Самая большая биомасса на земле. Биомасса, или «живое вещество» планеты

Для осуществления любых жизненных процессов необходима энергия. Единственным источником энергии для земных растений является Солнце. Солнечная энергия, попадающая на фотосинтезирующие органы растений, аккумулируется во вновь образующихся органических соединениях. Эта энергия используется продуцентами по-разному. Часть ее тратится на дыхание, т.е. на биологическое окисление, часть запасается в виде вновь возникшей биомассы.

Биомасса – это масса организмов определенной группы или сообщества в целом. Некоторую долю созданной продуцентами биомассы съедают травоядные животные. Хищники потребляют травоядных животных и получают долю энергии. Большая часть энергии, полученная консументами с пищей, тратится на процессы, происходящие в клетках, а также выводится с продуктами жизнедеятельности в окружающую среду. Меньшая часть энергии идет на увеличение массы тала, рост и размножение. Часть биомассы продуцентов, не съеденная животными, отмирает, и с отмершей аккумулированная в ней энергия поступает в почву в виде растительного опада.

Растительный и животный опад (трупы, экскременты) пища редуцентов. Определенное количество энергии запасается в биомассе редуцентов, а часть рассеивается. Таким образом, энергия аккумулируется на уровне продуцентов, проходит через консументы и редуценты, входит в состав органических веществ, почвы, и рассеивается при разрушении ее разнообразных соединений. Через любую экосистемы проходит поток энергии, определенная часть которого используется каждым живым существом.

Биомасса представляет собой концентрацию живого вещества. Вторым важным показателем экосистемы является продуктивность, которая выражается в скорости нарастания биомассы. За счет на Земле создается 98 % органического вещества; 2 % приходится на хемосинтез. Различают валовую первичную продукцию (ВПП), которая представляет собой все органическое вещество экосистемы с затратами на дыхание. Чистая первичная продукция (ЧПП) – это то количество органического вещества, которое остается в экосистеме после затрат на дыхание. Формулой это можно выразить так:

ЧПП = ВПП – затраты на дыхание.

ЧПП очень различается в разных экосистемах. Например, на коралловых рифах она составляет 2500 г/м кв. в год, во влажных тропических лесах – 2300 г/м кв. в год. Коралловые рифы и влажные тропические леса являются самыми продуктивными экосистемами. Наиболее бедными экосистемами являются открытый океан (125 г/м кв. в год) и пустыня (3 г/м кв. в год).

Цепь питания – перенос энергии от его источника через ряд организмов. Все живые организмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Травоядные животные (потребители первого порядка) поедают растения, первичные хищники (потребители второго порядка) поедают травоядных, вторичные хищники (потребители третьего порядка) поедают хищников помельче.

Таким образом, создаются пищевые цепи из продуцентов и консументов, которые на разных этапах смыкаются с сообществом редуцентов.

Цепи питания представляют собой возможные варианты поедания организмами друг друга. Цепи питания, как правило, состоят из трех звеньев:

Продуценты консументы редуценты неорганические вещества

Приведем несколько примеров пищевых цепей, где для удобства изображения опустим группу редуцентов, представленных бактериями.

В лесу : малина рыжая полевка ушастая сова

В озере : диатомовая дафния карась

Приведенные пищевые цепи конечно являются крайне упрощенными. На практике цепи питания разветвляются и образуют пищевую сеть, так как каждый из консументов не может потреблять в пищу только один вид организмов.

Каждый из уровней питания называется трофическим уровнем. Фактически при поедании организмами друг друга по трофическим уровням переносится энергия. В каждом последующем трофическом звене количество энергии убывает. Это связано с тем, что какое-то количество энергии, поступившей в трофический уровень, всегда будет рассеиваться в виде тепла.

Состояние экосистемы описывается с помощью пирамиды. Экологическая пирамида представляет собой график состояния каждого трофического уровня. Эти графики строятся на основе изменения в каждом последующем трофическом уровне таких показателей как численность на единицу площади; биомассе на единицу площади, энергии. Пирамиды, построенные на основе изменений численности и биомассы могут иметь перевернутый вид, а на основе изменений энергии – никогда.

В классической пирамиде каждое следующее основание меньше предыдущего. При составлении экологической пирамиды в нижних основаниях пирамиды оказываются продуценты, а вверху – консументы.

