Давление внутри жидкости и газа. Давление в жидкости и газах

Лекция 6. Элементы механики жидкостей.

Гл. 6, §28-31

План лекции

    Давление в жидкости и газе.

    Уравнение неразрывности. Уравнение Бернулли.

    Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей.

    Давление в жидкости и газе.

Молекулы газа, двигаясь хаотически, почти или вообще не связаны между собой силами взаимодействия, поэтому они движутся свободно и в результате соударений стремятся во все стороны, заполняя весь предоставленный им объем, т.е. объем газа определяется объемом того сосуда, который газ занимает.

Как и газ, жидкость принимает форму того сосуда, в котором находится, но среднее расстояние между молекулами остается практически постоянным, поэтому объем жидкости практически не меняется.

Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение описывается одинаковыми параметрами и идентичными уравнениями. Поэтому гидроаэромеханика - раздел механики, изучающий движение жидкостей и газов, их взаимодействие с обтекаемыми ими твердыми телами, - использует единый подход к изучению жидкостей и газов.

Основные задачи современной гидроаэромеханики:

    выяснение оптимальной формы тел, движущихся в жидкостях или газах;

    оптимальное профилирование проточных каналов различных газовых и жидкостных машин;

    подбор оптимальных параметров самих жидкостей и газов;

    исследование движения атмосферного воздуха, морских и океанских течений.

Вклад отечественных ученых:

Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, действуют на пластинку с силами , равными по модулю и направленными площадке S независимо от ее ориентации, т.к. наличие касательных сил привело бы частицы жидкости в движение.

Давление жидкости - это физическая величина, равная отношению нормальной силы, действующей со стороны жидкости на некоторую площадь, к этой площади.

1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1м 2 .

Давление при равновесии жидкостей подчиняется закону Паскаля : давление, оказываемое внешними силами на жидкость (или газ), передается по всем направлениям без изменений.

Гидростатическое давление

- гидростатическое давление

Согласно полученной формуле, сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует выталкивающая сила, определяемая законом Архимеда.

Закон Архимеда : на тело, погруженное в жидкость (или газ) действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости, вытесненной телом.

Подъемной силой называют разность между выталкивающей силой и силой тяжести.

.

    Уравнение неразрывности. Уравнение Бернулли.

Уравнение неразрывности.

Идеальная жидкость - это абстрактная жидкость, не обладающая вязкостью, теплопроводностью, способностью к электризации и намагничиванию.

Такое приближение допустимо для маловязкой жидкости. Течение жидкости называется стационарным, если вектор скорости в каждой точке пространства остается постоянным.

Графически движение жидкостей изображается с помощью линий тока.

Линии тока жидкости - это линии, в каждой точке которых вектор скорости частиц жидкости направлен по касательной (рис. 4).

Линии тока проводят так, чтобы число линий, проведенных через некоторую единичную площадку,  потоку, было численно равно или пропорционально скорости жидкости в данном месте.

Часть жидкости, ограниченная линиями тока, называется трубкой тока .

Т.к. скорость частиц жидкости направлена по касательной к стенкам трубки тока, частицы жидкости не выходят из трубки тока, т.е. трубка - как жесткая конструкция. Трубки тока могут сужаться или расширяться в зависимости от скорости жидкости, хотя масса жидкости, протекающей через некоторое сечение,  ее течению, за определенный промежуток времени будет постоянной.

Т.к. жидкость несжимаема, черезS 1 и S 2 пройдет за t одинаковая масса жидкости (рис. 5).

Уравнение неразрывности струи или теорема Эйлера.

Произведение скорости течения несжимаемой жидкости и площади поперечного сечения одной и той же трубки тока постоянно.

Теорема о неразрывности широко применяется при расчетах, связанных с подачей жидкого топлива в двигатели по трубам переменного сечения. Зависимость скорости потока от сечения канала, по которому течет жидкость или газ, используется при конструировании сопла ракетного двигателя. В месте сужения сопла (рис. 6) скорость истекающих из ракеты продуктов сгорания резко возрастает, а давление падает, благодаря чему возникает дополнительная сила тяги.

Уравнение Бернулли.

