сердца, а гистамин, образующийся в стенках пищеварительного тракта и в любом работающем органе, действует противоположно: расширяет капилляры, не действуя на остальные сосуды. Значительный эффект на работу сердца оказывает изменение содержания в крови калия и каль­ция. Повышение содержания кальция увеличивает частоту и силу сокращений, повышает возбудимость и к проводимость сердца. Калий вызывает прямо противоположное действие.

Расширение и сужение сосудов в различных органах существенно влияет на перераспределение крови в организме. В работающий орган, где сосуды расширены, направляется крови больше, в неработающий орган - \ меньше. Депонирующими органами служат селезенка, печень, подкожная жировая клетчатка.

Из сердца выходят и в сердце впадают кровеносные сосуды. Те из них, в которых кровь течет по направлению к сердцу, называются венами. В артериях кровь передвигается по направлению от сердца к очень мелким кровеносным сосудам - капиллярам.

Самая большая артерия, выходящая непосредственно из левого желудочка и отделяющаяся от него описанными выше клапанами, называется аортой. Она поднимается над сердцем, изгибается и направляется вниз, проходит через грудобрюшную преграду (диафрагму) и спускается в полость живота. От аорты отходят более мелкие артерии, которые направляются к голове, рукам, ногам, брюшным органам и распространяются по всему телу.

Артерии, делясь, распадаются на все меньшие и меньшие веточки, которые, наконец, становятся настолько тонкими, что их можно увидеть лишь под микроскопом - это капилляры, или волосяные сосуды (они тоньше, чем человеческий волос). Капилляры переходят в вены, которые расположены рядом с соответствующей артерией, и направляются к сердцу. Вены соединяются в толстые стволы - верхнюю и нижнюю полые вены, по которым кровь течет в правое предсердие.

Артерии, вены и капилляры отличаются друг от друга по своему строению. Стенка артерии состоит из трех оболочек - внутренней, средней и наружной. Внутренняя оболочка соприкасается с кровью плоскими клетками, наружная состоит главным образом из так называемой соединительной ткани. Средняя оболочка в разных артериях неодинакова. В средней оболочке крупных артерий преобладает эластическая соединительная ткань. В этой оболочке сравнительно мало мышечной ткани, способной к сокращению. В мелких артериях, наоборот, преобладают мышечные (круговые) волокна.

В стенках артерий имеются концевые приборы чувствительных нервов. При их помощи в центральную нервную систему посылаются «сигналы» о высоте кровяного давления, которое рефлекторно снижается или повышается, и о химическом составе крови. Например, если в крови увеличивается количество углекислоты, «сигналы» об этом доходят до дыхательного центра в головном мозгу, а оттуда идут импульсы к органам дыхания, побуждающие к более глубокому частому дыханию.

Тонкая стенка капилляра является продолжением внутренней оболочки артерии и состоит только из одного слоя клеток. Диаметр капилляра - от 5 до 20 микронов (микрон - одна тысячная доля миллиметра). Через тонкие стенки капилляров кислород и питательные вещества переходят в межклеточную жидкость, а из нее в кровь поступают углекислый газ и некоторые продукты обмена веществ в тканях. Таким образом, здесь изменяется химический состав крови, а поэтому изменяется и ее цвет: ярко-красная, алая артериальная кровь превращается в синеватую венозную.

В капилляре различают артериальное колено и венозное колено, переходящее в мелкую вену. В капиллярах, так же как и в артериях, имеется много концевых приборов чувствительных нервов. В венах, как и в артериях, имеются внутренняя оболочка из плоских клеток, мышечные волокна (расположенные продольно и кругообразно) и эластические волокна. Складки внутренней оболочки вен образуют клапаны, которые открываются, когда кровь течет по направлению к сердцу, и закрываются, препятствуя току крови в противоположном направлении. Вены снабжены нервными волокнами. В устьях крупных полых и легочных вен, там, где они впадают в предсердия, расположены чувствительные нервные приборы, реагирующие на колебания венозного давления.

Верхняя полая вена собирает кровь из верхней части туловища и рук, нижняя полая вена - из нижней части туловища, ног и органов брюшной полости. Венозная кровь из желудка, кишечника и некоторых других органов живота, прежде чем попасть в нижнюю полую вену, собирается в воротную вену, которая в печени распадается на капилляры. Потом кровь, пройдя через ткань печени, попадает в печеночную вену, которая впадает в нижнюю полую вену.

Путь крови, который она проделывает от левого желудочка до правого предсердия, называется большим кругом (правильнее было бы называть его полукругом) кровообращения. На этом пути кровеносные сосуды снабжают кровью большую часть тела, за исключением органов, обеспечиваемых кровью из малого круга кровообращения.

Из правого желудочка выходит легочная артерия. Она распадается на ряд мелких артерий, которые переходят в густую сеть капилляров в легочных пузырьках, где постоянно происходит обмен воздуха при дыхании. Из легочных капилляров кровь собирается в легочные вены, впадающие в левое предсердие. Путь крови от правого желудочка до левого предсердия называется малым кругом кровообращения.

В капиллярах малого круга кровообращения, оплетающих густой сетью пузырьки (альеволы) легких, кровь насыщается кислородом, поступающим в легкие с вдыхаемым воздухом, и теряет углекислый газ, который удаляется с выдыхаемым воздухом. Следовательно, здесь, как и в капиллярах большого круга кровообращения, изменяется химический состав крови, но в обратном направлении, и теперь она опять становится ярко-красной. Эта богатая кислородом алая кровь течет в сердце, а оттуда в артерии большого круга кровообращения.

Все ткани и органы, в частности само сердце, нуждаются в постоянном притоке кислорода, который должен быть увеличен во время их усиленной работы. Это достигается двумя путями. Во-первых, усиливается снабжение кровью работающего органа. Во-вторых, кровь больше насыщается кислородом благодаря более глубокому и более частому дыханию. Таким образом, дыхание и кровообращение тесно связаны между собой.

Популярные статьи сайта из раздела «Медицина и здоровье»

Популярные статьи сайта из раздела «Сны и магия»

Когда снятся вещие сны?

Достаточно ясные образы из сна производят неизгладимое впечатление на проснувшегося человека. Если через какое-то время события во сне воплощаются наяву, то люди убеждаются в том, что данный сон был вещим. Вещие сны отличаются от обычных тем, что они, за редким исключением, имеют прямое значение. Вещий сон всегда яркий, запоминающийся...
.

В человеческом организме кровеносная система устроена так, чтобы полностью отвечать его внутренним потребностям. Немаловажную роль в продвижении крови играет наличие замкнутой системы, в которой разделены артериальный и венозный кровяные потоки. И осуществляется это с помощью наличия кругов кровообращения.

Историческая справка

В прошлом, когда под рукой у ученых еще не было информативных приборов, способных изучать физиологические процессы на живом организме, величайшие деятели науки вынуждены были заниматься поиском анатомических особенностей у трупов. Естественно, что у умершего человека сердце не сокращается, поэтому некоторые нюансы приходилось домысливать самостоятельно, а иногда и попросту фантазировать. Так, еще во втором веке нашей эры Клавдий Гален, обучающийся по трудам самого Гиппократа, предполагал, что артерии содержат в своем просвете воздух вместо крови. На протяжении дальнейших столетий было выполнено немало попыток объединить и связать воедино имеющиеся анатомические данные с позиции физиологии. Все ученые знали и понимали, как устроена система кровообращения, но вот как это работает?

Колоссальный вклад в систематизацию данных по работе сердца внесли ученые Мигель Сервет и Уильям Гарвей в 16-м веке. Гарвей, ученый, впервые описавший большой и малый круги кровообращения, в 1616 году определил наличие двух кругов, но вот как связаны между собой артериальное и венозное русло, он объяснить в своих трудах не мог. И лишь впоследствии, в 17-м веке, Марчелло Мальпиги, один из первых начавший использовать микроскоп в своей практике, открыл и описал наличие мельчайших, невидимых невооруженным глазом капилляров, которые служат связующим звеном в кругах кровообращения.

Филогенез, или эволюция кругов кровообращения

В связи с тем, что по мере эволюции животные класса позвоночных становились все более прогрессивными в анатомо-физиологическом отношении, им требовалось сложное устройство и сердечно-сосудистой системы. Так, для более быстрого движения жидкой внутренней среды в организме позвоночного животного появилась необходимость замкнутой системы циркуляции крови. По сравнению с иными классами животного царства (например, с членистоногими или с червями), у хордовых появляются зачатки замкнутой сосудистой системы. И если у ланцетника, к примеру, отсутствует сердце, но существует брюшная и спинная аорта, то у рыб, амфибий (земноводных), рептилий (пресмыкающихся) появляется двух- и трехкамерное сердце соответственно, а у птиц и млекопитающих – четырехкамерное сердце, особенностью которого является средоточие в нем двух кругов кровообращения, не смешивающихся между собой.

Таким образом, наличие у птиц, млекопитающих и человека, в частности, двух разделенных кругов кровообращения – это не что иное, как эволюция кровеносной системы, необходимая для лучшего приспособления к условиям окружающей среды.

Анатомические особенности кругов кровообращения

Круги кровообращения – это совокупность кровеносных сосудов, представляющая собой замкнутую систему для поступления во внутренние органы кислорода и питательных веществ посредством газообмена и обмена нутриентами, а также для выведения из клеток двуокиси углерода и иных продуктов метаболизма. Для организма человека характерны два круга – системный, или большой круг, а также легочной, называемый также малым кругом.

Видео: круги кровообращения, мини-лекция и анимация


Большой круг кровообращения

Основной функцией большого круга является обеспечение газообмена во всех внутренних органах, кроме легких. Он начинается в полости левого желудочка; представлен аортой и ее ответвлениями, артериальным руслом печени, почек, головного мозга, скелетной мускулатуры и других органов. Далее данный круг продолжается капиллярной сетью и венозным руслом перечисленных органов; и посредством впадения полой вены в полость правого предсердия заканчивается в последнем.