Согласно исследованиям американского гидробиолога Линдеманна только часть энергии поступает на следующий трофический уровень (закон передачи энергии по цепям питания). Это количество энергии равно 10–20 % от предыдущего. Согласно этому закону в природе не может быть более 3–5 трофических звеньев в одной цепи. Наиболее выгодные с энергетической точки зрения цепи, содержащие 2 – 3 звена.

Пищевые цепи разделяются на два типа:

Цепь выедания – начинается с растений, идет к растительноядным животным, далее к хищникам.
Цепь разложения – начинается от растительных и животных остатков, экскрементов животных, далее мелкие животные и микроорганизмы.
Все типы пищевых цепей всегда существуют в сообществе таким образом, что член одной цепи является также членом другой. Соединения цепей образую пищевую сеть экосистемы. Угнетение или разрушение любого звена экосистемы с неизбежностью отразится на экосистеме в целом.

Биомасса

Биомасса, как производная энергии Солнца в химической форме, является одним из наиболее популярных и универсальных ресурсов на Земле. Она позволяет получать не только пищу, но и энергию, строительные материалы, бумагу, ткани, медицинские препараты и химические вещества. Биомасса используется для энергетических целей с момента открытия человеком огня. Сегодня топливо из биомассы может использоваться для различных целей - от обогрева жилищ до производства электроэнергии и топлив для автомобилей.

Химический состав биомассы

Химический состав биомассы может различаться в зависимости от ее вида. Обычно растения состоят из 25% лигнина и 75% углеводов или сахаридов. Углеводородная фракция состоит из множества молекул сахаридов, соединенных между собой в длинные полимерные цепи. К наиболее важным категориям углеводородов можно отнести целлюлозу. Лигниновая фракция состоит из молекул несахаридного типа. Природа использует длинные полимерные молекулы целлюлозы для образования тканей, обеспечивающих прочность растений. Лигнин представляет собой "клей", который связывает молекулы целлюлозы между собой.

Каким образом образуется биомасса?

Двуокись углерода из атмосферы и вода из грунта участвуют в процессе фотосинтеза с получением углеводов (сахаридов), которые и образуют "строительные блоки" биомассы. Таким образом, солнечная энергия , используемая при фотосинтезе, сохраняется в химической форме в биомассовой структуре. Если мы сжигаем биомассу эффективным образом (извлекаем химическую энергию), то кислород из атмосферы и углерод, содержащийся в растениях, вступают в реакцию с образованием двуокиси углерода и воды. Процесс является циклическим, потому что двуокись углерода может вновь участвовать в производстве новой биомассы.

В дополнение к своему эстетическому значению земной флоры биомасса представляет собой полезный и значимый ресурс для человека. В течение тысячелетий люди добывали энергию Солнца, сохраненную в виде энергии химических связей, сжигая биомассу в качестве топлива или употребляя ее в пищу, используя энергию сахаров и крахмала. В течение нескольких последних веков человечество научилось добывать ископаемую биомассу, в частности , в виде угля. Ископаемые виды топлива представляют собой результат очень медленной химической трансформации полисахаридов в химические соединения, сходные с лигниновой фракцией. В результате химический состав угля обеспечивает более концентрированный источник энергии. Все виды ископаемого топлива, которые потребляет человечество - уголь, нефть, природный газ - представляют собой древнюю биомассу. В течение миллионов лет на Земле остатки растений превращаются в топливо. Несмотря на то, что ископаемое топливо состоит из тех же компонентов - водорода и углерода - как и "свежая" биомасса, оно не может рассматриваться в качестве возобновляемого источника, потому что его образование требует весьма длительного времени.

Другое важное различие между биомассой и ископаемыми видами топлива определяется их воздействием на окружающую среду. В процессе разложения растения химические вещества попадают в атмосферу. Напротив, ископаемое топливо "заперто" глубоко под землей и не воздействует на атмосферу до тех пор, пока не будет сожжено.

Потребление биомассы растет быстрыми темпами и в развитых странах. В некоторых развитых странах биомасса используется весьма интенсивно. Например, Швеция и Австрия обеспечивают 15% потребности в первичных энергоносителях за счет биомассы. Швеция планирует увеличить потребление биомассы в будущем, сопроводив этот рост закрытием атомных и тепловых электростанций, использующих ископаемые виды топлива.