Пусть жидкость движется в поле сил тяжести так, что в данной точке пространства величина и направление скорости жидкости остаются постоянными. Такое течение называется стационарным. В стационарно текущей жидкости кроме сил тяжести действуют еще и силы давления. Выделим в стационарном потоке участок трубки тока, ограниченный сечениямиS 1 и S 2 (рис.7)

За время t этот объем переместится вдоль трубки тока, причем сечение S 1 переместится в положение 1", пройдя путь , аS 2 - в положение 2", пройдя путь . В силу неразрывности струи выделенные объемы (и их массы) одинаковы:

,
.

Энергия каждой частицы жидкости слагается из ее кинетической и потенциальной энергий в поле сил земного тяготения. Вследствие стационарности течения частица, находящаяся через t в любой из точек незаштрихованной части рассматриваемого объема, имеет такую же скорость, и, следовательно W к , какую имела частица, находившаяся в той же точке в начальный момент времени. Поэтому изменение энергии всего рассматриваемого объема можно вычислить как разность энергий заштрихованных объемов V 1 и V 2 .

Возьмем сечение трубки тока и отрезки
настолько малыми, чтобы всем точкам каждого из заштрихованных объемов можно было приписать одно и то же значение скорости, давления и высоты. Тогда приращение энергии равно:

В идеальной жидкости трение отсутствует, поэтому W должно равняться работе, совершенной над выделенным объемом силами давления:

(«-» т.к. направлена в сторону, противоположную перемещению)

,
,

,

Сократим на V и перегруппируем члены:

,

сечения S 1 и S 2 были выбраны произвольно, поэтому можно утверждать, что в любом сечении трубки тока

(1)

Выражение (1) представляет собой уравнение Бернулли . В стационарно текущей идеальной жидкости вдоль любой линии тока выполняется условие (1).

Для горизонтальной линии тока
,

Уравнение Бернулли достаточно хорошо выполняется для реальных жидкостей, внутреннее трение в которых не очень велико.

Уменьшение давления в точках, где скорость потока больше, положено в основу устройства водоструйного насоса.

Выводы этого уравнения учитываются при расчетах конструкций насосов систем подачи жидкого топлива в двигатели.

    Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей.

Сила внутреннего трения.

Вязкостью жидкостей и газов называется свойство их оказывать сопротивление перемещению одних слоев относительно других.

Вязкость обусловлена возникновением сил внутреннего трения между слоями движущихся жидкостей и газов, имеющих электромагнитное происхождение.

Уравнение гидродинамики вязкой жидкости было установлено Ньютоном в 1687 г.

- модуль силы внутреннего трения

Градиент скорости показывает, как быстро меняется скорость при переходе от слоя к слою в направленииz, перпендикулярном направлению движения слоев.

- вязкость или динамическая вязкость.

Физический смысл -

Величина зависит от молекулярного строения вещества и температуры:

У газов с ростом температуры увеличивается, т.к. возрастают скорости движения молекул и усиливается их взаимодействие. В результате возрастает обмен молекулами между движущимися слоями газа, которые переносят импульс от слоя к слою. Поэтому медленные слои ускоряются, а быстрые замедляются, -увеличивается.

У жидкостей с ростом температуры ослабевает межмолекулярное взаимодействие и увеличивается расстояние между молекулами, - уменьшается.

- коэффициент кинематической вязкости

.

Вязкость жидкостей и газов определяют с помощью вискозиметров.

От величины вязкости топлива зависит скорость его течения по трубопроводу, а так же величина теплоотдачи жидкости или газа стенкам трубопровода, поэтому топлива и охладителей учитывается при конструировании систем подачи топлива и охлаждающих систем двигателей.

Ламинарный и турбулентный режимы течения.

В зависимости от скорости потока течение жидкости или газа может быть ламинарным или турбулентным.

Ламинарное течение (лат. «ламина» - полоска) - течение, при котором жидкость или газ перемещаются слоями, параллельными направлению течения, причем это слои не перемешиваются друг с другом.

Ламинарное течение стационарно, бывает либо при большой , либо при малой .

Турбулентным называется течение, при котором в жидкости (или газе) образуются многочисленные вихри различных размеров, вследствие чего давление, плотность и скорость течения непрерывно изменяется.

Турбулентное течение нестационарно, преобладает на практике.

