Строение нервных волокон и их классификация. Проведение возбуждения

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Общее направление развития нервной системы в онтогенезе реализуется в соответствии с ходом филогенеза, т. е раньше созревают с ходом филогенеза, т. е. раньше созревают филогенетически более древние структуры (рекапитуляция признаков). Так, ретикулоспинальные и вестибулярные системы созревают раньше, чем руброспинальные. Руброспинальная созревает раньше, чем пирамидная система. На фоне этого общего плана развития развитие других систем характеризуется гетерохронностью. Например, очень рано созревают нейроны ядер тройничного и лицевого нервов, медиального продольного пучка. Это соответствует принципам системогенеза П.К. Анохина: на каждом этапе онтогенеза консолидируются функциональные системы, обеспечивающие наиболее эффективную адаптацию организма к конкретным условиям. Например поддержание гомеостаза, приспособление к конкретным условиям среды.

Диаметр и длина осевых цилиндров нервных волокон увеличивается в пренатальном периоде и продолжает увеличиваться и после рождения. Так, в локтевых нервах диаметр осевых цилиндров составляет 1-3 мкм, к 4 годам — 7 мкм. Это увеличение продолжается до 5-9 лет и совпадает со сроками окончательной зрелости, когда достигается максимальная скорость проведения.

Миелинизация нервных волокон начинается в пренатальном периоде, сроки же окончания, в особенности для волокон коры больших полушарий, затягиваются на период раннего и позднего детства, подросткового возраста, вплоть до взрослого состояния (Рис. V. 2). Меньшей степени это у всех соматических нервных волокон и части волокон вегетативной нервной системы. В черепномозговых нервах миелинизация происходит раньше, чем в спинномозговых: вестибулярный нерв, например, начинает миелинизироваться на 3-м месяце внутриутробного развития, а волокна, образующие корешки спинного мозга, — на 4-м месяце. В вентральных корешках орган миелинизации короче, чем в дорсальных. В целом, в периферических нервах миелинизация заканчивается лишь к 9 годам жизни.

Гистофизиологическое созревание нервной и мышечной ткани происходит взаимообусловленно. Так, у эмбриона в закладки почек, конечностей и в миотомы врастают миобласты и нервные волокна. Если образующиеся из миобластов миотрубочки не получают иннервации, их развитие прекращается. Когда появляются движения эмбриона, в передних рогах серого вещества спинного мозга многие мотонейроны гибнут из-за того, что их аксоны не образовали синапсов с миотрубочками.

Анализаторы

Зрительная сенсорная система. Развитие глаза начинается на 3-6 неделе эмбриогенеза. Сетчатка развивается как вырост промежуточного мозга, который вначале имеет

мешкообразную форму, а на 11-й неделе приобретает вид бокала. Сосудистая оболочка и склера образуется из мезенхитмы, хрусталик — из эктодермы. К рождению сетчатка еще не полно дифференцирована. Колбочек в сетчатке сравнительно мало, и они имеют округлую форму. Не сформирована центральная ямка. Клеточная дифференцировка сетчатки заканчивается только к 4-5-ти месяцам постнатальной жизни.

Миелинизация зрительных волокон начинается на 8-9-м месяце пренатальной жизни. Она идет по восходящей, в направлении от хиазмы к таламусу, а затем — к сетчатке. Завершается к 4-м месяцам жизни ребенка. В течение первого года жизни интенсивно развиваются зрительные центры мозга и проекционные зрительные корковые центры. Окончательное созревание цитоархитектоники ассоциативно-зрительных полей — 18-19 — наступает лишь к 7-ми годам, однако и к этому возрасту зрительный аппарат оказывается еще не полностью дифференцирован.

Световая чувствительность сетчатки повышается в течение 20-ти лет. До 10-ти лет расширяются границы поля зрения. После рождения постепенно меняется форма глазного яблока. В результате, в периоде детства преобладает небольшая дальнозоркость, которая выправляется в норме к 8-12-ти годам. Однако у 40% детей глазное яблоко с возрастом удлиняется, вследствие этого развивается близорукость.

Причины близорукости могут быть различными. Одна из основных — наследственная предрасположенность. Неблагоприятно также длительное сосредоточенное рассматривание близких предметов. Оптимальным для фокусирующего аппарата является расстояние от глаз 40 см. После рождения постепенно совершенствуются координация и согласованность сокращений мышц глазного яблока, обеспечивающих сосредоточение на объекте и слежение за ним.

Полноценное цветоразличение, которое обеспечивается созреванием не только колбочковых системяетчатки, но и центральных (мозговых) зрительных структур, развивается также постепенно, к 3-м годам жизни.