В США, где 4% энергии получают из биомассы (почти столько же, как от атомных электростанций), сегодня работают установки, сжигающие биомассу для получения электроэнергии общей установленной мощностью 9000 МВт. Биомасса может с легкостью обеспечить более 20% энергетических потребностей страны. Другими словами, имеющиеся земельные ресурсы и инфраструктура сельского хозяйства позволяют заменить все работающие атомные станции без изменения цен на продовольственные товары. Более того, использование биомассы для производства этанола могло бы уменьшить импорт нефти на 50%.

Распределение биомассы в мире

Общая масса живой материи (включая влажность) - 2000 миллиардов тонн
Общая масса наземных растений - 1800 миллиардов тонн
Общая масса леса -1600 миллиардов тонн
Количество наземной биомассы на одного жителя - 400 тонн
Количество энергии, накопленной наземной биомассой - 25 000 ЭДж (1 ЭДж=10 +18 Дж)
Годовой прирост биомассы - 400 000 миллионов тонн
Скорость накопления энергии наземной биомассой - 3000 ЭДж/год (95 TВт)
Общее потребление всех видов энергии - 400 ЭДж/год (12 TВт)
Потребление энергии биомассы - 55 ЭДж/год (1,7 TВт)

Биомасса в развивающихся странах

Несмотря на широкое применение биомассы в развивающихся странах, обычно оно неэффективно. Общая эффективность традиционного использования биомассы составляет только 5-15%. Кроме того, биомасса менее удобна для использования, чем ископаемое топливо. В некоторых случаях ее использование может быть опасно для здоровья , например, при использовании биомассы для приготовления пищи в плохо проветриваемых помещениях. При этом могут образовываться твердые частицы, CO, NОx, формальдегиды и другие органические вещества, концентрация которых может превысить уровень, рекомендуемый ВОЗ (Всемирная Организация Здравоохранения). Более того, традиционное использование биомассы (обычно сжигание древесины) часто ассоциируется с увеличивающимся дефицитом выращиваемой древесины, истощением запасов питательных веществ, проблемами уменьшения площади лесов и расширения пустынь. В начале 80-х годов почти 1.3 миллиарда жителей Земли обеспечивали свои потребности в топливе за счет уменьшения запасов древесины.

Доля биомассы в общем потреблении энергии:


Непал

94 %

Малави

94 %

Кения

95 %

Индия

50 %

Китай

33 %

Бразилия

25 %

Египет

20 %

Существует огромный потенциал биомассы, который может быть задействован в случае улучшения использования существующих ресурсов и увеличения продуктивности растений. Биоэнергетика может быть модернизирована путем использования современных технологий для преобразования исходной биомассы в современные и удобные для использования виды энергоносителей (такие, как электроэнергия , жидкие и газообразные топлива и подготовленное твердое топливо). В результате значительно большее количество энергии, чем сегодня, могло бы быть извлечено из биомассы. Это могло бы принести существенную социальную и экономическую пользу как сельскому так и городскому населению. Существующее в настоящее время ограничение доступа к удобным ресурсам ограничивает качество жизни миллионов людей в мире, в частности, в сельских районах развивающихся стран. Выращивание биомассы представляет собой сельский процесс, требующий больших человеческих ресурсов. В случае его развития могут быть созданы многочисленные рабочие места в сельскохозяйственных районах и ограничена миграция сельского населения в города. В то же время, выращивание биомассы может обеспечить развивающуюся в сельских районах промышленность удобным энергоносителем.

Пища или топливо?

Большая часть критики использования биомассы, особенно в крупномасштабном производстве топлива, связана с опасениями , что оно отвлекает сельское хозяйство от производства пищи, особенно в развивающихся странах. Основной аргумент заключается в том, что программы выращивания энергетических растений конкурируют с выращиванием пищевых культур различными способами (сельское хозяйство, инвестиции в сельские районы, инфраструктура, вода, удобрения, обученные человеческие ресурсы и т.д.), а это может привести к нехватке продовольствия и повышению цен. Однако, это так называемое противоречие "пища против топлива" оказывается преувеличенным во многих случаях. Предмет обсуждения более сложен, чем это обычно представляется, поскольку сельскохозяйственная и экспортная политика снабжения продовольствием представляют собой факторы огромного значения. Аргументы должны анализироваться с учетом реальной ситуации в мире , отдельной стране или регионе с обеспечением и потребностью в продовольствии (увеличением излишков продуктов питания в большинстве промышленных и некоторых развивающихся странах), использованием продовольствия в качестве корма для скота, недостаточным использованием аграрного потенциала, увеличивающимся потенциалом сельскохозяйственного производства и преимуществами или недостатками производства биотоплива.

