Решение химических задач на закон фарадея в курсе средней школы. Электролиз расплавов и растворов веществ Гидролиз неорганических соединений

Ко­то­рая про­те­ка­ет под дей­стви­ем элек­три­че­ско­го тока на элек­тро­дах, по­гру­жен­ных в рас­твор или рас­плав элек­тро­ли­та.

Су­ще­ству­ет два типа элек­тро­дов.

Анод окис­ле­ние .

Катод – это элек­трод, на ко­то­ром про­ис­хо­дит вос­ста­нов­ле­ние . К аноду стре­мят­ся ани­о­ны, так как он имеет по­ло­жи­тель­ный заряд. К ка­то­ду стре­мят­ся ка­ти­о­ны, по­то­му что он за­ря­жен от­ри­ца­тель­но и, со­глас­но за­ко­нам фи­зи­ки, раз­но­имен­ные за­ря­ды при­тя­ги­ва­ют­ся. В любом элек­тро­хи­ми­че­ском про­цес­се при­сут­ству­ют оба элек­тро­да. При­бор, в ко­то­ром осу­ществ­ля­ет­ся элек­тро­лиз, на­зы­ва­ет­ся элек­тро­ли­зер. Рис. 1.

Количественные характеристики электролиза выражаются двумя законами Фарадея :

1) Масса вещества, выделяющегося на электроде , прямо пропорциональна количеству электричества , прошедшего через электролит .

2) При электролизе различных химических соединений одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные их электрохимическим эквивалентам .

Эти два закона можно объединить в одном уравнении:

где m – масса выделяющегося вещества, г;

n – количество электронов , переносимых в электродном процессе;

F – число Фарадея (F =96485 Кл/моль)

I – сила тока, А;

t – время, с;

M – молярная масса выделяющегося вещества, г/моль.

При электролизе водных растворов электродные процессы осложняются за счет конкуренции ионов (в электролизе могут участвовать и молекулы воды). Восстановление на катоде обусловлено положением металла в ряду стандартных электродных потенциалов.

Катионы металлов, у которых стандартный электродный потенциал больше, чем у водорода (от Cu2+ до Au3+), при электролизе практически полностью восстанавливается на катоде. Me n+ + nē →Me Катионы металлов с малой величиной стандартного электродного потенциала (Li2+ до Al3+ включительно) не восстанавливаются на катоде, а вместо них восстанавливаются молекулы воды. 2H2O + 2ē → H2 + 2OH- Катионы металлов, имеющих стандартный электродный потенциал меньше, чем у водорода, но больше чем у алюминия (от Mn2+ до Н), при электролизе на катоде восстанавливается одновременно с молекулами воды. Me n+ + nē →Me 2H2O + 2ē → H2 + 2OH- При наличии в растворе нескольких катионов, на катоде в первую очередь восстанавливаются катионы наименее активного металла.

Пример сульфат натрия(Na2SO4)

Na2SO4↔ 2Na++ SO42-

катод: 2H2O + 2e → H2 + 2OH-

анод: 2H2O - 4e → O2 + 4H+

4OH-- 4H+→ 4H2O

Электролизом расплавов получают многие реакционно-способные металлы. При диссоциации расплава сульфата натрия образуются ионы натрия и сульфат-ионы.

Na2SO4 → 2Na+ + SО42−

– на катоде выделяется натрий:

Na+ + 1 e− → Na

– на аноде выделяется кислород и оксид серы (VI):

2SО42− − 4 e− → 2SО3 +О2

– суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 4)

4 Na+ + 2SО42− → 4 Na 0 + 2SО3 +О2

– суммарная реакция:

4 Na2SO44 Na 0 + 2SО3 +О2


Электролиз расплавов солей

Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:

1. Электролиз расплава хлорида меди (II).

Электродные процессы могут быть выражены полуреакциями:


на катоде K(-): Сu 2+ + 2e = Cu 0 - катодное восстановление


на аноде A(+): 2Cl – - 2e = Cl 2 - анодное окисление


Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:


Cu 2+ + 2 Cl – = Cu + Cl 2


При электролизе щелочей и солей оксокислот на аноде выделяется кислород:


4OH – - 4e = 2H 2 O + O 2


2SO 4 2– - 4e = 2SO 3 + O 2

2. Электролиз расплава хлорида калия:


Электролиз растворов

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.