Острота зрения у новорожденных очень низкая. Это связано, в частности, с отмеченной выше структурной незрелостью центральной ямки сетчатки. Острота зрения становится нормальной лишь к 5-ти годам.

Слуховая сенсорная система. Слуховой пузырек отшнуровывается от мозга на 4-й неделе эмбриона. Улитка формируется на 10-й неделе. До 5-ти месяцев эмбриогенеза ее размер увеличивается. К 6-ти месяцам дифференцируется рецепторная часть улитки. Миелинизация слуховых волокон в стволе мозга заканчивается в 4-9 месяцев плодного периода. Миелинизация же таламических и корковых отделов завершается лишь к 6-ти годам и позднее. Среднее ухо до рождения содержит жидкость.

Слуховые косточки среднего уха только через несколько месяцев после рождения освобождаются от остатков соединительной ткани и становятся достаточно подвижными. Благодаря этому, колебания барабанной перепонки, вызванные звуковыми волнами, дифференцированно передаются с помощью косточек на базальную мембрану, с расположенными на ней рецепторными клетками.

Представляет интерес также развитие наружного уха. Оно начинается со 2-го месяца эмбриогенеза, с закладки нескольких бугорков, образованных мезенхимой, окружающей первую жаберную борозду. В дальнейшем, благодаря многим точкам роста, формируется окончательная конфигурация наружного уха. Она бывает настолько индивидуальна, что используется в некоторых европейских странах для идентификации личности.

Человек начинает воспринимать звуки внешней для него среды уже в плодном периоде. Слуховая чувствительность совершенствуется до 15-20 лет. В развитии речеслуховой сферы, а также музыкального слуха значительную роль играют обучение и воспитание, т. е. условия соответствующей среды. Вместе с тем, уровень развития слуховой чувствительности в значительной степени генетически обусловлен.

Вестибулярная сенсорная система. Закладывается в эмбриогенезе одновременно со слуховой системой. Это — верхняя часть слухового пузырька, из которой формируются маточка и полукружные каналы. Вестибулярная система созревает сравнительно рано. Так, миелинизация вестибулярного нерва, а также созревание одного из ведущих вестибулярных ядер — ядра Дейтерса в продолговатом мозге наблюдаются очень рано: к 4-м месяца плодного периода. К этому времени у плода уже выражены вестибулярные тонические рефлексы. У новорожденных, благодаря им, хорошо развиты статокинетические рефлексы, а в более позднем возрасте — рефлексы удержания головы, сидения, стояния.

Вкусовая и обонятельная сенсорные системы. У 3-х месячного плода начинают развиваться вкусовые луковицы в сосочках языка. Вкусовые рецепторы у новорожденных занимают даже большую поверхность слизистой оболочки рта, чем у взрослых: они расположены не только на языке, но и на слизистой ротовой полости, на губах и даже щеках. В соответствии с этим, новорожденный различает все 4 эталонные вида вкуса: сладкий, кислый, соленый и горький. В конце 1-го года жизни у ребенка достаточно развита способность различать вкусовые качества пищи. С 2 до 6 лет снижаются пороги вкусовой чувствительности.

Обонятельный эпителий со специфическими рецепторными клетками и нервными волокнами обособляются уже на 2-м месяце пренатальной жизни. К б месяцам он несколько суживается. Окончательная дифференцировка обонятельного эпителия заканчивается к 7 месяцам пренатальной жизни. Миелинизация волокон обонятельных нервов и обонятельного тракта заканчивается пренатально. С возрастом пороги обонятельной чувствительности снижаются. К концу первого детства обонятельная система оказывается сформированной.

Таким образом, гисто-физиологическое созревание структур вкусовой и обонятельной систем происходит быстрее и оканчивается раньше, чем других сенсорных систем. Это связано с особым значением вкуса и обоняния в процессах адаптации организма новорожденного к новым условиям существования и вскармливания материнским молоком.

Экстероцептивная сенсорная система. Рецепторы тактильной, болевой и температурной чувствительности появляются в коже уже 8-недельного плода. Инкапсулированные тельца появляются начиная с 3-го месяца эмбриогенеза. Тельца Пачини окончательно созревают лишь к 6 годам жизни. Тельца Майснера — до 6 месяца после рождения. Снижение порогов тактильной чувствительности продолжается до 20 лет. Понижаются также пороги болевой чувствительности.