Ткань можно проткнуть иголкой, но не карандашом (если приложить такое же усилие). Карандаш и игла имеют разную форму и поэтому оказывают на ткань неодинаковое давление. Давление вездесуще. Оно приводит в действие механизмы (см. статью « «). Оно влияет на . оказывают давление на поверхности, с которыми соприкасаются. Атмосферное давление влияет на погоду прибор для измерения атмосферного давления – .

Что такое давление

Когда на тело перпендикулярно к его поверхности действует , то тело оказывается под давлением. Давление зависит от того, насколько велика сила, и от площади поверхности, на которую сила действует. Например, если выйти на снег в обычной обуви, можно провалиться; по этого не произойдет, если мы наденем лыжи. Вес тела один и тот же, но во втором случае давление распределится по большей поверхности. Чем больше поверхность, тем меньше давление. У северного оленя широкие копыта - ведь он ходит на снегу, и давление копыта на снег должно быть как можно меньше. Если нож острый, сила прикладывается к поверхности небольшой площади. Тупой нож распределяет силу по большей поверхности, поэтому и режет хуже. Единица давления - паскаль (Па) - названа в честь французского ученого Блеза Паскаля (1623 - 1662), сделавшего немало открытий в области атмосферного давления.

Давление жидкостей и газов

Жидкости и газы принимают форму сосуда, в котором они содержатся. В отличие от твердых тел, жидкости и газы давят на все стенки со­суда. Давление жидкостей и газов направлено во все сто­роны. давит не только на дно, но и на стенки аквариума. Сам аквариум давит только вниз. давит изнутри на футбольный мяч во всех направлениях, и поэтому мяч круглый.

Гидравлические механизмы

Действие гидравлических механизмов основано на давлении жидкости. Жид­кость не сжимается, поэтому если к ней приложить силу, она будет вынуждена сдвинуться с места. И тормоза работают на гидравлическом принципе. Уменьшение оборотов колее достигается с помощью давления тормозной жидкости. Водитель нажимает на педаль, поршень прокачивает тормозную жидкость через цилиндр, дальше она по трубке поступает в два других цилиндра и давит на поршни. Поршни прижимают тормозные колодки к диску колеса. Возникающее замедляет вращение колеса.

Пневматические механизмы

Пневматические механизмы действуют благодаря давлению газов - как правило, воздуха. В отличие от жид­костей, воздух может сжиматься, и тогда давление его возрастает. Действие отбойного молотка основано на том, что поршень сжимает воздух внутри его до очень большого давления. В отбойном молотке сжатый воздух давит на резец с такой силой, что можно бурить даже камень.

Пеногонный огнетушитель - это пневматическое устройство, работающее на сжатом углекислом газе. Сжав рукоятку, вы высвобождаете находящийся в канистре сжатый углекислый газ. Газ с огромной силой давит вниз, на специальный раствор, вытесняет его в трубку и шланг. Из шланга вырывается струя воды и пены.

Атмосферное давление

Атмосферное давление создастся весом воздуха над поверхностью . На каждый квадратный метр воздух давит с силой большей, чем вес слона. Вблизи поверхности Земли давление выше, чем высоко в небе. На высоте 10 000 метров там, где летают реактивные самолеты, давление невелико, так как сверху давит незначительная воздушная масса. В салоне самолёта поддерживается нормальное атмосферное давление, чтобы люди могли свободно дышать на большой высоте. Но даже в герметичном салоне самолёта у людей закладывает уши, когда давление становится ниже, чем давление внутри ушной раковины.

Атмосферное давление измеряется в миллиметрах ртутного столба. Когда меняется давление, меняется и . Низкое давление означает, что предсто­ит ухудшение погоды. Высокое давле­ние приносит ясную погоду. Нормальное давление на уровне моря – 760 мм (101 300 Па). В дни ураганов оно может упасть до 683 мм (910 Па).

Жидкости и газы передают по всем направлениям приложенное к ним давление. Об этом гласит закон Паскаля и практический опыт.

Но существует еще и собственный вес, который тоже должен влиять на давление, существующее в жидкостях и газах. Вес собственных частей или слоев. Верхние слои жидкости давят на средние, средние на нижние, а последние - на дно. То есть мы можем говорить о существовании давления столба покоящейся жидкости на дно.