На катоде «-» источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».


На аноде «+» происходит отдача электронов анионами, поэтому анод является «окислителем».


При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.


При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:
на аноде - окисление анионов и гидроксид-ионов,
на катоде - восстановление катионов и ионов водорода.


При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются:
на аноде - окисление анионов и гидроксид-ионов, анодное растворение металла - материала анода;
на катоде - восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.


При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы SO 4 2- , NО - 3 , РО 4 3- , а также растворов щелочей на аноде окисляется вода и выделяется кислород;


А + 2H 2 O - 4e - = 4H + + O 2

б) при окислении анионов Сl - , Вr - , I - выделяются соответственно хлор, бром, иод;


А + Cl - +e - = Cl 0

2. На катоде могут образовываться следующие продукты:

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде восстанавливается вода и выделяется водород;


К - 2H 2 O + 2e - = H 2 + 2OH -


б) если ион металла расположен в ряду напряжений правее водорода, то на катоде выделяется металл.


К - Me n+ + ne - = Me 0


в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Пример: Электролиз водного раствора нитрата серебра на инертных электродах

Диссоциация нитрата серебра:


АgNО 3 = Аg + + NO 3 -


При электролизе водного раствора АgNО 3 на катоде происходит восстановление ионов Аg + , а на аноде - окисление молекул воды:


Катод: Аg + + е = А g


Анод: 2Н 2 О - 4е = 4Н + + О 2

Суммарное уравнение:______________________________________________


4AgNО 3 + 2Н 2 О = 4Ag + 4НNО 3 + О 2


Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.


Во всех случаях электролиз проводится с использованием угольных электродов.

Пример: Электролиз водного раствора хлорида меди на инертных электродах

Диссоциация хлорида меди:


CuCl 2 ↔ Сu 2+ + 2Cl -


В растворе находятся ионы Си 2+ и 2Сl - , которые под действием электрического тока направляются к соответствующим электродам:


Катод - Cu 2+ + 2e = Cu 0


Анод + 2Cl - - 2e = Cl 2


_______________________________

CuCl 2 = Cu + Cl 2


На катоде выделяется металлическая медь, на аноде - газообразный хлор.


Если в рассмотренном примере электролиза раствора CuCl 2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl 0 и выделения хлора протекает окисление анода (меди).


В этом случае происходит растворение самого анода, и в виде ионов Сu 2+ он переходит в раствор.


Электролиз CuCl 2 с растворимым анодом можно записать так:



Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Пример: Электролиз водного раствора хлорида магния на инертных электродах

Диссоциация хлорида магния в водном растворе:


MgCl 2 ↔ Mg 2+ +2Сl -


Ионы магния не могут восстанавливаться в водном растворе (идет восстановление воды) , хлорид-ионы - окисляются.


Схема электролиза:



Пример: Электролиз водного раствора сульфата меди на инертных электродах

В растворе сульфат меди диссоциирует на ионы:


СuSО 4 = Сu 2+ + SO 4 2-


Ионы меди могут восстанавливаться на катоде в водном растворе.


Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.


Схема электролиза:



Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К 2 SО 4) на инертных электродах

Пример: Диссоциация сульфата калия в водном растворе:

К 2 SО 4 = 2К + + SO 4 2-


Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно, на катоде будет протекать восстановление, а на аноде - окисление воды.


Схема электролиза:



или, учитывая, что 4Н + + 4ОН - = 4Н 2 О (осуществляется при перемешивании),


H 2 O 2H 2 + O 2


Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.


На катоде выделяется водород, а на аноде - кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз расплава гидроксида натрия


Электролиз воды проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита - воды):



Закон Фарадея

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:


где m - масса образовавшегося при электролизе вещества (г);


Э - эквивалентная масса вещества (г/моль);


М - молярная масса вещества (г/моль);


n - количество отдаваемых или принимаемых электронов;


I - сила тока (А); t - продолжительность процесса (с);


F - константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F = 96 500 Кл/моль = 26,8 Ач/моль).

Гидролиз неорганических соединений

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.


Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.


1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO 3) , гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.