Кровеносная система

Первые очаги кроветворения выявляются в стенках желточного мешка у 5-недельного эмбриона. К началу 2-го месяца кроветворение происходит в теле эмбриона, к его концу сосредотачивается в печени. В начале 4-го месяца начинается костномозговое и селезеночное кроветворение. Начиная с 7 месяцев лимфоциты образуются также при участии вилочковой железы (тимус). У детей раннего возраста кроветворение протекает в красном костном мозге. С 4 до 15 лет во многих костях красный костный мозг перерождается в жировой. После 30 лет кроветворение происходит только в губчатом веществе грудины, тел позвонков и ребер.

Эритроциты плода сравнительно крупные, многие содержат ядро. По мере развития плода их количество постепенно увеличивается, размеры уменьшаются, и они теряют ядро. Реакция на сильные эмоциональные и болевые стрессы в виде выброса эритроцитов из депо в циркулирующую кровь появляется лишь с 12 лет.

В эритроцитах эмбриона содержится эмбриональный гемоглобин (HBF). На 4-м месяце эмбриогенеза появляется взрослый гемоглобин (НВА), который пока составляет 10% всего гемоглобина. Только в возрасте 40 дней после рождения большая часть гемоглобина представлена в форме НВА. Лейкоциты появляются в кровеносной системе плода в конце 3-го месяца эмбриогенеза. Соотношение количества нейтрофилов и лимфоцитов меняется и в процессе эмбриогенеза, и постнатально до 15 лет. Дифференцировка Т- и В- лимфоцитов происходит в самом конце пренатального периода или в самом начале постнатального.

Групповые свойства крови определяются генотипом. Агглютиногены A и B появляются в эритроцитах 3-месячного плода, однако наибольшая способность к агглютинации достигается лишь к 20 годам жизни. Агглютиногены системы резус определяются у 2-3-месячного плода.

Сердце у эмбриона закладывается в возрасте 3 недель в виде 2 трубок, образующихся из висцерального листка спланхнотома. Они сближаются и срастаются. Перегородка между ними редуцируется, и в результате формируется трубчатое сердце (как у ланцетника). Средняя часть трубки расширяется (будущий желудочек). Передний конец сужается в артериальный конус. К возрасту 4 недели сердце становится 2-камерным (как у рыб). На 5-й неделе образуется межпредсердная перегородка и сердце становится 3-камерным (как у амфибий). Затем, благодаря образованию изгибов и поворотов, желудочек оказывается вентральнее предсердия и каудальнее его. Разделение предсердий происходит на 6-й неделе. На 7-й неделе разделяются желудочки.

Проводящая система сердца закладывается очень рано: на 4-й неделе эмбриогенеза. В течение 2-го месяца эмбриогенеза сердце начинает перемещаться из области шеи в грудную полость. У 5-6-недельного эмбриона предполагается наличие холинорецепторов в миокарде.

Дифференцировка кардиомиоцитов, проводящей системы и сосудов интенсивно продолжается до 2 лет, а затем более медленно — до 7 лет. В этом возрасте сердце ребенка имеет все черты сердца взрослого. Далее происходит, в основном его рост.

У плода формируется особая система кровообращения. При рождении, когда перерезают пуповину, кровь из плаценты перестает поступать в организм плода. При первом вдохе включается малый круг кровообращения, и далее начинают работать оба круга.

Системы дыхания и пищеварения

На весь период плодного развития органом дыхания плода является плацента. Особенностью является то, что кровь, которая идет из плаценты, отличается более низким напряжением кислорода, чем артериальная кровь взрослого. Это объясняется и биохимическими особенностями крови, и анатомическим строением сосудистой системы плода. Содержание кислорода в тканях плода в целом соответствует состоянию тяжелой гипоксии. Тем не менее, для нормального развития тканей его бывает достаточно, в первую очередь, благодаря большому сродству гемоглобина к кислороду (большему, чем у взрослого).

После рождения происходят дальнейшая дифференцировка бронхиального древа, увеличение количества и формирование типичных ацинусов. Легкие разрастаются в течение длительного времени: от рождения и до взрослого состояния.

Пищеварительная система развивается из первичной кишки, которая закладывается у эмбриона на 3-4-й неделе.

Железы внутренней секреции

Развитие желез внутренней секреции осуществляется в определенной последовательности. Сначала формируется закладка железы, затем она начинает функционировать, о чем можно судить по началу синтеза гормона, далее формируется гормональное взаимодействие между различными железами и, наконец, устанавливающая нейроно-эндокринные взаимодействия.