Формула давления столба жидкости

Формула для расчета давления столба жидкости высотой h имеет следующий вид:

где ρ - плотность жидкости,
g - ускорение свободного падения,
h - высота столба жидкости.

Это формула так называемого гидростатического давления жидкости.

Давление столба жидкости и газа

Гидростатическое давление, то есть, давление, оказываемое покоящейся жидкостью, на любой глубине не зависит от формы сосуда, в котором находится жидкость. Одно и то же количество воды, находясь в разных сосудах, будет оказывать разное давление на дно. Благодаря этому можно создать огромное давление даже небольшим количеством воды.

Это очень убедительно продемонстрировал Паскаль в семнадцатом веке. В закрытую бочку, полную воды, он вставил очень длинную узкую трубку. Поднявшись на второй этаж, он вылил в эту трубку всего лишь одну кружку воды. Бочка лопнула. Вода в трубке из-за малой толщины поднялась до очень большой высоты, и давление выросло до таких значений, что бочка не выдержала. То же самое справедливо и для газов. Однако, масса газов обычно намного меньше массы жидкостей, поэтому давление в газах, обусловленное собственным весом можно часто не учитывать на практике. Но в ряде случаев приходится считаться с этим. Например, атмосферное давление, которое давит на все находящиеся на Земле предметы, имеет большое значение в некоторых производственных процессах.

Благодаря гидростатическому давлению воды могут плавать и не тонуть корабли, которые весят зачастую не сотни, а тысячи килограмм, так как вода давит на них, как бы выталкивая наружу. Но именно по причине того же гидростатического давления на большой глубине у нас закладывает уши, а на очень большую глубину нельзя спуститься без специальных приспособлений - водолазного костюма или батискафа. Лишь немногие морские и океанические обитатели приспособились жить в условиях сильного давления на большой глубине, но по той же причине они не могут существовать в верхних слоях воды и могут погибнуть, если попадут на небольшую глубину.

Жидкость в гидравлике рассматривают как сплошную среду без пустот и промежутков. Кроме того, не учитывают влияние отдельных молекул, то есть даже бесконечно малые частицы жидкости считают состоящими из весьма большого количества молекул.

Из курса физики известно, что вследствие текучести жидкости, т.е. подвижности ее частиц, она не воспринимает сосредоточенные силы. Поэтому в жидкости действуют только распределенные силы, причем эти силы могут распределяться по объему жидкости(массовые или объемные силы) или по поверхности (поверхностные силы).

Объемные (массовые) силы

К объемным (массовым) силам относятся силы тяжести и силы инерции. Они пропорциональны массе и подчиняются второму закону Ньютона.

Поверхностные силы

К поверхностным силам следует отнести силы, с которыми воздействуют на жидкость соседние объемы жидкости или тела, так как это воздействие осуществляется через поверхности. Рассмотрим их подробнее.

Пусть на плоскую поверхность площадью S под произвольным углом действует сила R

Силу R можно разложить на тангенциальную Т и нормальную F составляющие.

Сила трения

Тангенциальная составляющая называется силой трения Т и вызывает в жидкости касательные напряжения (или напряжения трения):

Единицей измерения касательных напряжений в системе СИ является Паскаль (Па) - ньютон, отнесенный к квадратному метру (1 Па = 1 Н/м 2).

Давление в жидкости

Нормальная сила F называется силой давления и вызывает в жидкости нормальные напряжения сжатия, которые определяются отношением:

Нормальные напряжения, возникающие в жидкости под действием внешних сил, называются гидромеханическим давлением или просто давлением.

Системы отсчета давления

Рассмотрим системы отсчета давления. Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления. При отсчете давлений от этого нуля их называют абсолютными - P абс .

Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления P изб , т.е. когда за начало шкалы принимается атмосферное давление.

Давление, которое отсчитывается "вниз" от атмосферного нуля, называется давлением вакуума P вак , или вакуумом.

P абс = P атм + P изб

где P атм - атмосферное давление, измеренное барометром.

Связь между абсолютным давлением P абс и давлением вакуума P вак можно установить аналогичным путем:

P абс = P атм - P вак

И избыточное давление, и вакуум отсчитываются от одного нуля (P атм ), но в разные стороны.