Недостаток продовольствия и увеличение цен, с которыми столкнулась Бразилия несколько лет тому назад, часто связывали с реализацией программы "ProAlcool". Однако тщательное изучение не подтверждает, что производство этанола отрицательно воздействует на рынок продовольствия, поскольку Бразилия остается одним из самых больших экспортеров сельскохозяйственной продукции, а рост производства продуктов питания обгоняет темпы роста населения. Производство зерновых в стране в 1976 году составляло 416 кг на человека, а в 1987 году - 418 кг. Из 55 млн га земельных угодий , предназначенных для выращивания пищевых культур, только 4.1 млн га (7.5%) были использованы для выращивания сахарного тростника, что составляет только 0.6% общей площади страны, пригодной для экономического использования или 0.3% территории Бразилии. При этом только 1.7 млн га были использованы для производства этанола. Таким образом, противоречие между пищевыми и энергетическими культурами не является критическим. Более того, замена выращиваемых культур на сахарный тростник привела к увеличению выращиваемой пищи, поскольку багасса (тростник после гидролизной обработки) и сухие дрожжи используются для питания животных. Недостаток продовольствия и увеличение цен в Бразилии были вызваны комбинацией политических и экономических причин - политикой увеличения экспорта, гиперинфляцией, обесцениванием денег , политикой контроля цен на продукты местного производства и т.д. В этих условиях любые возможные негативные воздействия производства этанола могут рассматриваться как часть общих проблем, но не единственной проблемой.

Важно отметить, что развивающиеся страны испытывают на себе как продовольственную, так и энергетическую проблемы. Поэтому адаптация сельскохозяйственной практики должна учитывать это обстоятельство и развивать эффективные методы использования имеющейся земли и других ресурсов для удовлетворения как пищевых, так и энергетических потребностей с использованием агролесной системы.

Наличие земли

Фундаментальным отличием биомассы от других видов топлив является потребность в земле для ее выращивания. При этом возникает вопрос, как и кем эта земля будет использоваться. Существует два базовых подхода для определения способа использования земли. В рамках "технократического" подхода рассматриваются потребности, затем идентифицируются биологические источники, территории для выращивания и возможный экологический эффект. Такой подход игнорирует многие местные и большинство удаленных эффектов, вызываемых плантациями биомассы , а также игнорирует мнение местных фермеров, которые знают местные условия. В результате многие проекты в прошлом оказались неудачными. В рамках "комплексного" подхода задается вопрос, каким образом нужно использовать землю для обеспечения устойчивого развития, и рассматривается, какое сочетание методов и выращиваемых культур приведет к оптимальному использованию конкретного участка земли для удовлетворения потребностей в пище, топливе, корме для скота, социальном развитии и т.д. Такой подход требует полного понимания сложных вопросов землепользования.

Необходимо отметить, что продуктивность биомассы может быть увеличена, потому что во многих местах сегодня она низкая и составляет менее 5 т/га в год для древесных видов в условиях неэффективного менеджмента. Повышение эффективности является ключевым моментом как для формирования конкурентоспособных цен , так и для лучшей утилизации пригодных земель. Улучшение может включать идентификацию быстрорастущих видов, успешное размножение и использование комбинаций культур, новые знания о выращивании растений и биотехнологиях, которые могут привести к увеличению производительности растений в 5 - 10 раз по сравнению с их природным ростом.

Сегодня является возможным, в случае хорошего менеджмента, проведения исследований и выращивания отобранных видов растений на пригодных землях получить от 10 до 15 т/га в год в районах с умеренным климатом и от 15 до 25 т/га в год в тропических странах. Рекордное значение 40 т/га в год (сухой вес) достигнуто при выращивании эвкалипта в Бразилии и Эфиопии. Высокий выход биомассы может быть достигнут при выращивании трав, если существуют пригодные агроэкологические условия. Например, в Бразилии средний выход сахарного тростника вырос от 47 до 65 т/га (вес урожая) в течение последних 15 лет, в то время как в таких регионах, как Гавайи , Южная Африка и Квинсленд (Австралия) обычным урожаем считается 100 т/гa. Представляется возможным достичь трехкратного увеличения производительности для различных видов выращиваемых культур, как это было сделано для зерновых в течение последних 45 лет. Однако это потребует интенсивных аналогичных усилий и развития инфраструктуры.