Гипофиз образуется из двух зачатков: аденогипофиз — из выпячивания крыши ротовой полости, нейрогипофиз — из воронки промежуточного мозга. Это наблюдается у плода в возрасте 6,5 недель. Синтез вазопрессина и окситоцина клетками супраоптического и паравентрикулярного ядер гипоталамуса начинается в 3-4 месяца внутриутробного периода. В нейрогипофизе они обнаруживаются на 4-м месяце. Гормоны аденогипофиза начинают синтезироваться с 9-й недели плода. Соматотропный гормон (СТГ) — гормон роста — стимулирует рост эпифизарных хрящей. Плод растет со скоростью, в несколько раз большей, чем дети. Однако полагают, что рост плода регулируется плацентарными гормонами и находится под действием генетической программы.

Пролактин появляется в аденогипофизе на 9-й неделе развития. Особую роль он играет в постнатальной жизни, в период полового созревания. Титопропин (ТТГ) определяется на 13-й неделе. У плода он достигает более высокого уровня, чем у взрослого. У женских плодов его уровень больше, чем у мужских. Влияние гипоталамуса на тиреотропную функцию гипофиза обнаруживается у плода в последней трети развития.

Адренокортикотропный гормон (АКТГ) появляется у эмбрионов в возрасте 8 недель. К 7 месяцам его уровень достигает максимального значения, затем снижается. На 7-м месяце проявляется действие этого гормона на надпочечники. Во 2-й половине эмбриогенеза гипофиз становится зависимым от гипоталамуса.

Гонадотропные гормоны (FIT) появляются с 3-месячного возраста плода. Они стимулируют эндокринную секрецию половых желез, но не контролируют их половую дифференцировку. На 5-м месяце у плода под действием тестостерона происходит половая дифференцировка гипоталамо-гипофизарной системы. После этого образуется связь между гонадотропной функцией гипофиза, половыми железами и гипоталамусом. У плодов последней -трети плодного периода концентрация ГЕГ выше, чем у взрослого. У новорожденных она остается очень высокой, после первой недели жизни — снижается, а в препубертатном периоде — увеличивается.

Щитовидная железа образуется у 3-4-недельного плода из выпячивания вентрального отдела глотки. В 3 месяца начинает выявляться тироксин в крови. Гормоны щитовидной железы играют очень большую роль в развитии, процессах роста и дифференцировки тканей плода. Они определяют тонкую структурную и биохимическую дифференцировку нейронов, их отростков в ЦНС. Они определяют взаимодействие систем гипоталамо-гипофизарногонадной, а также надпочечниковой систем. С отклонениями в нормальной деятельности щитовидной железы связаны нарушения процессов окостенения скелета и развития элементов головного мозга. Половые различия в функциях щитовидной железы формируются еще до рождения, но особенно резко проявляются в период полового созревания.

В надпочечниках корковое вещество дифференцируется на 5-й неделе плода, и ко 2-му месяцу начинается синтез гормонов. Они участвуют в обмене гликогена в печени, стимулируют развитие вилочковой железы и легких. Эстрогены коры надпочечников у женских плодов стимулируют развитие матки и других половых органов. После рождения гормоны принимают участие в адаптационных процессах, связанных со стрессовыми реакциями. Нарушение функции коры надпочечников приводят к серьезным дисфункциям половой системы и углеводного обмена: у девочек развиваются мужские половые признаки, умственная отсталость и т. д.

Мозговое вещество надпочечников начинает развиваться позже коркового: в начале 4-го месяца внутриутробного периода. Адреналина у плода образуется сравнительно мало. Действие его проявляется сразу после рождения: новорожденные реагируют на стресс повышением секреции катехоламинов.

Половые железы начинают дифференцироваться на 5-й неделе плодного периода из нейтральной гонады. Превращение индифферентных гонад в яичники или семенники начинается после миграции в эти гонады первичных половых клеток на 6-й неделе. Если генотип плода — XV, то первичные половые клетки дифференцируются в сперматозоиды, окружающие их — в клетки Лейдига. Эти последние появляются у эмбрионов на 8-й неделе: они синтезируют мужские половые гормоны — андрогены, например, тестостерон. Андрогены оказывают влияние на реализацию генетической программы пола. У 5-7 месячных плодов андрогены вызывают дифференцировку гипоталамуса по мужскому типу, в их отсутствие процесс идет по женскому типу. Андрогены обеспечивают развитие мужских половых органов и опускание яичек в мошонку, которое происходит начиная с 3-месячного возраста плода до рождения. Опустившиеся яички являются одним из критериев доношенности плода. В период полового созревания андрогены обеспечивают окончательное развитие по мужскому типу.