2. В соли, образованной слабым основанием и сильной кислотой FeCl 2 , NH 4 Cl, Al 2 (SO 4) 3 , MgSO 4) гидролизу подвергается катион:


FeCl 2 + HOH → Fe(OH)Cl + HCl


Fe 2+ + 2Cl - + H + + OH - → FeOH + + 2Cl - + Н +


В результате гидролиза образуется слабый электролит, ион H + и другие ионы. рН раствора < 7 (раствор приобретает кислую реакцию).


3. Соль, образованная сильным основанием и слабой кислотой (КClO, K 2 SiO 3 , Na 2 CO 3 , CH 3 COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.


K 2 SiO 3 + НОH → KHSiO 3 + KОН


2K + +SiO 3 2- + Н + + ОH - → НSiO 3 - + 2K + + ОН -


рН таких растворов > 7 (раствор приобретает щелочную реакцию).


4. Соль, образованная слабым основанием и слабой кислотой (СН 3 СООNН 4 , (NН 4) 2 СО 3 , Al 2 S 3) гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания

Различают несколько вариантов гидролиза солей:


1. Гидролиз соли слабой кислоты и сильного основания: (CH 3 COONa, KCN, Na 2 CO 3).


Пример 1. Гидролиз ацетата натрия.



или CH 3 COO – + Na + + H 2 O ↔ CH 3 COOH + Na + + OH –


CH 3 COO – + H 2 O ↔ CH 3 COOH + OH –


Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H + , и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.


В растворе накапливаются ионы OH - (pH >7)



Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.


Например, гидролиз карбоната: Na 2 CO 3


I ступень: CO 3 2– + H 2 O ↔ HCO 3 – + OH –


II ступень: HCO 3 – + H 2 O ↔ H 2 CO 3 + OH –


Na 2 CO 3 + Н 2 О = NaHCO 3 + NaOH



Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.


Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO 3 –), чем на второй (H 2 CO 3)


Пример 2 . Гидролиз ортофосфата рубидия.


1. Определяем тип гидролиза:


Rb 3 PO 4 ↔ 3Rb + + PO 4 3–


Рубидий – щелочной металл, его гидроксид - сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, - слабая кислота.


Идет гидролиз по аниону.


PO 3- 4 + H–OH ↔ HPO 2- 4 + OH – .


Продукты - гидрофосфат- и гидроксид-ионы, среда – щелочная.


3. Составляем молекулярное уравнение:


Rb 3 PO 4 + H 2 O ↔ Rb 2 HPO 4 + RbOH.


Получили кислую соль – гидрофосфат рубидия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания

2. Гидролиз соли сильной кислоты и слабого основания: NH 4 NO 3 , AlCl 3 , Fe 2 (SO 4) 3 .


Пример 1. Гидролиз нитрата аммония.



NH 4 + + NO 3 – + H 2 O ↔ NH 4 OH + NO 3 – + H +


NH 4 + + H 2 O ↔ NH 4 OH + H +



В случае многозарядного катиона гидролиз протекает ступенчато, например:


I ступень: Cu 2+ + HOH ↔ CuOH + + H +


II ступень: CuOH + + HOH ↔ Cu(OH) 2 + H +


СuСl 2 + Н 2 О = CuOHCl + HCl



При этом концентрация ионов водорода и pH среды в растворе также определяются главным образом первой ступенью гидролиза.


Пример 2. Гидролиз сульфата меди(II)


1. Определяем тип гидролиза. На этом этапе необходимо написать уравнение диссоциации соли:


CuSO 4 ↔ Cu 2+ + SO 2- 4 .


Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Идет гидролиз по катиону.


2. Пишем ионное уравнение гидролиза, определяем среду:


Cu 2+ + H-OH ↔ CuOH + + H + .


Образуется катион гидроксомеди(II) и ион водорода, среда – кислая.


3. Составляем молекулярное уравнение.


Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH) 2 SO 4 , но для этого наше ионное уравнение мы должны мысленно умножить на два.


Получаем:


2CuSO 4 + 2H 2 O ↔ (CuOH) 2 SO 4 + H 2 SO 4 .


Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)».

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и слабого основания

3. Гидролиз соли слабой кислоты и слабого основания:


Пример 1. Гидролиз ацетата аммония.



CH 3 COO – + NH 4 + + H 2 O ↔ CH 3 COOH + NH 4 OH

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания.