Энергетическая емкость

При рассмотрении энергетического потенциала к биомассе относят все формы материалов растительного происхождения, которые могут быть использованы для получения энергии: древесину, травяные и зерновые культуры, отходы лесного хозяйства и животноводства и т.д. Поскольку биомасса представляет собой твердое топливо, ее можно сравнивать с углем. Теплотворная способность сухой биомассы составляет около 14 МДж/кг. Аналогичное значение для каменного угля и лигнита составляет 30 МДж/кг и 10-20 МДж/кг (см. таблицу далее). В момент образования (сбора урожая) биомасса содержит большое количество воды, от 8 до 20% в пшеничной соломе, 30 - 60% в древесине, до 75 - 90% в навозе сельскохозяйственных животных и 95% в водном гиацинте. В противоположность этому , влажность каменного угля находится в диапазоне от 2 до 12%. Поэтому плотность энергии в биомассе на этапе возникновения ниже, чем у каменного угля. С другой стороны, биомасса имеет преимущества с точки зрения химического состава. Зольность биомассы значительно ниже, чем угля. Кроме того, в золе биомассы обычно не содержатся тяжелые металлы и другие загрязнители, поэтому она может вноситься в почву в качестве удобрения.

Обычно биомассу ошибочно причисляют к низкосортным видам топлива, поэтому во многих странах ее использование даже не отражается в статистических отчетах. Однако она обеспечивает большую гибкость снабжения энергоносителями ввиду большого количества видов топлива, которые могут быть из нее получены. Энергия биомассы может использоваться для производства тепловой и электрической энергии посредством сжигания в современных устройствах - от миниатюрных домашних котлов до многомегаваттных электростанций, использующих газовые турбины. Системы, использующие биомассу в энергетических целях , обеспечивают экономическое развитие без увеличения парникового эффекта, поскольку биомасса является нейтральной по отношению к выбросам СО 2 в атмосферу в случае, если ее производство и использование осуществляется разумным образом. Биомасса обладает другими щадящими экологическими свойствами (малой эмиссией серы и оксидов азота) и может способствовать реабилитации деградированных земель. Растет понимание того, что использование биомассы в больших коммерческих системах основано на устойчивых, аккумулированных ресурсах и отходах и может улучшить управление природными ресурсами в целом.

Энергетическая емкость - сравнительная таблица


Вид

Содержание воды, %

МДж/кг

КВт·ч/кг

Дуб

20

14,1

3,9

Сосна

20

13,8

3,8

Солома

15

14,3

3,9

Зерновые

15

14,2

3,9

Рапсовое масло

-

37,1

10,3

Антрацит

4

30,0-35,0

8,3

Бурый уголь

20

10,0-20,0

5,5

Печное топливо

-

42,7

11,9

Биометанол

-

19,5

5,4

В настоящее время на Земле известны около 500 тыс. видов растений, более 1,5 миллионов видов животных. 93% их населяют сушу, а 7% являются обитателями водной среды (таблица).

Таблица. Биомасса организмов на Земле

Масса сухого вещества

Континенты

Океаны

Зелёные расте-ния

Живот-ные и микро-организ-мы

Зелёные расте-ния

Живот-ные и микроорга-низмы

Общее коли-чество

Проценты

Из данных таблицы видно, что хотя океаны и занимают около 70% земной поверхности, однако они образуют всего 0,13% биомассы Земли.

Образование почвы происходит биогенным путём, она состоит из неорганических и органических веществ. Вне биосферы образование почвы невозможно. Под воздействием микроорганизмов , растений и животных на горных пород ах начинает постепенно формироваться почвенный слой Земли. Накопленные в организмах биогенные элементы после их гибели и разложения опять переходят в почву.

Процессы, происходящие в почве, являются важным компонен-том круговорота веществ в биосфере . Хозяйственная деятельность человека может привести к постепенному изменению состава почвы и гибели живущих в ней микроорганизмов. Вот почему необходима разработка мер разумного использования почвы. Материал с сайта

Гидросфера играет важную роль в распределении тепла и влажности по планете , в круговороте веществ , поэтому она также оказывает мощное влияние на биосферу. Вода является важным компонентом биосферы и одним из наиболее необходимых факторов для жизни организмов. Основная часть воды находится в океанах и морях. В состав океанической и морской воды входят минеральные соли, содержащие около 60 химических элементов. Кислород и углерод, необходимые для жизни организмов, хорошо растворяются в воде. Водные животные в процессе дыхания выделяют углекислый газ, а растения в результате фотосинтеза обогащают воду кислородом.