Итак, как уже сказано, начало большого круга – это полость левого желудочка. Сюда направляется артериальный кровяной поток, содержащий в себе большую часть кислорода, нежели двуокиси углерода. Этот поток в левый желудочек попадает непосредственно из кровеносной системы легких, то есть из малого круга. Артериальный поток из левого желудочка посредством аортального клапана проталкивается в крупнейший магистральный сосуд – в аорту. Аорту образно можно сравнить со своеобразным деревом, которое имеет множество ответвлений, потому что от нее отходят артерии ко внутренним органам (к печени, почкам, желудочно-кишечному тракту, к головному мозгу – через систему сонных артерий, к скелетным мышцам, к подкожно-жировой клетчатке и др). Органные артерии, также имеющие многочисленные разветвления и носящие соответственные анатомии названия, несут кислород в каждый орган.

В тканях внутренних органов артериальные сосуды подразделяются на сосуды все меньшего и меньшего диаметра, и в результате формируется капиллярная сеть. Капилляры – это наимельчайшие сосуды, практически не имеющие среднего мышечного слоя, а представленные внутренней оболочкой – интимой, выстланной эндотелиальными клетками. Просветы между этими клетками на микроскопическом уровне настолько велики по сравнению с другими сосудами, что позволяют беспрепятственно проникать белкам, газам и даже форменным элементам в межклеточную жидкость окружающих тканей. Таким образом, между капилляром с артериальной кровью и жидкой межклеточной средой в том или ином органе происходит интенсивный газообмен и обмен других веществ. Кислород проникает из капилляра, а углекислота, как продукт метаболизма клеток – в капилляр. Осуществляется клеточный этап дыхания.

После того, как в ткани перешло большее количество кислорода, а из тканей была удалена вся углекислота, кровь становится венозной. Весь газообмен осуществляется с каждым новым притоком крови, и за тот промежуток времени, пока она движется по капилляру в сторону венулы – сосудика, собирающего венозную кровь. То есть с каждым сердечным циклом в том или ином участке организма осуществляется поступление кислорода в ткани и удаление из них двуокиси углерода.

Указанные венулы объединяются в вены покрупнее, и формируется венозное русло. Вены, аналогично артериям, носят те названия, в каком органе они располагаются (почечные, мозговые и др). Из крупных венозных стволов формируются притоки верхней и нижней полой вены, а последние затем впадают в правое предсердие.

Особенности кровотока в органах большого круга

Некоторые из внутренних органов имеют свои особенности. Так, например, в печени существует не только печеночная вена, «относящая» венозный поток от нее, но и воротная, которая наоборот, приносит кровь в печеночную ткань, где выполняется очищение крови, и только потом кровь собирается в притоки печеночной вены, чтобы попасть к большому кругу. Воротная вена приносит кровь от желудка и кишечника, поэтому все, что человек съел или выпил, должно пройти своеобразную «очистку» в печени.

Кроме печени, определенные нюансы существуют и в других органах, например, в тканях гипофиза и почек. Так, в гипофизе отмечается наличие так называемой «чудесной» капиллярной сети, потому что артерии, приносящие кровь в гипофиз из гипоталамуса, разделяются на капилляры, которые затем собираются в венулы. Венулы, после того, как кровь с молекулами релизинг-гормонов собрана, вновь разделяются на капилляры, а затем уже формируются вены, относящие кровь от гипофиза. В почках дважды на капилляры разделяется артериальная сеть, что связано с процессами выделения и обратного всасывания в клетках почек – в нефронах.

Малый круг кровообращения

Его функцией является осуществление газообменных процессов в легочной ткани с целью насыщения «отработанной» венозной крови кислородными молекулами. Он начинается в полости правого желудочка, куда из право-предсердной камеры (из «конечной точки» большого круга) поступает венозный кровяной поток с крайне незначительным количеством кислорода и с большим содержанием углекислоты. Эта кровь посредством клапана легочной артерии продвигается в один из крупных сосудов, называемый легочным стволом. Далее венозный поток двигается по артериальному руслу в легочной ткани, которое также распадается на сеть из капилляров. По аналогии с капиллярами в других тканях, в них осуществляется газообмен, вот только в просвет капилляра поступают молекулы кислорода, а в альвеолоциты (клетки альвеол) проникает углекислота. В альвеолы при каждом акте дыхания поступает воздух из окружающей среды, из которого кислород через клеточные мембраны проникает в плазму крови. С выдыхаемым воздухом при выдохе поступившая в альвеолы углекислота выводится наружу.

После насыщения молекулами O 2 кровь приобретает свойства артериальной, протекает по венулам и в конечном итоге добирается до легочных вен. Последние в составе четырех или пяти штук открываются в полость левого предсердия. В результате, через правую половину сердца протекает венозный кровяной поток, а через левую половину – артериальный; и в норме эти потоки смешиваться не должны.

В ткани легких имеется двойная сеть капилляров. При помощи первой осуществляются газообменные процессы с целью обогащения венозного потока молекулами кислорода (взаимосвязь непосредственно с малым кругом), а во второй осуществляется питание самой легочной ткани кислородом и нутриентами (взаимосвязь с большим кругом).


Дополнительные круги кровообращения

Данными понятиями принято выделять кровоснабжение отдельных органов. Так, например, к сердцу, которое больше других нуждается в кислороде, артериальный приток осуществляется из ответвлений аорты в самом ее начале, которые получили название правой и левой коронарных (венечных) артерий. В капиллярах миокарда происходит интенсивный газообмен, а венозный отток осуществляется в коронарные вены. Последние собираются в коронарный синус, который открывается прямо в право-предсердную камеру. Таким путем осуществляется сердечный, или коронарный круг кровообращения.

венечный (коронарный) круг кровообращения в сердце

Виллизиев круг представляет собой замкнутую артериальную сеть из мозговых артерий. Мозговой круг обеспечивает дополнительное кровоснабжение мозга при нарушении мозгового кровотока по другим артериям. Это защищает столь важный орган от недостатка кислорода, или гипоксии. Мозговой круг кровообращения представлен начальным сегментом передней мозговой артерии, начальным сегментом задней мозговой артерии, передними и задними соединительными артериями, внутренними сонными артериями.

виллизиев круг в мозге (классический вариант строения)

Плацентарный круг кровообращения функционирует только во время вынашивания плода женщиной и осуществляет функцию «дыхания» у ребенка. Плацента формируется, начиная с 3-6 недели беременности, и начинает функционировать в полную силу с 12-й недели. В связи с тем, что легкие плода не работают, поступление кислорода в его кровь осуществляется посредством потока артериальной крови в пупочную вену ребенка.

кровообращение плода до рождения

Таким образом, всю кровеносную систему человека можно условно разделить на отдельные взаимосвязанные участки, выполняющие свои функции. Правильное функционирование таких участков, или кругов кровообращения, является залогом здоровой работы сердца, сосудов и всего организма в целом.

1. Изменение состава крови в большом и малом кругах кровообращения

К органам кровообращения человека и млекопитающих относят сердце и сосуды. В системе кровеносных сосудов различают артерии, капилляры и вены. Артерии несут кровь от сердца под большим давлением, поэтому стенки этих сосудов толстые и упругие. Капилляры – это самые тонкие сосуды, их стенки состоят из одного слоя клеток. Через стенки капилляров легко проникают различные вещества. Вены несут кровь к сердцу под небольшим давлением, поэтому их стенки тонкие и неупругие. Внутри вен есть полулунные клапаны. Стенки вен сжимаются мышцами, что способствует току крови по венам.

Все сосуды образуют два круга кровообращения: большой и малый. Большой круг начинается в левом желудочке. От него отходит аорта, которая образует дугу. От дуги аорты отходят артерии. От начальной части аорты отходят коронарные сосуды, которые снабжают кровью миокард. Часть аорты, находящаяся в грудной клетке, называется грудной аортой, а та часть, которая находится в брюшной полости, – брюшной аортой. Аорта ветвится на артерии, артерии на артериолы, артериолы на капилляры. Из капилляров большого круга ко всем органам и тканям поступают кислород и питательные вещества, а из клеток в капилляры поступают углекислый газ и продукты обмена. В капиллярах кровь превращается из артериальной в венозную.

Очищение крови от ядовитых продуктов распада происходит в сосудах печени и почек. Кровь от пищеварительного тракта, поджелудочной железы и селезенки поступает в воротную вену печени. В печени воротная вена разветвляется на капилляры, которые затем снова объединяются в общий ствол печеночной вены. Эта вена впадает в нижнюю полую вену. Таким образом, вся кровь от органов брюшной полости до поступления в большой круг проходит через две капиллярные сети: через капилляры самих этих органов и через капилляры печени. Воротная система печени обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике. В почках тоже имеется две капиллярные сети: сеть почечных клубочков, через которую, плазма крови, содержащая вредные продукты обмена (мочевину, мочевую кислоту), переходит в полость капсулы нефрона, и капиллярная сеть, оплетающая извитые канальцы.

Капилляры сливаются в венулы, затем в вены. В конце концов вся кровь поступает в верхнюю и нижнюю полые вены, которые впадают в правое предсердие.

Малый круг кровообращения начинается в правом желудочке и заканчивается в левом предсердии. Венозная кровь из правого желудочка поступает в легочную артерию, затем в легкие. В легких происходит газообмен, венозная кровь превращается в артериальную. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Таким образом, главным отличием в составе крови в малом круге кровообращения является то, что по артериальным сосудам малого круга течет венозная кровь, содержащая много углекислого газа, а по венозным сосудам малого круга течет артериальная кровь, обогащенная кислородом.