Если продукты гидролиза могут удаляться из раствора, например, в виде осадка или газообразного вещества, то гидролиз протекает до конца.


Пример 2. Гидролиз сульфида алюминия.


Al 2 S 3 + 6H 2 O = 2Al(OН) 3 + 3H 2 S


2А l 3+ + 3 S 2- + 6Н 2 О = 2Аl(OН) 3 (осадок) + ЗН 2 S (газ)


Пример 3. Гидролиз ацетата алюминия


1. Определяем тип гидролиза:


Al(CH 3 COO) 3 = Al 3+ + 3CH 3 COO – .


Соль образована катионом слабого основания и анионами слабой кислоты.


2. Пишем ионные уравнения гидролиза, определяем среду:


Al 3+ + H–OH ↔ AlOH 2+ + H + ,


CH 3 COO – + H–OH ↔ CH 3 COOH + OH – .


Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону. Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.


Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.


3 . Составляем молекулярное уравнение:


Al(CH 3 COO) 3 + H 2 O = AlOH(CH 3 COO) 2 + CH 3 COOH.


Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

4. Соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H 2 O.


Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Электролиз – это окислительно – восстановительные реакции, протекающие на электродах, если через расплав или раствор электролита пропускают постоянный электрический ток.

Катод – восстановитель, отдаёт электроны катионам.

Анод – окислитель, принимает электроны от анионов.

Ряд активности катионов:

Na + , Mg 2+ , Al 3+ , Zn 2+ , Ni 2+ , Sn 2+ , Pb 2+ , H + , Cu 2+ , Ag +

_____________________________→

Усиление окислительной способности

Ряд активности анионов:

I - , Br - , Cl - , OH - , NO 3 - , CO 3 2- , SO 4 2-

←__________________________________

Возрастание восстановительной способности

Процессы, протекающие на электродах при электролизе расплавов

(не зависят от материала электродов и природы ионов).

1. На аноде разряжаются анионы (A m - ; OH -

A m - - m ē → A °; 4 OH - - 4ē → O 2 + 2 H 2 O (процессы окисления).

2. На катоде разряжаются катионы (Me n + , H + ), превращаясь в нейтральные атомы или молекулы:

Me n + + n ē → Me ° ; 2 H + + 2ē → H 2 0 (процессы восстановления).

Процессы, протекающие на электродах при электролизе растворов

КАТОД (-)

Не зависят от материала катода; зависят от положения металла в ряду напряжений

АНОД (+)

Зависят от материала анода и природы анионов.

Анод нерастворимый (инертный), т.е. изготовлен из угля, графита, платины, золота .

Анод растворимый (активный), т.е. изготовлен из Cu , Ag , Zn , Ni , Fe и др. металлов (кроме Pt , Au )

1.В первую очередь восстанавливаются катионы металлов, стоящие в ряду напряжений после H 2 :

Me n+ +nē → Me°

1.В первую очередь окисляются анионы бескислородных кислот (кроме F - ):

A m- - mē → A°

Анионы не окисляются.

Идёт окисление атомов металла анода:

Me° - nē → Me n+

Катионы Me n + переходят в раствор.

Масса анода уменьшается.

2.Катионы металлов средней активности, стоящие между Al и H 2 , восстанавливаются одновременно с водой:

Me n+ + nē →Me°

2H 2 O + 2ē → H 2 + 2OH -

2.Анионы оксокислот (SO 4 2- , CO 3 2- ,..) и F - не окисляются, идёт окисление молекул H 2 O :

2H 2 O - 4ē → O 2 +4H +

3.Катионы активных металлов от Li до Al (включительно) не восстанавливаются, а восстанавливаются молекулы H 2 O :

2 H 2 O + 2ē →H 2 + 2OH -

3.При электролизе растворов щелочей окисляются ионы OH - :

4OH - - 4ē → O 2 +2H 2 O

4.При электролизе растворов кислот восстанавливаются катионы H + :

2H + + 2ē → H 2 0

ЭЛЕКТРОЛИЗ РАСПЛАВОВ

Задание 1 . Составьте схему электролиза расплава бромида натрия. (Алгоритм 1.)

Последовательность действий

Выполнение действий

NaBr → Na + + Br -

K - (катод ): Na + ,

A + (анод ): Br -

K + : Na + + 1ē → Na 0 (восстановление),

A + : 2 Br - - 2ē → Br 2 0 (окисление).