Планктон

В верхних слоях океанических вод, достигающих в глубину 100 м, широко распространены одноклеточные водоросли и микроор-ганизмы, которые образуют микропланктон (от греч. plankton — блуждающий).

Около 30% фотосинтеза, осуществляющегося на нашей планете , происходит в воде. Водоросли, воспринимая солнечную энергию, превращают её в энергию химических реакций. В питании водных организмов основное значение имеет планктон .

Биомасса Земли . На суше Земли, начиная от полюсов к экватору, биомасса постепенно увеличивается. Вместе с тем возрастает и количество видов растений. Тундра с лишайниками и мхами сменяется хвойными и широколиственными лесами, затем степями и субтропической растительностью. Наибольшее сгущение и многообразие растений имеет место во влажных тропических лесах. Высота деревьев достигает 110-120м. Растения растут в несколько ярусов, эпифиты покрывают деревья. Количество и разнообразие видов животных зависят от растительной массы и тоже увеличиваются к экватору. В лесах животные расселены в различных ярусах. Наибольшая плотность жизни наблюдается в биогеоценозах, где виды связаны цепями питания. Цепи питания, переплетаясь, образуют сложную сеть передачи химических элементов и энергии от одного звена к другому. Между организмами идет жесточайшее состязание за обладание пространством, пищей, светом, кислородом. Большое влияние на биомассу суши оказывает человек. Под его воздействием сокращаются площади, производящие биомассу.

Биомасса почвы . Почва - среда, необходимая для жизни растений и биогеоценоз с разнообразными мельчайшими живыми организмами. Это рыхлый поверхностный слой земной коры, изменяемый атмосферой и организмами и постоянно пополняемый органическими остатками. Образование живого органического вещества происходит на земной поверхности; разложение органических веществ, их минерализация осуществляются главным образом в почве. Почва образовалась под воздействием организмов и физико-химических факторов. Мощность почвы наряду с поверхностной биомассой и под влиянием ее увеличивается от полюсов к экватору. В северных широтах особое значение имеет перегной.

Распространение биомассы на поверхности суши.

Почва плотно заселена живыми организмами. Вода от дождей, тающих снегов обогащает ее кислородом и растворяет минеральные соли. Часть растворов удерживается в почве, часть выносится в реки и океан. Почва испаряет поднимающуюся по капиллярам грунтовую воду. Происходит движение растворов и выпадение солей в разных почвенных горизонтах.

В почве происходит и газообмен. Ночью при охлаждении и сжатии газов в неё проникает некоторое количество воздуха. Кислород воздуха поглощается животными и растениями и входит в состав химических соединений. Проникший в почву с воздухом азот улавливается некоторыми бактериями. Днем при нагревании почвы выделяются газы: углекислый, сероводород, аммиак. Все процессы, происходящие в почве, входят в круговорот веществ биосферы.

Некоторые виды хозяйственной деятельности человека (химизация сельскохозяйственного производства, переработка нефтепродуктов и др.) вызывают массовую гибель почвенных организмов, играющих важную роль в биосфере.

Биомасса Мирового океана . Гидросфера Земли, или Мировой океан, занимает более 2/3 поверхности планеты. Вода обладает высокой теплоемкостью, делает более равномерной температуру океанов и морей, смягчая крайние изменения температуры зимой и летом. Океан замерзает только у полюсов, но и подо льдом существуют живые организмы.

Вода - хороший растворитель. В состав воды океана входят минеральные соли, содержащие около 60 химических элементов, в ней растворяются поступающие из воздуха кислород и углекислый газ. Водные животные также выделяют при дыхании углекислый газ, а водоросли в процессе фотосинтеза обогащают воду кислородом.

Физические свойства и химический состав вод океана весьма постоянны и создают среду, благоприятную для жизни. Фотосинтез водорослей происходит главным образом в верхнем слое воды - до 100м. Поверхность океана в этой толще заполнена микроскопическими одноклеточными водорослями, образующими микропланктон.