Таким образом, абсолютное, избыточное и вакуумное давления связаны и позволяют пересчитать одно в другое.

Единицы измерения давления

Практика показала, что для решения технических (прикладных) задач наиболее удобно использовать избыточные давления. Основной единицей измерения давления в системе СИ является паскаль (Па), который равен давлению, возникающему при действии силы в 1 Н на площадь размером 1 м2 (1 Па = 1 Н/м2).

Однако чаще используются более крупные единицы: килопаскаль (1 кПа = 10 3 Па) и мегапаскаль (1 МПа = 10 6 Па).

В технике широкое распространение получила внесистемная единица - техническая атмосфера (ат), которая равна давлению, возникающему при действии силы в 1 кгс на площадь размером 1 см 2 (1 ат = 1 кгс/см 2).

Соотношения между наиболее используемыми единицами следующие:

10 ат = 0,981 МПа ≈ 1 МПа или 1 ат = 98,1 кПа ≈ 100 кПа.

В зарубежной литературе используется также единица измерения давления бар

(1 бар = 105 Па).

В каких ещё единицах измеряется давление, можно посмотреть

Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем.

Плотность и удельный вес

Важнейшими характеристиками механических свойств жидкости являются ее плотность и удельный вес. Они определяют "весомость" жидкости.

Под плотностью ρ (кг/м 3) понимают массу жидкости m , заключенную в единице ее объема V, т.е.

Вместо плотности в формулах может быть использован также удельный вес γ (Н/м 3), т.е. вес G = m⋅g, приходящийся на единицу объема V:

γ = G / V = m⋅g / V = ρ⋅g

Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают.

Плотности наиболее употребляемых жидкостей и газов (кг/м 3):

Вязкость

Вязкость - это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость проявляется в возникновении касательных напряжений (напряжений трения).

Рассмотрим слоистое течение жидкости вдоль стенки (рисунок)

В этом случае происходит торможение потока жидкости, обусловленное ее вязкостью. Причем скорость движения жидкости в слое тем ниже, чем ближе он расположен к стенке. Согласно гипотезе Ньютона касательное напряжение, возникающее в слое жидкости на расстоянии у от стенки, определяется зависимостью:

Закон трения Ньютона

= μ⋅ dv
dy

где dv/dy - градиент скорости, характеризующий интенсивность нарастания скорости v при удалении от стенки (по оси у), μ ‑ динамическая вязкость жидкости.

Течения большинства жидкостей, используемых в гидравлических системах, подчиняются закону трения Ньютона, и их называют ньютоновскими жидкостями.

Однако следует иметь в виду, что существуют жидкости, в которых закон Ньютона в той или иной степени нарушается. Такие жидкости называют неньютоновскими.

Величина μ, входящая в формулу (динамическая вязкость жидкости), измеряется в Пас либо в пуазах 1 П = 0.1 Пас. Пуа́з (обозначение: П, до 1978 года пз; международное - P; от фр. poise) - единица динамической вязкости в системе единиц СГС. Один пуаз равен вязкости жидкости, оказывающей сопротивление силой в 1 дину взаимному перемещению двух слоев жидкости площадью 1 см², находящихся на расстоянии 1 см друг от друга и взаимно перемещающихся с относительной скоростью 1 см/с.

1 П = 1 г / (см·с) = 0,1 Н·с/м²

Единица названа в честь Ж. Л. М. Пуазёйля. Пуаз имеет аналог в системе СИ - паскаль-секунда (Па·c).

1 Па·c = 10 П

Вода при температуре 20 °C имеет вязкость 0,01002 П, или около 1 сантипуаза.

Однако на практике более широкое применение нашла

Кинематическая вязкость:

ν =   μ
ρ

Единицей измерения последней в системе СИ является м 2 /с или более мелкая единица - см 2 /с, которую принято называть стоксом, 1 Ст = 1 см 2 /с. Для измерения вязкости также используются сантистоксы: 1 сСт = 0,01 Ст.

Вязкость жидкостей существенно зависит от температуры, причем вязкость капельных жидкостей с повышением температуры падает, а вязкость газов - растет (см. рисунок).