2NaBr = 2Na +Br 2

Задание 2 . Составьте схему электролиза расплава гидроксида натрия. (Алгоритм 2.)

Последовательность действий

Выполнение действий

NaOH → Na + + OH -

2.Показать перемещение ионов к соответствующим электродам

K - (катод ): Na + ,

A + (анод ): OH - .

3.Составить схемы процессов окисления и восстановления

K - : Na + + 1ē → Na 0 (восстановление),

A + : 4 OH - - 4ē → 2 H 2 O + O 2 (окисление).

4.Составить уравнение электролиза расплава щёлочи

4NaOH = 4Na + 2H 2 O + O 2

Задание 3. Составьте схему электролиза расплава сульфата натрия. (Алгоритм 3.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

Na 2 SO 4 → 2Na + + SO 4 2-

2.Показать перемещение ионов к соответствующим электродам

K - (катод ): Na +

A + (анод ): SO 4 2-

K - : Na + + 1ē → Na 0 ,

A + : 2SO 4 2- - 4ē → 2SO 3 + O 2

4.Составить уравнение электролиза расплава соли

2Na 2 SO 4 = 4Na + 2SO 3 + O 2

ЭЛЕКТРОЛИЗ РАСТВОРОВ

Задание 1. Составить схему электролиза водного раствора хлорида натрия с использованием инертных электродов. (Алгоритм 1.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

NaCl → Na + + Cl -

Ионы натрия в растворе не восстанавливаются, поэтому идёт восстановление воды. Ионы хлора окисляются.

3.Составить схемы процессов восстановления и окисления

K - : 2H 2 O + 2ē → H 2 + 2OH -

A + : 2Cl - - 2ē → Cl 2

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH

Задание 2. Составить схему электролиза водного раствора сульфата меди (II ) с использованием инертных электродов. (Алгоритм 2.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

CuSO 4 → Cu 2+ + SO 4 2-

2. Выбрать ионы, которые будут разряжаться на электродах

На катоде восстанавливаются ионы меди. На аноде в водном растворе сульфат-ионы не окисляются, поэтому окисляется вода.

3.Составить схемы процессов восстановления и окисления

K - : Cu 2+ + 2ē → Cu 0

A + : 2H 2 O - 4ē → O 2 +4H +

4.Составить уравнение электролиза водного раствора соли

2CuSO 4 +2H 2 O = 2Cu + O 2 + 2H 2 SO 4

Задание 3. Составить схему электролиза водного раствора водного раствора гидроксида натрия с использованием инертных электродов. (Алгоритм 3.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации щёлочи

NaOH → Na + + OH -

2. Выбрать ионы, которые будут разряжаться на электродах

Ионы натрия не могут восстанавливаться, поэтому на катоде идёт восстановление воды. На аноде окисляются гидроксид-ионы.

3.Составить схемы процессов восстановления и окисления

K - : 2 H 2 O + 2ē → H 2 + 2 OH -

A + : 4 OH - - 4ē → 2 H 2 O + O 2

4.Составить уравнение электролиза водного раствора щёлочи

2 H 2 O = 2 H 2 + O 2 , т.е. электролиз водного раствора щёлочи сводится к электролизу воды.

Запомнить. При электролизе кислородсодержащих кислот (H 2 SO 4 и др .) , оснований (NaOH , Ca (OH ) 2 и др.) , солей активных металлов и кислородсодержащих кислот (K 2 SO 4 и др.) на электродах протекает электролиз воды: 2 H 2 O = 2 H 2 + O 2

Задание 4. Составить схему электролиза водного раствора нитрата серебра с использованием анода, изготовленного из серебра, т.е. анод – растворимый. (Алгоритм 4.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

AgNO 3 → Ag + + NO 3 -

2. Выбрать ионы, которые будут разряжаться на электродах

На катоде восстанавливаются ионы серебра, серебряный анод растворяется.

3.Составить схемы процессов восстановления и окисления

K - : Ag + + 1ē→ Ag 0 ;

A + : Ag 0 - 1ē→ Ag +

4.Составить уравнение электролиза водного раствора соли

Ag + + Ag 0 = Ag 0 + Ag + электролиз сводится к переносу серебра с анода на катод.