В питании животных океана преимущественное значение имеет планктон. Водорослями и простейшими питаются веслоногие рачки. Рачков поедают сельди и другие рыбы. Сельди идут в пищу хищным рыбам и чайкам. Исключительно планктоном питаются усатые киты. В океане, кроме планктона и свободноплавающих животных, много организмов, прикрепленных ко дну и ползающих по нему. Население дна носит название бентоса. В океане наблюдаются сгущения организмов: планктонное, прибрежное, донное. К живым сгущениям относятся и колонии кораллов, образующие рифы и острова. В океане, особенно на дне его, распространены бактерии, превращающие органические остатки в неорганические вещества. Отмершие организмы медленно оседают на дно океана. Многие из них покрыты кремневыми или известковыми оболочками, а также известковыми раковинами. На дне океана они образуют осадочные породы.

В настоящее время в ряде стран решается проблема добычи из океана пресной воды, металлов и более полного использования его пищевых ресурсов с охраной наиболее ценных животных.

Гидросфера оказывает мощное влияние на всю биосферу. Суточные и сезонные колебания нагревания поверхности суши и океана вызывают циркуляцию тепла и влаги в атмосфере и влияют на климат и круговороты веществ во всей биосфере.

Добыча нефти в морях, перевозка ее в танкерах и другие виды деятельности человека приводят к загрязнению Мирового океана и сокращению его биомассы.

В век научно-технического прогресса особое значение приобретают знания о жизненных процессах в целом, происходящих на всей планете. Исследования космоса позволили рассматривать Землю извне и изучать окружающие ее сферы. Увеличение народонаселения на Земле требует изыскания новых пищевых ресурсов. Вредные отходы промышленности и транспорта ставят проблему охраны не только живых организмов, но и чистоты вод и воздуха.

Скачать:


Предварительный просмотр:

Биосфера и свойства биомассы планеты Земля

В век научно-технического прогресса особое значение приобретают знания о жизненных процессах в целом, происходящих на всей планете. Исследования космоса позволили рассматривать Землю извне и изучать окружающие ее сферы. Увеличение народонаселения на Земле требует изыскания новых пищевых ресурсов. Вредные отходы промышленности и транспорта ставят проблему охраны не только живых организмов, но и чистоты вод и воздуха. В связи с этим необходимо понять роль живой природы в круговороте веществ на Земле. Главное – определить значимость живой природы как носителя и трансформатора энергии. Необходимо знать структуру жизни на всей планете и основы ее устойчивости. При изучении в предшествующих классах растений, животных, человека и общей биологии вы познакомились с живой природой на всех уровнях ее организации: молекулярном, клеточном, организменном, популяционно-видовом и биогеоценотическом. При изучении данной темы вы познакомитесь с высшим уровнем организации жизни на нашей планете – биосферным.

Биосфера и ее границы. Изучение многообразия форм органического мира и закономерностей его развития не будет полным без понимания места и роли живых организмов в целом на всей планете Земля. Совокупность всех живых организмов составляет живое вещество, или биомассу, планеты.


Жизнедеятельность организмов изменила и изменяет земную кору и атмосферу. Растительная часть биомассы за миллиарды лет очистила атмосферу от углекислого газа, обогатила ее кислородом и привела к отложению углерода в известняках, каменных углях, нефти. В процессе эволюции на Земле образовалась особая оболочка, или сфера, населенная живыми организмами. Эта земная оболочка, или область жизни, названа биосферой (греч. «биос» – жизнь, «сфера» – шар). Впервые это название было дано Ж. Б. Ламарком. Учение о биосфере создано академиком В. И. Вернадским (1863 – 1945), основоположником новой науки – биогеохимии, связывающей химию Земли с химией жизни и установившей роль живого вещества в преобразовании земной поверхности.

На планете Земля различают несколько геосфер .

Рис. 42. Литосфера (греч. «литос» – камень) – внешняя твердая оболочка земного шара. Она состоит из двух слоев: верхнего – осадочных пород с гранитом и нижнего – базальта. Слои расположены неравномерно. Гранит местами выходит на поверхность.

Все океаны, моря (совокупность их называют Мировым океаном), составляющие 70,8% поверхности Земли, а также озера, реки образуют гидросферу . Глубина океана в среднем 3,8 км, в отдельных впадинах – до 11,034 км.