Если генотип плода — XX, то первичные половые клетки развиваются в овогонии. Созревание их и образование фолликулов начинается с 4-го месяца внутриутробного развития. Гормоны яичников не влияют на формирование половых органов. Формирование самих яичников и других половых органов плода происходит под действием материнских гонадотропинов, эстрогенов плаценты и надпочечников. У женского плода сохраняется мюллеров канал. Он дифференцируется в яйцеводы, матку, верхнюю часть влагалища. Вольфов канал при нормальном развитии, при отсутствии тестостерона, дегенерирует.

Поджелудочная железа дифференцируется на 3-м месяце плодного периода. Синтез инсулина начинается еще раньше: в 2 месяца. Формирование островков Лангерганса завершается к 5-му месяцу. Инсулин у плодов регулирует углеводный обмен. У взрослых при гиперфункции бета-клеток островков Лангерганса развивается сахарный диабет. В последние годы увеличивается процент заболевания сахарным диабетом детей. Основные причины заболевания — избыточное потребление углеводов и наследственная предрасположенность.

В этот день:

  • Дни рождения
  • 1877 Родился Анри Эдуар Брёйль - французский католический священник, археолог, антрополог, этнолог и геолог, специалист по палеолиту и истории первобытного искусства. Изучал наскальную живопись в долинах Соммы и Дордони, изучал первобытные стоянки в Испании, Португалии, Италии, Ирландии, Эфиопии, Южной Африке, Британском Сомали и Китае. Доказал существование ориньякской эпохи верхнего палеолита Западной Европы, а также древнепалеолитических клектонских комплексов, характеризующихся отсутствием ручных рубил.

Нервная система выполняет важнейшие функции в организме. Она отвечает за все действия и мысли человека, формирует его личность. Но вся эта сложная работы была бы невозможна без одной составляющей — миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Анатомия миелина в строении нерва

Главная клетка нервной системы – нейрон. Тело нейрона называется сома. Внутри нее находится ядро. Тело нейрона окружено короткими отростками, которые называются дендриты. Они отвечают за связь с другими нейронами. От сомы отходит один длинный отросток – аксон. Он несет импульс от нейрона к другим клеткам. Чаще всего на конце он соединяется с дендритами других нервных клеток.

Всю поверхность аксона покрывает миелиновая оболочка, которая представляет собой отросток клетки Шванна, лишенный цитоплазмы. По сути, это несколько слоев клеточной мембраны, обернутые вокруг аксона.

Шванновские клетки, обволакивающие аксон, разделяются перехватами Ранвье, в которых отсутствует миелин.

Функции

Основными функциями миелиновой оболочки являются:

  • изоляция аксона;
  • ускорение проведения импульса;
  • экономия энергии за счет сохранения ионных потоков;
  • опора нервного волокна;
  • питание аксона.

Как работают импульсы

Нервные клетки изолированы благодаря своей оболочке, но все же взаимосвязаны между собой. Участки, в которых клетки соприкасаются, называются синапсы. Это место, где встречаются аксон одной клетки и сома или дендрит другой.

Электрический импульс может передаваться внутри одной клетки или от нейрона к нейрону. Это сложный электрохимический процесс, который основан на перемещении ионов через оболочку нервной клетки.

В спокойном состоянии внутрь нейрона попадают только ионы калия, а ионы натрия остаются снаружи. В момент возбуждения они начинаются меняться местами. Аксон положительно заряжается изнутри. Затем натрий перестает поступать через мембрану, а отток калия не прекращается.

Изменение напряжения из-за движения ионов калия и натрия называется «потенциал действия». Он распространяется медленно, но миелиновая оболочка, обволакивающая аксон, ускоряет это процесс, препятствуя оттоку и притоку ионов калия и натрия из тела аксона.

Проходя через перехват Ранвье, импульс перескакивает с одного участка аксона на другой, что и позволяет ему двигаться быстрее.

После того, как потенциал действия пересекает разрыв в миелине, импульс останавливается, и возвращается состояние покоя.

Такой способ передачи энергии характерен для ЦНС. Что касается вегетативной нервной системы, в ней часто встречаются аксоны, покрытые малым количеством миелина или вообще не покрытые им. Скачки между шванновскими клетками не осуществляются, и импульс проходит гораздо медленнее.

Состав

Миелиновый слой состоит из двух слоев липидов и трех слоев белка. Липидов в нем гораздо больше (70-75%):

  • фосфолипиды (до 50%);
  • холестерин (25%);
  • глактоцереброзид (20%) и др.

Белковые слои тоньше липидных. Содержание белка в миелине – 25-30%:

  • протеолипид (35-50%);
  • основной белок миелина (30%);
  • белки Вольфграма (20%).