2. Выход позвоночных на сушу. Усложнение организации земноводных по сравнению с рыбами

Выход позвоночных на сушу начался в девоне, когда появились первые древние земноводные. Земноводные произошли от древних кистеперых рыб (в наше время сохранился только один представитель этих рыб – латимерия). У кистеперых рыб, как и у двоякодышащих рыб, было жаберное и легочное дыхание. Кроме того, в основании парных плавников у этих рыб есть мясистая лопасть; скелет плавников кистеперых напоминает скелет конечностей наземных позвоночных. Древние земноводные (лабиринтодонты, батрахозавры обычно их объединяют под общим названием стегоцефалы) достигали больших размеров (длина только черепа у них была около 1 м), их туловище было покрыто костными щитками. До середины карбона, когда появились пресмыкающиеся, древние земноводные были единственными наземными позвоночными животными.

Современные земноводные – это класс подтипа позвоночных животных. Они сохраняют тесную связь с водной средой, т.к. размножаются в воде.

В связи с выходом на сушу у земноводных развилось легочное дыхание (у рыб дыхание жаберное, исключая двоякодышащих и кистеперых, у которых дыхание не только жаберное, но может быть и легочным). У земноводных в связи с переходом к легочному типу дыхания появились два круга кровообращения и трехкамерное сердце (у рыб – один круг и двухкамерное сердце; исключением являются опять-таки двоякодышащие и кистеперые). Однако легкие у земноводных развиты слабо, поэтому важную роль в газообмене играет кожное дыхание. Кожа у современных земноводных голая, имеет множество желез (у рыб кожа покрыта чешуями). Кожа отделена от мышц полостями, заполненными жидкостью, – это уменьшает опасность высыхания и служит в качестве амортизаторов при передвижении по суше. Кроме того, благодаря этому приспособлению облегчается газообмен через кожу.

Значительные изменения произошли у земноводных в строении скелета. Большинство земноводных не имеет хвоста (исключение – отряд хвостатые: тритоны, саламандры) и передвигается с помощью задних конечностей, прыжками. Голова подвижно сочленяется с туловищем (появляется шейный отдел позвоночника с одним шейным позвонком) – это улучшает ориентацию в воздушной среде.

Передняя конечность кистеперой рыбы Sauripterus (I и II) и пермской панцирной амфибии (III):
1 – гомолог плечевой кости, 2 – гомолог лучевой кости, 3 – гомолог локтевой кости

Для снижения веса (при переходе из водной среды в воздушную вес тела по закону Архимеда возрастает) в черепе земноводных есть много хрящевых элементов, жаберные дуги редуцируются. Ребра у наиболее высокоорганизованных бесхвостых земноводных тоже исчезают. Позвоночный столб у земноводных в большей степени разделен на отделы, чем у рыб: в позвоночном столбе у них есть шейный, туловищный, крестцовый (представлен одним позвонком) и хвостовой отделы (у рыб различают только туловищный и хвостовой отделы; от туловищного отдела у них отходят ребра).

Мышечная система у земноводных организована гораздо разнообразнее, чем у рыб. У земноводных почти исчезает сегментация мышц, появляются разные группы мышц (например, мышцы свободных конечностей, которых нет у рыб). Сложнее устроена у земноводных и нервная система: передний мозг у них крупнее среднего, разделен на два полушария. Мозжечок развит слабее, чем у рыб. Участки спинного мозга, от которых отходят двигательные нервы, у них утолщены. Совершенствуются и органы чувств. В органе слуха появляется среднее ухо (у рыб только внутреннее ухо) – это позволяет воспринимать звуковые колебания в воздушной среде. Глаза прикрыты веками, защищающими их от высыхания и засорения. Глаза земноводных приспособлены к видению в двух средах: водной и воздушной.

Размножение у земноводных происходит в воде. Оплодотворение, как правило, наружное. Развитие идет с метаморфозом. Из икринки появляется личинка, очень похожая на рыбу. У нее, как и у рыб, один круг кровообращения, двухкамерное сердце, жаберное дыхание, есть орган боковой линии, плавает она при помощи хвоста. Такая личиночная стадия указывает на то, что предками земноводных были древние рыбы.

Земноводные, как и рыбы, относятся к анамниям – животным, у которых в процессе эмбрионального (зародышевого) развития не возникает зародышевой оболочки (амниона) и особого зародышевого органа (аллантоиса).

Билет № 8

1. Работа сердца и ее регуляция. Гигиена кровеносной системы

К органам кровообращения человека и млекопитающих относят сердце и сосуды. Сердце человека и млекопитающих четырехкамерное, состоит из двух предсердий и двух желудочков. Между правым предсердием и правым желудочком находится трехстворчатый клапан, а между левым предсердием и левым желудочком – двустворчатый (митральный) клапан. Из левого желудочка выходит аорта, а из правого – легочная артерия. На границе этих сосудов и желудочков имеются полулунные клапаны. Клапаны сердца обеспечивают однонаправленный ток крови в сердце – от предсердий к желудочкам и далее в артериальную систему.

1 - левое предсердие; 2 - лёгочные вены (показаны лишь две) ; 3 - левый предсердно-жедудочковый клапан (двустворчатый); 4 - левый желудочек; 5 - межжелудочковая перегородка; 6 - правый желудочек; 7 - нижняя полая вена; 8 - правый предсердно-желудочковый клапан (трехстворчатый); 9 - правое предсердие; 10 - синусно-предсердный узел; 11 - верхняя полая вена; 12 - предсердно-желудочковый узел

Стенка сердца состоит из трех слоев: эндокарда – это внутренний эпителиальный слой, миокарда – это средний мышечный слой и эпикарда – это наружный слой, состоящий из соединительной ткани и покрытый серозным эпителием. Основную массу составляет миокард – поперечно-полосатая мышца, которая по ряду признаков отличается от поперечно-полосатой скелетной мышцы. Сердце обладает автоматией – способностью возбуждаться и сокращаться в отсутствие внешних воздействий (скелетная мышца в отличие от миокарда сокращается только в ответ на нервные импульсы, которые приходят к ней по нервным волокнам). Снаружи сердце покрыто околосердечной сумкой – перикардом. Стенки перикарда выделяют жидкость, которая уменьшает трение сердца при сокращении.


Р – возбуждение предсердий; QRS – возбуждение желудочков;
Т – снижение активности работы желудочков

Работа сердца состоит в ритмическом нагнетании в артериальную систему крови, которая поступает в сердце из большого и малого кругов кровообращения по венам (по полым венам венозная кровь поступает в правое предсердие, а по легочным венам – артериальная кровь в левое предсердие). Камеры сердца в определенной последовательности сокращаются (сокращение сердца называют систолой) и расслабляются (расслабление сердца называют диастолой). Первая фаза – это систола предсердий, вторая фаза – систола желудочков (предсердия в это время расслаблены), третья фаза – общая диастола предсердий и желудочков. Все три фазы вместе составляют сердечный цикл. У взрослого человека он длится в среднем 0,8 с (частота сердечных сокращений 75 уд./мин), при этом первая фаза длится 0,1 с, вторая – 0,3 с, третья – 0,4 с. Такое попеременное сокращение и расслабление позволяет миокарду работать в течение всей жизни человека, не утомляясь.

Регуляция работы сердца осуществляется нервным и гуморальным путем. Нервная регуляция обеспечивается вегетативной (автономной) нервной системой, ее двумя отделами – симпатическим и парасимпатическим. Центр симпатической регуляции сердца лежит в грудном отделе спинного мозга. Здесь в боковых рогах спинного мозга находятся тела первых (преганглионарных) симпатических нейронов. Длинные отростки этих нейронов (преганглионарные аксоны) выходят за пределы спинного мозга и образуют синаптические переключения на телах вторых (постганглионарных) симпатических нейронов, которые находятся в симпатических ганглиях, образующих две симпатические цепочки вдоль спинного мозга.

От тел постганглионарных нейронов отходят постганглионарные симпатические аксоны, которые заканчиваются в миокарде. Из окончаний этих аксонов выделяется передатчик (медиатор) норадреналин. Под влиянием норадреналина увеличиваются частота и сила сердечных сокращений (положительные хронотропный и инотропный эффекты), возрастает возбудимость миокарда, увеличивается скорость проведения возбуждения. Все это приводит к увеличению производительности сердца. Такие изменения необходимы при физической нагрузке, при стрессе, т.к. в этих случаях требуется усиление кровотока.

Центр парасимпатической регуляции сердца лежит в продолговатом мозгу; там находятся тела парасимпатических преганглионарных нейронов. Аксоны этих нейронов идут, не прерываясь, до сердца, т.к. тела постганглионарных парасимпатических нейронов лежат в самом сердце. Из окончаний этих аксонов выделяется другой медиатор – ацетилхолин. Он вызывает прямо противоположные эффекты (отрицательные хроно- и инотропный эффекты, уменьшение возбудимости, скорости проведения возбуждения по миокарду). Парасимпатическая система регулирует работу сердца в состоянии покоя. Вегетативная регуляция сердца находится под влиянием вышележащих отделов центральной нервной системы.

В продолговатом мозгу лежит также сосудодвигательный центр – он регулирует просвет сосудов. Возбуждение этого центра приводит к сужению (констрикции) сосудов.

Важную роль в регуляции сердечно-сосудистой системы играют и гуморальные факторы, связанные с жидкой средой организма. Основной гормон, который регулирует работу сердца и сосудов, – это адреналин. Он синтезируется в клетках мозгового слоя надпочечников. Эффекты адреналина те же, что и эффекты симпатического медиатора норадреналина, однако развиваются они медленнее. Гормоны щитовидной железы тироксин и трийодтиронин также увеличивают частоту сердечных сокращений. Влияют на работу сердца и различные ионы, которые поступают в него с током крови. Так, например, ионы кальция усиливают, а ионы калия подавляют работу сердца. Нервная и гуморальная регуляция сердечно-сосудистой системы тесно взаимосвязаны. Нервная регуляция обеспечивает срочные влияния на сердце, гуморальная регуляция оказывает более медленные и длительные воздействия.