Это объясняется тем, что в капельных жидкостях, где молекулы расположены близко друг к другу, вязкость обусловлена силами молекулярного сцепления. Эти силы с ростом температуры ослабевают, и вязкость падает. В газах молекулы располагаются значительно дальше друг от друга. Вязкость газа зависит от интенсивности хаотичного движения молекул. С ростом температуры эта интенсивность растет и вязкость газа увеличивается.

Вязкость жидкостей зависит также от давления, но это изменение незначительно, и в большинстве случаев его не учитывают.

Сжимаемость

Сжимаемость - это способность жидкости изменять свой объем под действием давления. Сжимаемость капельных жидкостей и газов существенно различается. Так, капельные жидкости при изменении давления изменяют свой объем крайне незначительно. Газы, наоборот, могут значительно сжиматься под действием давления и неограниченно расширяться при его отсутствии.

Для учета сжимаемости газов при различных условиях могут быть использованы уравнения состояния газа или зависимости для политропных процессов.

Сжимаемость капельных жидкостей характеризуется коэффициентом объемного сжатия β р (Па -1):

где dV - изменение объема под действием давления; dр - изменение давления; V - объем жидкости.

Знак "минус" в формуле обусловлен тем, что при увеличении давления объем жидкости уменьшается, т.е. положительное приращение давления вызывает отрицательное приращение объема.

При конечных приращениях давления и известном начальном объеме V 0 можно определить конечный объем жидкости:

V 1 = V 0 ·(1 - β р ·Δp)

а также ее плотность

Величина, обратная коэффициенту объемного сжатия β р, называется объемным модулем упругости жидкости (или модулем упругости ) К = 1/ β р (Па).

Эта величина входит в обобщенный закон Гука, связывающий изменение давления с изменением объема

ΔV = - Δp
v K

Модуль упругости капельных жидкостей изменяется при изменении температуры и давления. Однако в большинстве случаев K считают постоянной величиной, принимая за нее среднее значение в данном диапазоне температур или давлений.

Модули упругости некоторых жидкостей (МПа):

Температурное расширение

Способность жидкости изменять свой объем при изменении температуры называется температурным расширением. Оно характеризуется коэффициентом температурного расширения β t:

где dT- изменение температуры; dV- изменение объема под действием температуры; V - объем жидкости.

При конечных приращениях температуры:

V 1 = V 0 ·(1 + β t ·ΔT)

Как видно из формул, с увеличением температуры объем жидкости возрастает, а плотность уменьшается.

Коэффициент температурного расширения жидкостей зависит от давления и температуры:

То есть при разных условиях коэффициент температурного расширения изменился в 50 раз. Однако на практике обычно принимают среднее значение в данном диапазоне температур и давления.Например, для минеральных масел β t ≈ 800·10 -6 1/град.

Газы весьма значительно изменяют свой объем при изменении температуры. Для учета этого изменения используют уравнения состояния газов или формулы политропных процессов.

Испаряемость

Любая капельная жидкость способна изменять свое агрегатное состояние, в частности превращаться в пар. Это свойство капельных жидкостей называют испаряемостью. В гидравлике наибольшее значение имеет условие, при котором начинается интенсивное парообразование по всему объему - кипение жидкости.

Для начала процесса кипения должны быть созданы определенные условия (температура и давление). Например, дистиллированная вода закипает при нормальном атмосферном давлении и температуре 100°С. Однако это является частным случаем кипения воды. Та же вода может закипеть при другой температуре, если она будет находиться под воздействием другого давления, т. е. для каждого значения температуры жидкости, используемой в гидросистеме, существует свое давление, при котором она закипает.

Давление при котором жидкость закипает, называют давлением насыщенных паров (p н.п.).

Величина p н.п. всегда приводится как абсолютное давление и зависит от температуры.

Для примера на рисунке приведена зависимость давления насыщенных паров воды от температуры.

На графике выделена точка А, соответствующая температуре 100°С и нормальному атмосферному давлению р а. Если на свободной поверхности воды создать более высокое давление р 1 , то она закипит при более высокой температуре Т 1 (точка В на рисунке). И наоборот, при малом давлении р 2 вода закипает при более низкой температуре Т 2 (точка С).

Растворимость газов

Многие жидкости способны растворять в себе газы. Эта способность характеризуется количеством растворенного газа в единице объема жидкости, различается для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть:

где V г - объем растворенного газа, приведенный к нормальным условиям (p 0 , Т 0);
V ж - объем жидкости;
k - коэффициент растворимости;
р - давление жидкости.