Над поверхностью литосферы и гидросферы вверх до 100 км простирается атмосфера . Нижний слой атмосферы в среднем высотой 15 км называют тропосферой (греч. «тропэ» – перемена). Тропосфера включает взвешенные в воздухе водяные пары, перемещающиеся при неравномерном нагреве поверхности Земли. Над тропосферой различают стратосферу (лат. «стратум» – слой) высотой до 100 км. У границы ее возникают северные сияния. В стратосфере на высоте 15–35 км свободный кислород под влиянием солнечной радиации превращается в озон (O 2 → O 3 ), который образует экран и отражает губительные для живых организмов космические излучения и частично ультрафиолетовые лучи Солнца.

Среди всех сфер Земли особое место занимает биосфера - геологическая оболочка, населенная живыми организмами . Она охватывает поверхность Земли, верхнюю часть литосферы всю гидросферу и нижнюю часть атмосферы тропосферу . В биосфере проявляется деятельность живого вещества: растений, животных, микроорганизмов и человечества. Границы биосферы определяются наличием условий, необходимых для жизни различных организмов . Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы – бактерии. Споры бактерий и грибов залетают на высоту 20 км, а анаэробных бактерий находят в земной коре на глубине свыше 3 км, в водах месторождений нефти.

Рис. 43.
Наибольшая концентрация живой массы в биосфере наблюдается у поверхности суши и океана, у границ соприкосновения литосферы и атмосферы, гидросферы и атмосферы, гидросферы и литосферы. В этих местах наиболее благоприятные условия жизни – температура, влажность, содержание кислорода и химических элементов, важных для питания организмов. К верхним слоям атмосферы, в глубь океана и недр литосферы концентрация жизни уменьшается. Накопление биомассы обусловливается жизнедеятельностью зеленых растений.

Масса живого вещества по сравнению с массой земной коры незначительна. И тем не менее многие изменения земной коры обусловлены жизнедеятельностью биомассы.

Свойства живого вещества. Организмы, составляющие биомассу, обладают громадной способностью воспроизводства – размножения и распространения по планете.

Энергия биомассы особенно проявляется в размножении. «Живое вещество – совокупность организмов, – подобно массе газа, растекается по земной поверхности и оказывает определенное давление в окружающей среде, обходит препятствия, мешающие его продвижение или ими овладевает, их покрывает. Это движение достигается путем размножения организмов ... Уже К. Линней ясно видел, что это свойство должно считаться основным для живого, той непроходимой гранью, которая отделяет его от мертвой косной материи» (Вернадский).

В некоторые годы размножение отдельных видов вспыхивает с такой силой, что влечет нашествие громадных масс насекомых (саранча), грызунов и других животных. Захват пространства разными организмами обусловлен интенсивностью их размножения.

Мелкие организмы, особенно в водной среде, размножаются и распространяются очень быстро. Численность некоторых бактерий удваивается каждые 22 мин. Быстро размножаются членистоногие, составляющие главную массу животных суши.

Размножение и быстрое распространение организмов, особенно одноклеточных, определило «всюдность» (Вернадский) жизни – до крайних пределов биосферы.

Плотность жизни зависит от размеров организмов и необходимой для их жизни площади. Для ряски и водоросли хлореллы она определяется площадью, равной их размерам. Слону требуется площадь 30 км 2 , пчеле для сбора меда – 200 м 2 , травянистым растениям – в среднем 30 см 2 . Напор жизни создает борьбу организмов за площадь, пищу, воздух, воду.

Особенность каждого живого организма и всей биомассы состоит в постоянном обмене веществ с окружающей средой.

Различные элементы входят в живой организм, накапливаются в нем и выходят из него, частично при жизни и частично после смерти. Это главным образом кислород, водород, углерод, натрий, кальций, фосфор, калий, кремний и другие – более 20 элементов. В процессе питания происходит накопление энергии и передача ее другим организмам по цепи питания и путем размножения. Особенное значение в биосфере имеет выделение кислорода и поглощение углекислого газа при фотосинтезе зеленых растений.

В биосфере растительная масса во много раз превышает животную. В целом биомасса составляет лишь около 0,01% массы всей биосферы, но роль ее на планете грандиозна.

В среднем биомасса на Земле, по современным данным, составляет примерно 2,423 · 1012 т, при этом масса зеленых растений суши – 97%, животных и микроорганизмов – 3%.