Гигиена сердечно-сосудистой системы подразумевает развитие, тренировку и укрепление этой системы. Благотворное влияние оказывает на ее деятельность физическая работа на свежем воздухе. Однако чрезмерные физические нагрузки, особенно у нетренированного человека, могут вызвать серьезные нарушения работы сердца и сосудов. Наибольший вред приносят, конечно же, никотин и алкоголь. Они отравляют миокард, нарушают нормальную регуляцию сердца и сосудов. Это выражается в возникновении спазмов коронарных, т.е. питающих сам миокард, сосудов. В результате из-за недостаточного кровотока в миокарде может образоваться зона отмершей ткани, или некроза, – возникнет инфаркт миокарда. Следствием спазма сосудов может стать также развитие гипертензии – стойкого повышения артериального давления; это также влечет за собой нарушение работы сердца.

К наиболее распространенным заболеваниям сердца относятся ишемическая болезнь сердца (в том числе – острый инфаркт миокарда), воспалительные процессы в сердце (миокардит, перикардит), пороки сердца. Нарушения работы сердца часто выражаются в виде аритмий – нарушений ритма сердца. Для исследования работы сердца чаще всего применяют электрокардиографию. Этот метод позволяет оценить, как происходит возбуждение сердца, как это возбуждение распространяется по проводящей системе сердца.

2. Бактерии. Особенности их строения и жизнедеятельности, роль в природе и жизни человека

Бактерии – это царство, относящееся к надцарству доядерных организмов, или прокариот – одноклеточных организмов, в клетках которых нет оформленного ядра. Функцию ядра у них выполняет ядерное вещество – молекула ДНК, свернутая в кольцо (нуклеоид). Нуклеоид расположен в цитоплазме клетки.

В бактериальной клетке отсутствуют митохондрии, пластиды и многие другие органоиды, которые есть в эукариотических клетках (имеющих оформленное ядро). Функции этих органоидов выполняют полости, отграниченные мембраной (мезосомы). В бактериальной клетке есть рибосомы. Клетка отделена от окружающей среды мембраной и плотной клеточной оболочкой. Иногда поверх оболочки есть еще коллоидная (полужидкая) капсула.

Схема строения прокариотической клетки (бактериальная клетка в продольном разрезе):
Гли – гранулы гликогена; Ж – жгутик; Кпс – капсула; КСт – клеточная стенка; Ли – липидные капельки; ПГМ – поли-р-гидроксимасляная кислота; п – пили; Пз – плазмида; ПМ – плазматическая мембрана; ПФ – гранулы полифосфата; Р – рибосомы и полисомы; Ц – цитоплазма Я – ядерное вещество (нуклеоид); S – включения серы

Бактериальные клетки могут быть разной формы: шаровидной (кокки), палочковидной (бациллы), спиралевидной (спириллы), изогнутой (вибрионы). Подвижные бактерии имеют один или несколько жгутиков. Встречаются среди бактерий и колониальные формы.

Размножаются бактерии делением клетки пополам с образованием поперечной перегородки. Сначала делится нуклеоид, затем цитоплазма. Но у бактерий бывает и «половой» процесс, например, конъюгация у кишечной палочки. При этом происходит обмен генетической информацией.

Существуют также бактерии-автотрофы, способные сами синтезировать органические вещества. К ним относятся бактерии, в цитоплазме которых есть фотосинтезирующий пигмент, например, бактериохлорофилл. В процессе фотосинтеза эти бактерии не образуют кислорода, т.к. источником протонов водорода у них служит не вода, а сероводород или молекулярный водород. Исключением здесь являются цианобактерии, которые относят также к синезеленым водорослям.

Есть также бактерии, которые синтезируют органические вещества, используя энергию, выделяющуюся при окислении неорганических соединений. Это бактерии-хемотрофы (хемосинтетики). Процесс хемосинтеза был открыт в 1887 г. великим русским ученым С.Н. Виноградским.

По типу дыхания бактерии делят на аэробы (им для дыхания необходим кислород) и анаэробы (живут в бескислородной среде). Анаэробы – это бактерии брожения (молочнокислого, уксуснокислого, спиртового и др.). Брожение играет большую роль в круговороте веществ в природе и имеет важное практическое значение.

Бактерии часто образуют споры: содержимое бактериальной клетки принимает форму шара, вода удаляется, образуется новая оболочка. В таком виде бактерии переносят неблагоприятные условия существования. Споры служат также для распространения бактерий.

Бактерии обитают везде. В воздухе они поднимаются в верхние слои атмосферы (иногда до 30 км). В почве бактерии в основном живут в плодородном слое (гумусе). В 1 г плодородной почвы может содержаться до 3 млрд бактерий. Азотобактерии, нитрифицирующие бактерии, бактерии гниения играют важную роль в почвообразовании.

Бактерии живут и в воде, особенно в поверхностных слоях. Полезные водные бактерии участвуют в минерализации органических остатков в водоемах.

Возбудители могут передаваться и через пищевые продукты. Например, бацилла Clostridium botulinum размножается в бескислородной среде при нарушении технологии консервирования продуктов. Ее токсин (яд, который она выделяет в процессе обмена веществ) – это белок, который плохо расщепляется в пищеварительном тракте; 1 г этого токсина достаточно, чтобы убить примерно 60 млрд мышей!

К мерам борьбы с инфекционными заболеваниями относятся дезинфекция, ультрафиолетовое облучение, стерилизация (нагрев до 120 °С), пастеризация (нагрев продуктов несколько раз до 60–70 °С), уничтожение переносчиков, изоляция больных. Инфекционные бактериальные заболевания лечат антибиотиками.

Бактерии могут жить и в симбиозе с другими организмами. Это бактерии, которые поселяются в пищеварительном тракте животных и человека и помогают расщеплять и усваивать пищу. В кишечнике человека имеется микробная флора (микрофлора) – это бактерии (кишечная палочка, бифидобактерии, лактобактерии), которые подавляют развитие патогенных бактерий, синтезируют витамины (например, кишечная палочка синтезирует необходимый для свертывания крови витамин К), способствуют перевариванию пищи. При подавлении микрофлоры антибиотиками может развиться тяжелое состояние – дисбактериоз.

Главная роль бактерий в природе заключается в их участии в круговороте веществ. Только благодаря бактериям происходят превращения веществ, без которых невозможна жизнь на Земле. Благодаря бактериям и грибам растительные остатки разлагаются с образованием углекислого газа, который затем в процессе фотосинтеза включаются вновь в состав органических веществ. Благодаря бактериям включаются в круговорот веществ азот и сера. Без бактерий все имеющиеся на Земле атомы углерода и азота оказались бы в связанном состоянии в телах погибших организмов.

Человек в своей хозяйственной деятельности широко использует различные свойства бактерий. Так, способность бактерий вызывать брожение (бактерии молочнокислого, уксуснокислого брожения) используется для приготовления соответствующих продуктов, способность клубеньковых бактерий усваивать атмосферный азот – для удобрения почвы, обогащения ее азотными удобрениями, способность бактерий синтезировать в процессе обмена веществ витамины, аминокислоты и другие соединения – в бактериальном синтезе этих соединений в промышленном масштабе.

Бактерии – важный объект научных исследований для генетиков, биохимиков, биофизиков. Они широко используются в современной биотехнологии.

Отрицательное значений имеют, прежде всего, болезнетворные бактерии. Приносят вред также бактерии, вызывающие порчу продуктов (бактерии гниения и брожения).


1 – микрококки, 2 – диплококки, 3 – стрептококки, 4 – стафилококки,
5 – сарцины, 6 – палочковидные бактерии, 7 – спириллы, 8 – вибрионы

Бактерии существовали на протяжении всей геологической истории Земли. Первыми организмами на Земле были, по-видимому, гетеротрофные бактерии. В архейской эре цианобактерии (синезеленые водоросли) начали выделять в атмосферу Земли кислород. Это создало условия для существования на Земле организмов, дышащих кислородом (аэробных организмов).

Билет № 9

1. Пищеварение, роль пищеварительных желез. Значение всасывания питательных веществ

Пищеварение включает механическую переработку пищи, ее расщепление с помощью пищеварительных ферментов, всасывание питательных веществ и выведение из организма непереваренных остатков. Все эти процессы идут в пищеварительном тракте.

В пищеварительном тракте различают ротовую полость, глотку, пищевод, желудок, тонкий и толстый кишечник, прямую кишку. В начальный отдел тонкого кишечника – двенадцатиперстную кишку – впадают протоки двух крупных пищеварительных желез: печени и поджелудочной железы. В ротовую полость открываются протоки трех пар крупных слюнных желез (околоушной, подъязычной и подчелюстной) и множество мелких желез. В стенках желудка и кишечника также имеется множество мелких пищеварительных желез. Пищеварительные железы выделяют секреты – пищеварительные соки. В них содержатся ферменты – биологические катализаторы белковой природы. Под влиянием пищеварительных ферментов и некоторых других соединений происходит расщепление пищи – сложные органические соединения расщепляются до простых.

В ротовой полости происходит механическая переработка пищи: пища пережевывается зубами. У человека 32 зуба. Та часть зуба, которая выступает над поверхностью челюсти, называется коронкой. Она состоит из дентина и покрыта эмалью. Эмаль – это плотное вещество, она защищает зуб от повреждения.

На языке находится множество вкусовых рецепторов: у корня языка расположены рецепторы, воспринимающие горький вкус, на кончике языка – рецепторы сладкого вкуса, по бокам языка – рецепторы кислого и соленого вкусов.

В ротовой полости выделяется слюна. На 98–99% она состоит из воды и пищеварительных ферментов – амилазы (расщепляет углеводы до мальтозы) и мальтазы (расщепляет мальтозу на две молекулы глюкозы). Ферменты слюны активны только в щелочной среде. В состав слюны входят также муцин (слизистое вещество) и лизоцим (бактерицидное вещество). В сутки выделяется от 600 до 1500 мл слюны.