Существуют простые и сложные белки нервной ткани.

Роль липидов в строении оболочки

Липиды играют ключевую роль в строении мякотной оболочки. Они являются структурным материалом нервной ткани и защищают аксон от потери энергии и ионных потоков. Молекулы липидов обладают способностью восстанавливать ткани мозга после повреждений. Липиды миелина отвечают за адаптацию зрелой нервной системы. Они выступают в роли рецепторов гормонов и осуществляют коммуникацию между клетками.

Роль белков

Немаловажное значение в строении миелинового слоя имеют молекулы белков. Они наряду с липидами выступают в роли строительного материала нервной ткани. Их главной задачей является транспортировка питательных веществ в аксон. Также они расшифровывают сигналы, поступающие в нервную клетку и ускоряют реакции в ней. Участие в обмене веществ – важная функция молекул белка миелиновой оболочки.

Дефекты миелинизации

Разрушение миелинового слоя нервной системы – очень серьезная патология, из-за которой происходит нарушение передачи нервного импульса. Она вызывает опасные заболевания, зачастую несовместимые с жизнью. Существуют два типа факторов, влияющие на возникновение демиелинизации:

  • генетическая предрасположенность к разрушению миелина;
  • воздействие на миелин внутренних или внешних факторов.
  • Демиелизация делится на три вида:
  • острая;
  • ремиттирующая;
  • острая монофазная.

Почему происходит разрушение

Наиболее частыми причинами разрушения мякотной оболочки являются:

  • ревматические болезни;
  • существенное преобладание белков и жиров в питании;
  • генетическая предрасположенность;
  • бактериальные инфекции;
  • отравление тяжелыми металлами;
  • опухоли и метастазы;
  • продолжительные сильные стрессы;
  • плохая экология;
  • патологии иммунной системы;
  • длительный прием нейролептиков.

Заболевания вследствие демиелинизации

Демиелинизирующие заболевания центральной нервной системы:

  1. Болезнь Канавана – генетическое заболевание, возникающее в раннем возрасте. Его характеризуют слепота, проблемы с глотанием и приемом пищи, нарушение моторики и развития. Также следствием этой болезни являются эпилепсия, макроцефалия и мышечная гипотония.
  2. Болезнь Бинсвангера. Чаще всего вызвана артериальной гипертонией. Больных ожидают расстройства мышления, слабоумие, а также нарушения ходьбы и функций тазовых органов.
  3. . Может вызвать поражения нескольких частей ЦНС. Ему сопутствуют парезы, параличи, судороги и нарушение моторики. Также в качестве симптомов рассеянного склероза выступают поведенческие расстройства, ослабление лицевых мышц и голосовых связок, нарушение чувствительности. Зрение нарушается, меняется восприятие цвета и яркости. Рассеянный склероз также характеризуется расстройствами тазовых органов и дистрофией ствола мозга, мозжечка и черепных нервов.
  4. Болезнь Девика – демиелинизация в зрительном нерве и спинном мозге. Болезнь характеризуют нарушения координации, чувствительности и функций тазовых органов. Ее отличают серьезные нарушения зрения и даже слепота. В клинической картине также наблюдаются парезы, мышечная слабость и вегетативная дисфункция.
  5. Синдром осмотической демиелинизации . Возникает из-за недостатка натрия в клетках. Симптомами выступают судороги, нарушения личности, потери сознания вплоть до комы и смерти. Следствием заболевания являются отек головного мозга, инфаркт гипоталамуса и грыжа ствола мозга.
  6. Миелопатии – различные дистрофические изменения в спинном мозге. Их характеризуют мышечные нарушения, сенсорные расстройства и дисфункция тазовых органов.
  7. Лейкоэнцефалопатия – разрушение миелиновой оболочки в подкорке головного мозга. Больных мучают постоянная головная боль и эпилептические припадки. Также наблюдаются нарушения зрения, речи, координации и ходьбы. Снижается чувствительность, наблюдаются расстройства личности и сознания, прогрессирует слабоумие.
  8. Лейкодистрофия – генетическое нарушение метаболизма, вызывающее разрушение миелина. Течение болезни сопровождают мышечные и двигательные расстройства, параличи, нарушение зрения и слуха, прогрессирующее слабоумие.

Демиелинизирующие заболевания периферической нервной системы:

  1. Синдром Гийена-Барре – острая воспалительная демиелинизация. Она характеризуется мышечными и двигательными нарушениями, дыхательной недостаточностью, частичным или полным отсутствием сухожильных рефлексов. Больные страдают заболеваниями сердца, нарушением работы пищеварительной системы и тазовых органов. Парезы и нарушения чувствительности так же являются признаками этого синдрома.
  2. Невральная амиотрофия Шарко-Мари-Тута – наследственная патология миелиновой оболочки. Ее отличают нарушения чувствительности, дистрофия конечностей, деформация позвоночника и тремор.