Коэффициент k имеет следующие значения при 20°С:

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем.

Закон Паскаля о давлении был открыт в XVII веке французским ученым Блезом Паскалем, в честь которого и получил свое название. Формулировка этого закона, его значение и применение в повседневной жизни подробно рассматривается в этой статье.

Суть закона Паскаля

Закон Паскаля – давление, которое оказывается на жидкость или газ, передается в каждую точку жидкости или газа без изменений. То есть, передача давления во всех направлениях происходит одинаково.

Данный закон действителен только для жидкостей и газов. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Их движение отличается друг от друга. Если молекулы жидкости и газа движутся относительно свободно, то молекулы твердых тел такой свободой не обладают. Они лишь слегка колеблются, немного отклоняясь от исходного положения. И благодаря относительно свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.

Формула и основная величина закона Паскаля

Основной величиной в законе Паскаля является давление. Оно измеряется в Паскалях (Па) . Давление (P) – отношение силы (F) , которая действует на поверхность перпендикулярно, к ее площади (S) . Следовательно: P=F/S .

Особенности давления газа и жидкости

Находясь в закрытом сосуде, мельчайшие частицы жидкостей и газов – молекулы, ударяются о стенки сосуда. Так как эти частицы подвижны, то из места с более высоким давлением они способны передвигаться в место с низким давлением, т.е. в течение короткого времени оно становиться равномерным по всей поверхности занимаемого сосуда.

Для лучшего понимания закона можно провести опыт. Возьмем воздушный шарик и наполним его водой. Потом тонкой иголкой проделаем несколько отверстий. Результат не заставит себя ждать. Из дырочек начнет вытекать вода, а если шарик сжать (т.е. оказать давление), то напор каждой струи увеличиться в насколько раз, независимо оттого, в какой именно точке было оказано давление.

Этот же эксперимент можно провести с шаром Паскаля. Это круглый шар с имеющимися отверстиями с присоединенным к нему поршнем.

Рис. 1. Блез Паскаль

Определение давления жидкости на дно сосуда происходит по формуле:

p=P/S=gpSh/s

p=gρ h

  • g – ускорение свободного падения,
  • ρ – плотность жидкости (кг/куб.м)
  • h – глубина (высота столба жидкости)
  • p – давление в паскалях.

Под водой давление зависит только от глубины и плотности жидкости. То есть в море или океане плотность будет больше при большем погружении.

Рис. 2. Давление на разных глубинах

Применение закона на практике

Многие законы физики, в том числе и закон Паскаля, применяются на практике. Например, обычный водопровод не мог бы функционировать, если бы в нем не действовал данный закон. Ведь молекулы воды в трубе движутся хаотично и относительно свободно, а значит и давление, оказываемое на стенки водопровода везде одинаковое. Работа гидравлического пресса также основана на законах движения и равновесия жидкостей. Пресс представляет собой два соединенных между собой цилиндра с поршнями. Пространство под поршнями заполняют маслом. Если на меньший поршень площадью S 2 , действует сила F 2 , то на больший поршень площадью S 1 , действует сила F 1 .

Рис. 3. Гидравлический пресс

Также можно провести эксперимент с сырым и вареным яйцом. Если острым предметом, например, длинным гвоздем, проткнуть сначала одно, а потом другое, то результат будет разным. Крутое яйцо гвоздь пройдет насквозь, а сырое разлетится вдребезги, так как для сырого яйца будет действовать закон Паскаля, а для крутого нет.

Закон Паскаля гласит, что давление во всех точках покоящейся жидкости одинаково, то есть: F 1 /S 1 =F 2 /S 2 , откуда F 2 /F 1 =S 2 /S 1 .

Сила F 2 во столько же раз больше силы F 1 , во сколько раз площадь большего поршня больше площади малого.

Что мы узнали?

Основной величиной закона Паскаля, который изучают в 7 классе, является давление, которое измеряется в Паскалях. В отличие от твердых тел газообразные и жидкие вещества давят на стенки сосуда, в котором они находятся одинаково. Причиной этому молекулы, которые движутся свободно и хаотично в разных направлениях.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 444.