В желудке продолжается расщепление пищи. В стенке желудка есть клетки, которые выделяют пищеварительный фермент в неактивной форме – пепсиноген. Эти клетки называют главными. Пепсиноген переходит в активную форму – пепсин – под влиянием соляной кислоты, которая выделяется обкладочными клетками. Третий вид клеток стенки желудка – добавочные – выделяют мукоидный секрет, который защищает стенки желудка от действия на них пепсина.

Пепсин – это фермент, который расщепляет белки до пептидов. Кроме того, в желудочном соке есть фермент (липаза), который расщепляет жир молока; особенно важно наличие этого фермента у грудных детей. Ферменты желудочного сока не влияют на углеводы. Но какое-то время расщепление углеводов продолжается под действием ферментов слюны, оставшейся внутри пищевого комка. Ферменты желудочного сока активны в кислой среде. Объем желудка у взрослого человека равен примерно 3 л.

Пища в желудке находится в течение 3–4 ч, затем она порциями переходит в тонкий кишечник. В двенадцатиперстной кишке на пищу действует поджелудочный сок. Это бесцветная жидкость со щелочной реакцией. Он содержит ферменты, которые действуют на разные виды пищи. Липазы действуют на эмульгированные жиры, расщепляя их до жирных кислот и глицерина, амилаза и мальтаза – на углеводы, расщепляя их до глюкозы, трипсин – на пептиды, расщепляя их до аминокислот.

Эмульгирование жиров (дробление их на мельчайшие капли, увеличивающее поверхность взаимодействия жиров с ферментами) достигается за счет желчи, которая синтезируется в печени. Желчь скапливается в желчном пузыре, а затем по желчному протоку поступает в двенадцатиперстную кишку. Желчь также активирует липазы и усиливает моторику кишечника.

В слизистой тонкого кишечника есть множество желез, которые выделяют кишечный сок. Ферменты этого сока действуют на разные виды пищи.

Вслед за перевариванием пищи начинается ее всасывание. Всасывание происходит в основном в тонком кишечнике, на слизистой оболочке которого имеются ворсинки. Внутри ворсинок проходят кровеносные и лимфатические сосуды. На 1 см 2 поверхности слизистой находится до 2,5 тыс. ворсинок, это увеличивает поверхность всасывания до 400–500 м 2 .

Аминокислоты, глюкоза, витамины, минеральные соли в виде водных растворов всасываются в кровь, а жирные кислоты и глицерин, образовавшиеся при расщеплении жиров, переходят в эпителиальные клетки ворсинок. Здесь из них образуются свойственные человеческому организму молекулы жира, которые поступают сначала в лимфу, а потом уже в кровь. В толстом кишечнике главным образом всасывается вода. Здесь в симбиозе с человеком живет огромное количество бактерий. В кишечнике человека имеется микробная флора (микрофлора) – это бактерии (кишечная палочка, бифидобактерии, лактобактерии), которые подавляют развитие патогенных бактерий, синтезируют витамины (например, кишечная палочка синтезирует необходимый для свертывания крови витамин К), способствуют перевариванию пищи. При их участии расщепляется целлюлоза, которая проходит весь пищеварительный тракт без изменений. При подавлении микрофлоры антибиотиками может развиться тяжелое состояние – дисбактериоз.

Значение всасывания заключается в том, что благодаря этому процессу в организм поступают все необходимые органические вещества, минеральные соли, вода и витамины.

2. Основные систематические категории растений и животных. Признаки вида

Все многообразие живых организмов изучает систематика. Животные и растения относятся к надцарству Ядерные организмы (Эукариоты). В этом надцарстве выделяют царство Растения, царство Животные и царство Грибы. В царстве Растения выделяют подцарства (например, подцарство Высшие растения). В подцарствах различают отделы (например, отдел Покрытосеменные растения в подцарстве Высшие растения). Отделы делят на классы (например, в отделе Покрытосеменные растения есть два класса: Двудольные и Однодольные). Классы делят на порядки (например, порядок Розоцветные в классе Двудольные), порядки – на семейства (например, семейство Крестоцветные в порядке Каперсовые). Семейства делят на роды, а роды – на виды.

Царство Животные делится на подцарство Простейшие и подцарство Многоклеточные. В пределах этих подцарств различают типы (например, тип Хордовые), которые могут делиться на подтипы (в типе Хордовые различают три подтипа: Оболочники, Головохордовые и Позвоночные). Типы и подтипы делятся на классы (например, в подтипе Позвоночные различают классы Круглоротые, Хрящевые рыбы, Костные рыбы, Земноводные, Пресмыкающиеся, Птицы, Млекопитающие). Классы, в свою очередь, делятся на отряды (в ботанике им соответствуют порядки), отряды – на семейства, семейства – на роды, роды – на виды.

Существуют и дополнительные систематические единицы (надклассы, подклассы, надотряды, подотряды и т.д.). Вид – это совокупность популяций, все особи в которых имеют сходные морфологические, физиологические и биохимические характеристики. Все особи данного вида способны свободно скрещиваться и давать плодовитое потомство.

Чарлз Дарвин определял вид как совокупность сходных по строению особей, дающих плодовитое потомство. Позднее были добавлены следующие критерии вида: генетический (одинаковый набор хромосом у всех особей вида); физиологический (сходство физиологических процессов); биохимический (сходство биохимических процессов, т.е. сходство обмена веществ в организме); географический (ареал, который занимает данный вид); экологический (условия, в которых существует вид), морфологический (сходство строения).

Особи одного вида должны отвечать всем этим критериям, т.к. по какому-то одному или нескольким признакам нельзя определить, один и тот же это вид или нет. Так, например, существуют морфологически неотличимые виды-двойники (например, два вида полевки: полевка обыкновенная и полевка восточно-европейская); в природе есть виды, которые скрещиваются и дают плодовитое потомство (например, некоторые виды канареек), и т.д.

Элементарная структура вида – это популяция: совокупность свободно скрещивающихся особей вида, живущих длительно на определенной территории обособленно от другой популяции того же вида. Можно сказать, что популяция – это открытая генетическая система, а вид – закрытая генетическая система.

Билет № 10

1. Дыхание растений, животных и человека, его значение. Строение органов дыхания человека и их функции

Дыхание – это одна из важнейших жизненных функций большинства организмов, включающая в себя поступление в организм кислорода, использование кислорода для получения энергии и выведение из организма конечных продуктов дыхания, в основном углекислого газа.

Дыхание растений .

Дышат все органы и ткани растений. Семя поглощает кислород даже при хранении, но особенно интенсивно дышит развивающийся зародыш. Корень поглощает кислород из почвы, листья получают кислород через устьица, а молодые стебли – через чечевички.

Дыхание животных.

Простейшие, кишечнополостные, губки, многие черви дышат всей поверхностью тела. Некоторые многощетинковые черви, большинство моллюсков, ракообразные и рыбы поглощают кислород из воды через жабры. Тело наземных членистоногих (паукообразных и насекомых) пронизано сетью трахей – трубочек, доставляющих воздух от специальных дыхалец к тканям.

У земноводных появляются относительно небольшие легкие, и дыхание частично происходит через кожу. У рептилий дыхание происходит только через легкие. У птиц также легочное дыхание, причем в полете они используют специальные воздушные мешки. Поэтому в полете у них наблюдается так называемое двойное дыхание.

Все млекопитающие дышат при помощи легких. Строение органов дыхания млекопитающих можно рассмотреть на примере дыхательной системы человека.

Воздух вдыхается через нос. Носовая полость состоит из извилистых носовых ходов, имеющих большую площадь и выстланных ресничным эпителием для выноса инородных частичек, попавших в нос с воздухом. Из носовой полости через носоглотку воздух попадает в гортань. Основа гортани – щитовидный хрящ, прикрывающий ее спереди. Так как рядом с гортанью начинается и пищевод, ведущий в желудок, то при глотании гортань рефлекторно прикрывается специальным надгортанным хрящом, чтобы в нее не попадала пища. Гортань также выстлана ресничным эпителием. Между хрящами гортани расположены особые складки – голосовые связки, просвет между которыми может изменяться в широких пределах. При выдыхании воздуха связки могут колебаться с различной частотой, генерируя звук. Тембр голоса зависит не только от толщины, длины и формы голосовых связок, но и от формы и объема глотки, носоглотки, ротовой полости, расположения языка и т.д.

Из гортани воздух проходит в трахею – трубку, передняя стенка которой образована хрящевыми полукольцами, а задняя примыкает к пищеводу. Трахея разветвляется на два бронха, а те в свою очередь, многократно делясь, образуют многочисленные ветви – бронхиолы. Бронхиолы также многократно делятся, образуя грозди мельчайших легочных пузырьков – альвеол, заполненных воздухом, которые и образуют легкие. Общая поверхность всех альвеол достигает 100 м 2 , и все они оплетены капиллярами малого круга кровообращения. Стенки альвеол образованы одним слоем клеток. Каждое легкое покрыто соединительнотканной оболочкой – легочной плеврой, а стенки грудной клетки, в которой расположены легкие, покрыты изнутри пристенной плеврой.

Между двумя плеврами находится небольшое, герметически замкнутое пространство, в котором нет воздуха, – плевральная полость. Давление в плевральной полости – «отрицательное», то есть несколько ниже атмосферного.