Это лишь часть заболеваний, возникающих из-за разрушения миелинового слоя. Симптомы в большинстве случаев схожи. Точный диагноз можно поставить лишь после проведения компьютерной или магнитно-резонансной томографии. Немаловажную роль в постановке диагноза играет уровень квалификации врача.

Принципы лечения дефектов оболочки

Заболевания, связанные с разрушением мякотной оболочки, очень сложно лечить. Терапия направлена в основном на купирование симптомов и остановку процессов разрушения. Чем раньше диагностировано заболевание, тем больше шансов остановить его течение.

Возможности восстановления миелина

Благодаря своевременному лечению можно запустить процесс восстановления миелина. Однако, новая миелиновая оболочка не будет так же хорошо выполнять свои функции. Кроме того, болезнь может перейти в хроническую стадию, а симптомы сохранятся, лишь слегка сгладятся. Но даже незначительная ремиелинизация способна остановить ход болезни и частично вернуть утраченные функции.

Современные лекарственные средства, направленные на регенерацию миелина более эффективны, но отличаются очень высокой стоимостью.

Терапия

Для лечения заболеваний, вызванных разрушением миелиновой оболочки, используются следующие препараты и процедуры:

  • бета-интерфероны (останавливают течение заболевания, снижают риск возникновения рецидивов и инвалидности);
  • иммуномодуляторы (воздействуют на активность иммунной системы);
  • миорелаксанты (способствуют восстановлению двигательных функций);

  • ноотропы (восстанавливают проводниковую активность);
  • противовоспалительные (снимают воспалительный процесс, вызвавший разрушение миелина);
  • (предупреждают повреждение нейронов мозга);
  • обезболивающие и противосудорожные препараты;
  • витамины и антидепрессанты;
  • фильтрация ликвора (процедура, направленная на очищение спинномозговой жидкости).

Прогноз по заболеваниям

В настоящее время лечение демиелинизации не дает стопроцентного результата, но учеными активно ведутся разработки лекарственных средств, направленных на восстановление мякотной оболочки. Исследования проводятся по следующим направлениям:

  1. Стимуляция олигодендроцитов . Это клетки, производящие миелин. В организме, пораженном демиелинизацией, они не работают. Искусственная стимуляция этих клеток поможет запустить процесс восстановления разрушенных участков миелиновой оболочки.
  2. Стимуляция стволовых клеток . Стволовые клетки могут превращаться в полноценную ткань. Есть вероятность, что они могут заполнять и мякотную оболочку.
  3. Регенерация гематоэнцефалического барьера . При демиелинизации этот барьер разрушается и позволяет лимфоцитам негативно влиять на миелин. Его восстановление защищает миелиновый слой от атаки иммунной системы.

Возможно, в скором времени заболевания, связанные с разрушением миелина, перестанут быть неизлечимыми.

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 - слой миелина; 2 - соединительная ткань; 3 - нейролеммоцит; 4 - насечки миелина; 5 - перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 - безмиелиновые нервные волокна; 2 - ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 - ядро леммоцита; 2 - осевой цилиндр; 3 - митохондрии; 4 - граница леммоцитов; 5 - мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии - насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения - узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 - тело нервной клетки; 2 - осевой цилиндр; 3 - глиальная оболочка; 4 - ядро леммоцита; 5 - миелиновый слой; 6 - насечка; 7 - перехват Ранвье; 8 - нервное волокно, лишенное миелинового слоя: 9 - двигательное окончание; 10 - миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану - мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону - миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11.

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 - аксон; 2 - мезаксон; 3 - насечка миелина; 4 - узел нервного волокна; 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - нейролемма; 8 - эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате - невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы - бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной - аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа +), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К +) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые - 5-120 м/сек.

Отдельных нейронов обычно объединяются в пучки – нервы, а сами аксоны в этих пучках называются нервными волокнами. Природа позаботилась, чтобы волокна максимально хорошо справлялись с функцией проведения возбуждения в виде потенциалов действия. Для этой цели отдельные (аксоны отдельных нейронов) имеют специальные чехлы, выполненные из хорошего электрического изолятора (см. рис. 2.3). Чехол прерывается примерно через каждые 0,5-1,5 мм; это связано с тем, что отдельные участки чехла образуются в результате того, что специальные клетки в очень ранний период развития организма (в основном еще до рождения) обволакивают небольшие участки аксона. На рис. 2.9 показано, как это происходит. В периферических нервах миелин образуется клетками, которые получили название шванновских, а в головном это происходит за счет клеток олигодендроглии.