У человека, находящегося в спокойном состоянии приблизительно один раз в четыре секунды в нейронах дыхательного центра продолговатого мозга возникают залпы импульсов, идущие по нервным волокнам к межреберным мышцам и диафрагме, которая ограничивает грудную полость снизу. В результате этого мышцы сокращаются и ребра приподнимаются, а диафрагма, уплощаясь, опускается. Все это приводит к тому, что объем грудной полости увеличивается. Легкие, находясь в герметически замкнутом пространстве, следуют за движениями грудной клетки и тоже расширяются, всасывая воздух, – происходит вдох. При вдохе кровь насыщается кислородом, который практически мгновенно доходит до клеток дыхательного центра – те перестают генерировать дыхательные импульсы, и вдох прекращается: ребра опускаются, диафрагма приподнимается, объем грудной полости уменьшается, происходит выдох.

Мужчины вдыхают воздух преимущественно за счет движений диафрагмы, а женщины – за счет движений ребер. Объем воздуха, поступающего в легкие человека при спокойном вдохе, составляет около 500 см 3 . После очень глубокого вдоха человек способен выдохнуть 3500–4000 см 3 . Этот объем получил название жизненной емкости легких. Однако и после самого глубокого выдоха в легких человека обязательно остается около 1000 см 3 воздуха для того, чтобы альвеолы не слипались.

Во вдыхаемом воздухе содержится примерно 21% О 2 , 79% N 2 , 0,03% СО 2 . В легких около 5% О 2 проходит через тончайшие стенки альвеол и капилляров малого круга и связывается с гемоглобином в эритроцитах. Около 4% СО 2 , наоборот, выходит из кровяного русла в альвеолы и выдыхается. Таким образом, в состав выдыхаемого воздуха входят примерно 16% О 2 , 79% N 2 , 4% СО 2 , водяные пары.

Активность дыхательного центра регулируется как различными химическими веществами, приносимыми в дыхательный центр кровью, так и нервными импульсами, приходящими из различных отделов центральной нервной системы. Специфическим возбудителем нейронов, вызывающим вдох, является углекислый газ; при снижении уровня СО 2 в крови дыхание становится более редким.

Если человек случайно вдохнет пары веществ, раздражающих рецепторы слизистой оболочки носа, глотки, гортани (аммиак, хлор и т.п.), происходит рефлекторный спазм голосовой щели, бронхов и задержка дыхания. При раздражении дыхательных путей мелкими инородными частицами – пылью, соринками, избытком слизи – возникает чихание или кашель. Таким образом, кашель и чихание в норме являются защитными рефлексами, представляющими собой резкие выдохи. При этом из дыхательных путей выносятся раздражающие частицы.

При физической или нервной нагрузке резко увеличивается частота дыхания, что обусловлено увеличением затрат кислорода в связи с увеличенными затратами энергии.

2. Грибы. Особенности их строения и жизнедеятельности, роль в природе и жизни человека

Грибы – это царство организмов, имеющих ряд признаков и растений, и животных. К настоящему времени известно около 100 тыс. видов грибов.

Грибы нуждаются в готовых органических соединениях (как животные), т.е. по способу питания они являются гетеротрофами. У грибов встречаются следующие три типа гетеротрофного питания.

Грибы (как и растения) растут в течение всей жизни.

Тело гриба образовано тонкими белыми нитями, состоящими из одного ряда клеток. Эти нити называются гифами. Все вместе гифы образуют тело гриба, которое называют грибницей, или мицелием. У некоторых грибов нет перегородок между клетками, и тогда вся грибница представляет собой одну гигантскую клетку.

Клетки грибов имеют клеточную стенку, построенную из хитина. Запасным питательным веществом у них чаще всего является полисахарид гликоген (как у животных). Хлорофилла грибы не содержат.

Грибы – очень древняя группа живых существ, известная с силурийского периода палеозойской эры. Возможными предками грибов считаются древнейшие водоросли, утратившие хлорофилл.


1, 3 – разные стадии развития плодового тела, 2 – плодовое тело в разрезе
(а – вольва, б – шляпка, в – остатки общего покрывала, г – ножка, д – кольцо, е – пластинки)

Размножение у грибов может быть бесполым и половым. Бесполое размножение может быть либо вегетативным (например, частями грибницы или отпочковыванием клеток, как у дрожжей) либо при помощи специализированных клеток – спор (у шляпочных грибов, мукора, спорыньи).

Половое размножение происходит при слиянии половых клеток – гамет. В результате образуется зигота, из которой развивается грибница.

Примеры грибов .

Шляпочные грибы – симбионты высших растений. Плодовые тела образованы плотным переплетением гифов. Нижняя часть шляпки может быть образована пластинками (сыроежка, лисичка) или трубочками (боровик, моховик), в которых созревают споры. Около 200 видов шляпочных грибов используется в пищу. Они содержат белки, витамины, минеральные соли. Некоторые шляпочные грибы ядовиты для человека: бледная поганка, мухомор, сатанинский гриб. Шляпочные грибы являются пищевой базой для многих животных.

Дрожжи, развиваясь на средах, содержащих сахара, превращают их в этиловый спирт и углекислый газ. Дрожжи используют в пищевой промышленности: хлебопечении, виноделии, пивоварении.

Пеницилл, или зеленую плесень, а также некоторые другие плесневые грибы используют для получения разнообразных антибиотиков – веществ, подавляющих размножение и рост бактерий.

Роль грибов в природе и жизни человека очень велика. Грибы являются основными разрушителями (редуцентами) остатков отмерших растений, играя важнейшую роль в круговороте веществ в экологических системах.

Продолжение следует

Лекция № 9. Большой и малый круги кровообращения. Гемодинамика

Анатомо-физиологические особенности сосудистой системы

Сосудистая система человека замкнута и состоит из двух кругов кровообращения – большого и малого.

Стенки сосудов эластичны. В наибольшей степени это свойство присуще артериям.

Сосудистая система отличается сильной разветвлѐнностью.

Разнообразие диаметров сосудов (диаметр аорты – 20 – 25 мм, капилляров – 5 – 10 мкм) (Слайд 2 ).

Функциональная классификация сосудов Выделяют 5 групп сосудов (Слайд 3 ):

Магистральные (амортизирующие) сосуды – аорта и легочная артерия.

Эти сосуды обладают высокой эластичностью. Во время систолы желудочков магистральные сосуды растягиваются за счѐт энергии выбрасываемой крови, а во время диастолы – восстанавливают свою форму, проталкивая кровь дальше. Таким образом, они сглаживают (амортизируют) пульсацию кровотока, а также обеспечивают кровоток в диастолу. Другими словами, за счѐт этих сосудов пульсирующий кровоток становится непрерывным.

Резистивные сосуды (сосуды сопротивления) – артериолы и мелкие артерии, которые могут изменять свой просвет и вносят существенный вклад в сосудистое сопротивление.

Обменные сосуды (капилляры) – обеспечивают обмен газами и веществами между кровью и тканевой жидкостью.

Шунтирующие (артериовенозные анастомозы) – соединяют артериолы

с венулами напрямую, по ним кровь движется, не проходя через капилляры.

Емкостные (вены) – обладают высокой растяжимостью, благодаря чему они способны накапливать кровь, выполняя функцию кровяного депо.

Схема кровообращения: большой и малый круги кровообращения

У человека движение крови осуществляется по двум кругам кровообращения: большому (системному) и малому (лѐгочному).

Большой (системный) круг начинается в левом желудочке, откуда артериальная кровь выбрасывается в самый крупный сосуд тела – аорту. От аорты отходят артерии, которые разносят кровь по всему организму. Артерии разветвляются на артериолы, которые, в свою очередь разветвляются на капилляры. Капилляры собираются в венулы, по которым течѐт венозная кровь, венулы сливаются в вены. Две самые крупные вены (верхняя и нижняя полые) впадают в правое предсердие.

Малый (легочный) круг начинается в правом желудочке, откуда венозная кровь выбрасывается в лѐгочную артерию (лѐгочный ствол). Как и в большом круге, лѐгочная артерия делится на артерии, затем на артериолы,

которые разветвляются на капилляры. В лѐгочных капиллярах венозная кровь обогащается кислородом и становится артериальной. Капилляры собираются в венулы, затем в вены. Четыре лѐгочные вены впадают в левое предсердие (Слайд 4 ).

Следует понимать, что сосуды делятся на артерии и вены не по протекающей по ним крови (артериальная и венозная), а по направлению еѐ движения (от сердца или к сердцу).

Строение сосудов

Стенка кровеносного сосуда состоит из нескольких слоев: внутреннего , выстланного эндотелием,среднего , образованного гладкомышечными клетками и эластическими волокнами, инаружного , представленного рыхлой соединительной тканью.

Кровеносные сосуды, направляющиеся к сердцу, принято называть венами , а отходящие от сердца -артериями , независимо от состава крови, которая по ним протекает. Артерии и вены отличаются особенностями внешнего и внутреннего строения(Слайды 6, 7)

Строение стенок артерий. Виды артерий. Различают следующие типы строения артерий: эластический(относятся аорта, плечеголовной ствол, подключичная, общая и внутренняя сонная артерии, общая подвздошная артерия), эластическо-мышечный, мышечно-эластический (артерии верхних и нижних конечностей, экстраорганные артерии) и мышечный(внутриорганные артерии, артериолы и венулы).

Структура стенки вен имеет ряд особенностей по сравнению с артериями. Вены имеют больший диаметр, чем одноимѐнные артерии. Стенка вен тонкая, легко спадается, в ней слабо развитый эластический компонент, слабее развитые гладкомышечные элементы в средней оболочке, при этом наружная оболочка хорошо выражена. Вены, расположенные ниже уровня сердца, имеют клапаны.

Внутренняя оболочка вен состоит из эндотелия и подэндотелиального слоя. Внутренняя эластическая мембрана слабо выражена.Средняя оболочка вен представлена гладкими мышечными клетками, которые не образуют сплошного слоя, как в артериях, а располагаются в виде обособленных пучков.

Эластических волокон мало. Наружная адвентициальная оболочка

представляет собой наиболее толстый слой стенки вены. Она содержит коллагеновые и эластические волокна, сосуды, питающие вену, и нервные элементы.

Основные магистральные артерии и вены Артерии. Аорта (Слайд 9) выходит из левого желудочка и проходит

в задней части тела вдоль позвоночного столба. Часть аорты, которая выходит непосредственно из сердца и направляющаяся вверх, называется

восходящей. От неѐ отходят праваяи левая венечные артерии,

кровоснабжающие сердце.

Восходящая часть, изгибаясь влево, переходит вдугу аорты, которая

перекидывается через левый главный бронх и продолжается в нисходящую часть аорты. От выпуклой стороны дуги аорты отходят три крупных сосуда. Справа находится плечеголовной ствол, слева – левая общая сонная и левая подключичная артерии.

Плечеголовной ствол отходит от дуги аорты вверх и вправо, он делится на правые общую сонную и подключичную артерии.Левая общая сонная илевая подключичная артерии отходят непосредственно от дуги аорты левее плечеголовного ствола.

Нисходящую часть аорты (Слайды 10, 11) подразделяют на две части: грудную и брюшную. Грудная часть аортырасположена на позвоночнике, слева от срединной линии. Из грудной полости аорта переходит в брюшную аорту,пройдя через аортальные отверстие диафрагмы. У места своего деления на две общие подвздошные артериина уровне IV поясничного позвонка (бифуркация аорты).

Брюшная часть аорты кровоснабжает внутренности, расположенные в брюшной полости, а также стенки живота.

Артерии головы и шеи . Общая сонная артерияделится на наружную

сонную артерию, разветвляющуюся вне полости черепа, и внутреннюю сонную артерию, проходящую через сонный канал внутрь черепа и кровоснабжающую головной мозг(Слайд 12) .

Подключичная артерия слева отходит непосредственно от дуги аорты,справа - от плечеголовного ствола, затем с обеих сторон она направляется к подмышечной впадине, где переходит в подмышечную артерию.

Подмышечная артерия на уровне нижнего края большой грудной мышцы продолжается в плечевую артерию(Слайд 13) .

Плечевая артерия (Слайд 14) располагается на внутренней стороне плеча. В локтевой ямке плечевая артерия делится налучевую илоктевую артерии.

Лучевая илоктевая артерии своими ветвями кровоснабжают кожу, мышцы, кости и суставы. Переходя на кисть, лучевая и локтевая артерии соединяются между собой и образуютповерхностную иглубокую ладонные артериальные дуги (Слайд 15) . От ладонных дуг отходят артерии к кисти и пальцам.

Брюшная ч асть аорты и ее ветви. (Слайд 16) Брюшная часть аорты

располагается на позвоночнике. От неѐ отходят пристеночные и внутренностные ветви. Пристеночными ветвями являются идущие вверх к диафрагме две

нижние диафрагмальные артерии и пять пар поясничных артерий,

кровоснабжающих стенки живота.

Внутренностные ветви брюшной аорты подразделяют нанепарные ипарные артерии. К непарным внутренностным ветвям брюшной части аорты принадлежат чревный ствол, верхняя брыжеечная артерия и нижняя брыжеечная артерия. Парными внутренностными ветвями являются средние надпочечниковые, почечные, яичковые (яичниковые) артерии.

Артерии таза. Конечными ветвями брюшной части аорты являются правая и левая общие подвздошные артерии. Каждая общая подвздошная

артерия, в свою очередь, разделяется на внутреннюю и наружную. Ветви внутренней подвздошной артерии кровоснабжают органы и ткани малого таза.Наружная подвздошная артерия на уровне паховой складки переходит в бедренную артерию, которая проходит вниз по передневнутренней поверхности бедра, а затем входит в подколенную ямку, продолжаясь вподколенную артерию.

Подколенная артерия на уровне нижнего края подколенной мышцы делится на переднюю и заднюю большеберцовые артерии.

Передняя большеберцовая артерия формирует дугообразную, от которой отходят ветви к плюсне и пальцам.

Вены. От всех органов и тканей тела человека кровь оттекает в два крупных сосуда -верхнюю инижнюю полые вены (Слайд 19) , которые впадают в правое предсердие.

Верхняя полая вена располагается в верхнем отделе грудной полости. Она образуется при слиянииправой илевой плечеголовных вен. Верхняя полая вена собирает кровь из стенок и органов грудной полости, головы, шеи, верхних конечностей. От головы кровь оттекает по наружной и внутренней яремным венам(Слайд 20) .

Наружная яремная вена собирает кровь из затылочной и позадиушной областей и впадает в конечный отдел подключичной, или внутренней яремной, вены.

Внутренняя яремная вена выходит из полости черепа через яремное отверстие. По внутренней яремной вене кровь оттекает от головного мозга.

Вены верхней конечности. На верхней конечности различают глубокие и поверхностные вены, они переплетаются (анастомозируют) между собой. Вглубоких венах имеются клапаны. Эти вены собирают кровь от костей, суставов, мышц, они прилежат к одноименным артериям обычно по две. На плече обе глубокиеплечевые вены сливаются и впадают в непарнуюподмышечную вену.Поверхностные вены верхней конечности на кисти образуют сеть.Подмышечная вена, располагающаяся рядом с подмышечной артерией, на уровне первого ребра переходит вподключичную вену, которая впадает во внутреннюю яремную.

Вены груди. Отток крови от грудных стенок и органов грудной полости происходит по непарной и полунепарной венам, а также по органным венам. Все они впадают в плечеголовные вены и в верхнюю полую вену(Слайд 21) .

Нижняя полая вена (Слайд 22) – самая крупная вена тела человека, она образуется при слиянии правой и левой общих подвздошных вен. Нижняя полая вена впадает в правое предсердие, она собирает кровь из вен нижних конечностей, стенок и внутренних органов таза и живота.

Вены живота. Притоки нижней полой вены в брюшной полости в большинстве своем соответствуют парным ветвям брюшной части аорты. Среди притоков различаютпристеночные вены (поясничные и нижние диафрагмальные) ивнутренностные (печеночные, почечные, правые

надпочечниковая, яичковая у мужчин и яичниковая у женщин; левые вены этих органов впадают в левую почечную вену).

Воротная вена собирает кровь от печени, селезѐнки, тонкой и толстой кишки.

Вены таза. В полости таза располагаются притоки нижней полой вены

Правая и левая общие подвздошные вены, а также впадающие в каждую из них внутренняя и наружная подвздошная вены. Внутренняя подвздошная вена собирает кровь от органов малого таза. Наружная – является прямым продолжением бедренной вены , принимающей кровь из всех вен нижней конечности.

По поверхностным венам нижней конечности оттекает кровь от кожи и подлежащих тканей. Поверхностные вены берут начало на подошве и на тыле стопы.

Глубокие вены нижней конечности попарно прилежат к одноименным артериям, по ним оттекает кровь от глубоких органов и тканей - костей, суставов, мышц. Глубокие вены подошвы и тыла стопы продолжаются на голень и переходят в передние изадние большеберцовые вены, прилежащие к одноименным артериям. Большеберцовые вены, сливаясь, образуют непарнуюподколенную вену, в которую впадают вены колена (коленного сустава). Подколенная вена продолжается в бедренную(Слайд 23) .

Факторы, обеспечивающие постоянство кровотока

Движение крови по сосудам обеспечивается рядом факторов, которые условно делятся на основные ивспомогательные .

К основным факторам относятся:

работа сердца, за счѐт которой создаѐтся разница давлений между артериальной и венозной системами (Слайд 25) .

эластичность амортизирующих сосудов.

Вспомогательные факторы в основном способствуют движению крови

в венозной системе, где давление низкое.

«Мышечный насос». Сокращение скелетных мышц проталкивает кровь по венам, а клапаны, которые расположены в венах, препятствуют движению крови по направлению от сердца (Слайд 26) .

Присасывающее действие грудной клетки. Во время вдоха давление в грудной полости снижается, полые вены расширяются, и кровь засасывается

в них. В связи с этим на вдохе увеличивается венозный возврат, то есть объѐм крови, поступающей в предсердия (Слайд 27) .

Присасывающее действие сердца. Во время систолы желудочков атриовентрикулярная перегородка смещается к верхушке, вследствие чего в предсердиях возникает отрицательное давление, способствующее поступлению в них крови (Слайд 28) .

Напор крови сзади – последующая порция крови проталкивает предыдущую.

Объемная и линейная скорость кровотока и факторы на них влияющие

Кровеносные сосуды представляют собой систему трубок, и движение крови по сосудам подчиняется законам гидродинамики (науки, описывающей движение жидкости по трубам). Согласно этим законам, движение жидкости определяется двумя силами: разностью давлений в начале и в конце трубки, и сопротивлением, которое испытывает текущая жидкость. Первая из этих сил способствует течению жидкости, вторая – препятствует ему. В сосудистой системе эту зависимость можно представить в виде уравнения (закон Пуазейля ):

Q = P/R;

где Q – объѐмная скорость кровотока , то есть объѐм крови,

протекающий через поперечное сечение в единицу времени, P – величина среднего давления в аорте (давление в полых венах близко к нулю), R –

величина сосудистого сопротивления.

Для вычисления суммарного сопротивления последовательно расположенных сосудов (например, от аорты отходит плечеголовной ствол, от него – общая сонная артерия, от неѐ – наружная сонная артерия и т. д.) сопротивления каждого из сосудов складываются:

R = R1 + R2 + … + Rn ;

Для расчѐта суммарного сопротивления параллельных сосудов (например, от аорты отходят межрѐберные артерии), складываются величины, обратные сопротивлениям каждого из сосудов:

1/R = 1/R1 + 1/R2 + … + 1/Rn ;

Сопротивление зависит от длины сосудов, просвета (радиуса) сосуда, вязкости крови и рассчитывается по формуле Гагена-Пуазейля :

R= 8Lη/π r4 ;

где L –длина трубки, η – вязкость жидкости (крови), π – отношение окружности к диаметру, r – радиус трубки (сосуда). Таким образом, объѐмную скорость кровотока можно представить как:

Q = ΔP π r4 / 8Lη;

Объѐмная скорость кровотока одинакова на всем протяжении сосудистого русла, поскольку приток крови к сердцу равен по объему оттоку от сердца. Другими словами количество крови, протекающей в единицу

времени через большой и малый круги кровообращения, через артерии, вены и капилляры одинаково .