Этот процесс называется миелинизацией, так как в результате образуется чехол из вещества миелина, примерно на 2 / 3 состоящего из жира и являющегося хорошим электрическим изолятором. Исследователи придают очень большое значение процессу миелинизации в развитии мозга.

Известно, что у новорожденного ребенка миелинизировано примерно 2 / 3 волокон головного мозга. Примерно к 12 годам завершается следующий этап миелинизации. Это соответствует тому, что у ребенка уже формируется функция , он достаточно хорошо владеет собой. Вместе с тем полностью процесс миелинизации заканчивается только при завершении полового созревания. Таким образом, процесс миелинизации является показателем созревания ряда психических функций. В то же время известны заболевания человека, которые связаны с демиелинизацией нервных волокон, что сопровождается тяжелыми страданиями. К самым известным относится . Это заболевание развивается незаметно и очень медленно, последствием является паралич движения.

Почему же так важна миелинизация нервных волокон? Оказывается, миелинизированные волокна в сотни раз быстрее проводят возбуждение, чем немиелинизированные, т. е. нейронные сети нашего мозга могут работать с большей скоростью, а значит, более эффективно. Поэтому не миелинизируются в нашем организме только самые тонкие волокна (менее 1 мкм в диаметре), которые проводят возбуждение к медленно работающим органам кишечнику, мочевому пузырю и др. Как правило, не миелинизируются волокна, проводящие информацию о и температуре.

Как происходит распространение возбуждения по нервному волокну? Вначале разберем случай немиелинизированного нервного волокна. На рис. 2.10 показана схема нервного волокна. Возбужденный участок аксона характеризуется тем, что мембрана, обращенная к аксоплазме, заряжается положительно относительно экстраклеточной среды. Невозбужденные (покоящиеся) участки мембраны волокна отрицательны внутри. Между возбужденным и невозбужденным участками мембраны возникает разность потенциалов и начинает протекать ток. На рисунке это отражено линиями тока, пересекающими мембрану со стороны аксоплазмы,-выходящий ток, который деполяризует соседний невозбужденный участок волокна. Возбуждение движется по волокну только в одном направлении (показано стрелкой) и не может пойти в другую сторону, так как после возбуждения участка волокна в нем наступает рефрактерность – зона невозбудимости. Нам уже известно, что деполяризация приводит к открыванию потенциалзависимых натриевых каналов и в соседнем участке мембраны развивается . Затем натриевый канал инактивируется и закрывается, что и приводит к зоне невозбудимости волокна. Эта последовательность событий повторяется для каждого соседнего участка волокна. На каждое такое возбуждение тратится определенное время. Специальные исследования показали, что скорость проведения возбуждения немиелинизированных волокон пропорциональна их диаметру: чем больше диаметр, тем выше скорость движения импульсов. Например, немиелинизированные волокна, проводящие возбуждение со скоростью 100 – 120 м/с, должны иметь диаметр около 1000 мкм (1 мм).

У млекопитающих животных природа сохранила немиелинизированными только те возбуждение о боли, температуре, управляют медленно работающими внутренними органами мочевым волокна, которые проводят органами – мочевым пузырем, кишечником и пр. Практически все нервные волокна в человека имеют миелиновые чехлы. На рис. 2.11 показано, что если вдоль волокна, покрытого миелином, регистрировать прохождение возбуждения, то потенциал действия возникает только в перехватах Ранвье. Оказывается, миелин, являясь хорошим электрическим изолятором, не пропускает выхода линий тока от предшествующего возбужденного участка. Выход тока в этом случае возможен только через те участки мембраны, которые находятся на стыке между двумя участками миелина. Напомним, что каждый участок образован только одной клеткой, поэтому это стыки между двумя клетками, образующими соседние участки миелиновой оболочки. Мембрана аксона между двумя соседними миелиновыми чехлами оказывается не покрытой миелином (так называемый перехват Ранвье). Благодаря такому устройству мембрана волокна возбуждается только в местах перехватов Ранвье. Вследствие этого потенциал действия (возбуждение) как бы перескакивает через участки изолированной мембраны. Другими словами, возбуждение движется скачками от перехвата к перехвату. Это похоже на те волшебные сапоги-скороходы, которые надевал кот в известной сказке, мгновенно переносясь из одного места в другое.