Линейная скорость кровотока – путь, который проходит частица крови в единицу времени. Эта величина различна в разных отделах сосудистой системы. Объѐмная (Q) и линейная (v) скорости кровотока соотносятся через

площадь поперечного сечения (S):

v=Q/S;

Чем больше площадь сечения, через которое проходит жидкость, тем линейная скоростьменьше (Слайд 30 ). Поэтому по мере расширения просвета сосудов линейная скорость кровотока замедляется. Самым узким местом сосудистого русла является аорта, наибольшее расширение сосудистого русла отмечается в капиллярах (их суммарный просвет в 500 – 600 раз больше, чем в аорте). Скорость движения крови в аорте равна 0,3 – 0,5 м/с, в капиллярах – 0,3 – 0,5 мм/с, в венах – 0,06 – 0,14 м/с, полых венах –

0,15 – 0,25 м/с (Слайд 31 ).

Характеристика движущегося потока крови (ламинарный и турбулентный)

Ламинарный (слоистый) ток жидкости в физиологических условиях наблюдается почти во всех отделах кровеносной системы. При таком типе течения все частицы движутся параллельно – вдоль оси сосуда. Скорость движения разных слоѐв жидкости неодинакова и определяется трением – слой крови, расположенный в непосредственной близости от сосудистой стенки движется с минимальной скоростью, поскольку трение максимально. Следующий слой движется быстрее, и в центре сосуда скорость движения жидкости максимальна. Как правило, по периферии сосуда располагается слой плазмы, скорость которого ограничивается сосудистой стенкой, а по оси с большей скоростью движется слой эритроцитов.

Ламинарное течение жидкости не сопровождается звуками, поэтому если приложить фонендоскоп к поверхностно расположенному сосуду, шумов слышно не будет.

Турбулентный ток возникает в местах сужения сосудов (например, если сосуд сдавлен извне или на его стенке находится атеросклеротическая бляшка). Для этого типа течения характерно наличие завихрений, перемешивание слоев. Частицы жидкости перемещаются не только параллельно, но и перпендикулярно. Для обеспечения турбулентного тока жидкости по сравнению с ламинарным требуется больше энергии. Турбулентный ток крови сопровождается звуковыми явлениями (Слайд 32 ).

Время полного кругооборота крови. Кровяное депо

Время кругооборота крови – это то время, которое необходимо для того, чтобы частица крови прошла большой и малый круги кровообращения. Время кругооборота крови у человека в среднем равно 27 сердечным циклам, то есть при частоте 75 – 80 уд/мин оно составляет 20 – 25 секунд. Из этого времени 1/5 (5 секунд) приходится на малый круг кровообращения, 4/5 (20 секунд) – на большой круг.

Распределение крови. Кровяные депо. У взрослого человека 84% крови содержится в большом круге, ~9% – в малом и 7% – в сердце. В артериях большого круга находится 14% объѐма крови, в капиллярах – 6% и в венах –

В состоянии покоя человека до 45 – 50% всей массы крови, имеющейся

в организме, находится в кровяных депо: селезенке, печени, подкожном сосудистом сплетении и легких

Кровяное давление. Артериальное давление: максимальное, минимальное, пульсовое, среднее

Движущаяся кровь оказывает давление на стенку сосудов. Это давление называют кровяным. Различают артериальное, венозное, капиллярное и внутрисердечное давление.

Артериальное давление (АД) – это давление, которое оказывает кровь на стенки артерий.

Выделяют систолическое и диастолическое давление.

Систолическое (САД) – максимальное давление в момент выталкивания сердцем крови в сосуды, в норме обычно составляет 120 мм рт. ст.

Диастолическое (ДАД) – минимальное давление в момент открытия аортального клапана, составляет около 80 мм рт. ст.

Разница между систолическим и диастолическим давлением называется пульсовым давлением (ПД ), оно равно 120 – 80 = 40 мм рт. ст.Среднее АД (АДср) – такое давление, которое было бы в сосудах без пульсации кровотока. Другими словами, это среднее давление за весь сердечный цикл.

АДср = САД+2ДАД/3;

АД ср = САД+1/3ПД;

(Слайд 34) .

Во время физической нагрузки систолическое давление может увеличиваться до 200 мм рт. ст.

Факторы, влияющие на артериальное давление

Величина кровяного давления зависит от сердечного выброса исопротивления сосудов , которое, в свою очередь, определяется

эластическими свойствами сосудов и их просветом. Также на величину АД влияют объѐм циркулирующей кровии ее вязкость(при повышении вязкости растѐт сопротивление).

По мере удаления от сердца давление падает, поскольку энергия, создающая давление, расходуется на преодоление сопротивления. Давление в мелких артериях составляет 90 – 95 мм рт. ст., в мельчайших артериях – 70 – 80 мм рт. ст., в артериолах – 35 – 70 мм рт. ст.

В посткапиллярных венулах давление равно 15 – 20 мм рт. ст., в мелких венах – 12 – 15 мм рт. ст., в крупных – 5 – 9 мм рт. ст. и в полых – 1 – 3 мм рт. ст.

Измерение кровяного давления

Артериальное давление можно измерить двумя методами – прямым и непрямым.

Прямой метод (кровавый) (Слайд 35 ) – в артерию вводят стеклянную канюлю и соединяют еѐ резиновой трубочкой с манометром. Этот метод используется в экспериментах или при операциях на сердце.

Непрямой (косвенный) метод. (Слайд 36 ). Вокруг плеча сидящего пациента фиксируется манжетка, к которой крепятся две трубки. Одна из трубок соединяется с резиновой грушей, другая – с манометром.

Затем в область локтевой ямки на проекцию локтевой артерии устанавливают фонендоскоп.

В манжетку нагнетают воздух до давления, заведомо превышающего систолическое, при этом просвет плечевой артерии перекрывается, и кровоток в ней прекращается. В этот момент пульс на локтевой артерии не определяется, звуки отсутствуют.

После этого воздух из манжетки постепенно выпускают, и давление в ней снижается. В момент, когда давление станет чуть ниже систолического, кровоток в плечевой артерии возобновляется. Однако просвет артерии сужен, и ток крови в ней турбулентный. Поскольку турбулентное движение жидкости сопровождается звуковыми явлениями, появляется звук – сосудистый тон. Таким образом, давление в манжетке, при котором появляются первые сосудистые тоны, соответствует максимальному, или систолическому , давлению.

Тоны слышны до тех пор, пока просвет сосуда остаѐтся суженным. В момент, когда давление в манжетке снижается до диастолического, просвет сосуда восстанавливается, ток крови становится ламинарным, и тоны исчезают. Таким образом, момент исчезновения тонов соответствует диастолическому (минимальному) давлению.

Микроциркуляция

Микроциркуляторное русло. К сосудам микроциркуляторного русла относятсяартериолы ,капилляры ,венулы иартериловенулярные анастомозы

(Слайд 39).

Артериолы – это артерии самого мелкого калибра (диаметром 50 – 100 мкм). Их внутренняя оболочка выстлана эндотелием, средняя оболочка представлена одним – двумя слоями мышечных клеток, а наружная состоит из рыхлой волокнистой соединительной ткани.

Венулы представляют вены очень мелкого калибра, их средняя оболочка состоит из одного – двух слоѐв мышечных клеток.

Артериоло-венулярные анастомозы – это сосуды, которые несут кровь в обход капилляров, то есть непосредственно из артериол в венулы.

Кровеносные капилляры – наиболее многочисленные и самые тонкие сосуды. В большинстве случаев капилляры формируют сеть, однако они могут образовывать петли (в сосочках кожи, ворсинках кишки и др.), а также клубочки (сосудистые клубочки в почке).

Число капилляров в определенном органе связано с его функциями, а количество открытых капилляров зависит от интенсивности работы органа в данный момент.

Суммарная площадь поперечного сечения капиллярного русла в любой области во много раз превышает площадь поперечного сечения артериолы, из которой они выходят.

В стенке капилляров различают три тонких слоя.

Внутренний слой представлен плоскими многоугольными эндотелиальными клетками, расположенными на базальной мембране,средний состоит из перицитов, заключенных в базальную мембрану, анаружный - из редко расположенных адвентициальных клеток и тонких коллагеновых волокон, погруженных в аморфное вещество (Слайд 40 ).

Кровеносные капилляры осуществляют основные обменные процессы между кровью и тканями, а в лѐгких – участвуют в обеспечении газообмена между кровью и альвеолярным газом. Тонкость стенок капилляров, огромная площадь их соприкосновения с тканями (600 – 1000 м2 ), медленный кровоток (0,5 мм/с), низкое кровяное давление (20 – 30 мм рт. ст.) обеспечивают наилучшие условия для обменных процессов.

Транскапиллярный обмен (Слайд 41 ) . Обменные процессы в капиллярной сети происходят за счѐт движения жидкости: выхода из сосудистого русла в ткань (фильтрация) и обратного всасывания из ткани в просвет капилляра (реабсорбция). Направление движения жидкости (из сосуда или в сосуд) определяется фильтрационным давлением: если оно положительное – происходит фильтрация, если отрицательное – реабсорбция. Фильтрационное давление, в свою очередь, зависит от величин гидростатического и онкотического давления.

Гидростатическое давление в капиллярах создаѐтся работой сердца, оно способствует выходу жидкости из сосуда (фильтрации). Онкотическое давление плазмы обусловлено белками, оно способствует движению жидкости из ткани в сосуд (реабсорбции).