Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

Тема «Электрический ток в металлах»

Цель урока : Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.

Задачи урока:

Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.

Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.

Воспитательная – формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение.

Оборудование и материалы : источники тока, электрическая лампочка для карманного фонаря, электрический звонок, выключатели, подводящие провода, раствор медного купороса, электромагнит, медная и цинковая пластинки, модель кристаллической решетки, гальванометр.

ТСО : компьютерная презентация, мультимедийный проектор.

Демонстрации:

1) Сборка простейших электрических цепей.

2) Выделение меди при электролизе медного купороса

3)Действие катушки с током, как электромагнита.

План урока.

  1. Актуализация знаний(10 мин).
  2. Изучение нового материала «Электрический ток в металлах» (10 мин)

«Действия электрического тока» (12 мин)

  1. Закрепление (9 мин)
  2. Домашнее задание (2мин)
  3. Подведение итогов (2 мин)

Ход урока.

Здравствуйте ребята!

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей.

В этом четверостишье упоминается о электрических лучах. Как вы думаете, что это такое? (электрический ток)

1) Что называется электрическим током?

2) Что необходимо, чтобы в цепи существовал электрический ток?

3) Работа со схемами: назвать предложенные основные части электрической цепи

Предложены обозначения: электрическая лампа, ключ, амперметр, вольтметр, источник тока, звонки др.

4) А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две электрические цепи, схемы которых представлены на экране.

1. Какие нарушения вы заметили? Почему не горит исправная лампа в первой цепи при замыкании ключа? Ответ. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

2) Чем проводники отличаются от непроводников или изоляторов? Ответ. Ученики устраняют разрыв. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? Ответ. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит. Для существования электрического тока необходимы следующие условия: --------наличие свободных электрических зарядов в проводнике; -наличие внешнего электрического поля для проводника. Ученик, подсоединив к цепи источник тока, демонстрирует правильный ответ.

2.Изучение нового материала «Электрический ток в металлах» - 10 мин. Слайд №1 Тема нашего урока: «Электрический ток в металлах. Действия электрического тока» Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением? Ответ. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд. Учитель. Из каких материалов выполняется заземление? Ответ. Заземление выполняют из металла. Учитель. Почему предпочитают именно металлы? На этот вопрос мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева.

Сегодня мы познакомимся с важным свойством металлов – электропроводностью. Вспомним строение металлов. Демонстрация модели кристаллической решетки, на экране проецируется изображение модели строения металлов.

Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.


Под действием электрического поля движутся свободные электроны. Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л. И. Мандельштамом и Н. Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом. Посмотрите рисунок на экране

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле - свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся.


Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03с. А теперь можно переходить к познанию внешнего мира. Закончили электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока.. Некоторые из этих действий легко наблюдать на опыте.

Тепловое действие тока.

Химическое действие тока. Химическое действие электрического тока впервые было открыто в 1800 г Опыт. Проведем опыт с раствором медного купороса. Два угольных электрода, опускаем в дисцилированную воду замыкаем цепь. Наблюдаем, что лампочка не загорается. Берем раствор медного купороса и подсоединяем к источнику тока. Эл лампочка загорается. Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSО 4) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов. Путем электролиза получают алюминий,химические чистые металлы, производят никелирование, хромирование, золочение. Для защиты металлов от коррозии их поверхность часто покрывают трудно окисляемыми металлами, т. е. производят никелирование или хромирование. Этот процесс называется гальваностегией. Ребята,какие способы защиты металлов от коррозии вы знаете?

итайский философ Конфуций как -то сказал «Хорошо обладать природным дарованием, но упражнения, друзья, дают нам больше, чем природное дарование». Русская пословица гласит: « Учиться всегда пригодится » .1) Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками? (Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Скачать:


Предварительный просмотр:

Урок по физике в 8 классе.

Тема «Электрический ток в металлах»

Цель урока : Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.

Задачи урока:

Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.

Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.

Воспитательная – формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение.

Оборудование и материалы : источники тока, электрическая лампочка для карманного фонаря, электрический звонок, выключатели, подводящие провода, раствор медного купороса, электромагнит, медная и цинковая пластинки, модель кристаллической решетки, гальванометр.

ТСО : компьютерная презентация, мультимедийный проектор.

Демонстрации:

1) Сборка простейших электрических цепей.

2) Выделение меди при электролизе медного купороса

3)Действие катушки с током, как электромагнита.

План урока.

  1. Актуализация знаний(10 мин).
  2. Изучение нового материала «Электрический ток в металлах» (10 мин)

«Действия электрического тока» (12 мин)

  1. Закрепление (9 мин)
  2. Домашнее задание (2мин)
  3. Подведение итогов (2 мин)

Ход урока.

Объявление темы, целей урока.

1) Актуализация знаний -10 мин.

Здравствуйте ребята!

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей.

В этом четверостишье упоминается о электрических лучах. Как вы думаете, что это такое? (электрический ток)

Вопросы:

  1. Что называется электрическим током?
  2. Что необходимо, чтобы в цепи существовал электрический ток?

3) Работа со схемами: назвать предложенные основные части электрической цепи

Предложены обозначения: электрическая лампа, ключ, амперметр, вольтметр, источник тока, звонки др.

4) А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две электрические цепи, схемы которых представлены на экране.

1. Какие нарушения вы заметили? Почему не горит исправная лампа в первой цепи при замыкании ключа? Ответ. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

2) Чем проводники отличаются от непроводников или изоляторов? Ответ. Ученики устраняют разрыв. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? Ответ. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит. Для существования электрического тока необходимы следующие условия: --------наличие свободных электрических зарядов в проводнике; -наличие внешнего электрического поля для проводника. Ученик, подсоединив к цепи источник тока, демонстрирует правильный ответ.

2.Изучение нового материала «Электрический ток в металлах» - 10 мин . Слайд №1 Тема нашего урока: «Электрический ток в металлах. Действия электрического тока» Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением? Ответ. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд. Учитель. Из каких материалов выполняется заземление? Ответ. Заземление выполняют из металла. Учитель. Почему предпочитают именно металлы? На этот вопрос мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева.

Сегодня мы познакомимся с важным свойством металлов – электропроводностью. Вспомним строение металлов. Демонстрация модели кристаллической решетки, на экране проецируется изображение модели строения металлов.

Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку. Как вам уже известно, в любом металле часть валентных электронов покидает свои места в атоме, в результате чего атом превращается в положительный ион. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны (электронный газ), т.е. не связанные с ядрами своих атомов.
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.
Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Под действием электрического поля движутся свободные электроны. Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л. И. Мандельштамом и Н. Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом. Посмотрите рисунок на экране

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле - свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся. Электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов, под действием электрического поля
Если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если же в проводнике создано электрическое поле, то электроны, сохраняя свое хаотичное движение, начинают смещаться в сторону положительного полюса источника. Вместе с беспорядочным движением электронов возникает и упорядоченный их перенос - дрейф. Скорость упорядоченного движения электронов в проводнике под действием электрического поля - несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км /с), распространяется по всей длине проводника.
Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.
Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля - с распространением давления воды. При подъёме воды в водонапорную башню очень быстро по всей водопроводной системе распространяется давление (напор) воды. Когда мы открываем кран, то вода уже находится под давлением и начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, т.к. движение воды происходит с меньшей скоростью, чем распространение давления.
Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03с. А теперь можно переходить к познанию внешнего мира. Закончили электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Изучение нового материала «Действия электрического тока» Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока.. Некоторые из этих действий легко наблюдать на опыте.

Тепловое действие тока. Программный диск Уроки физики 8 класс. Виртуальная школа Кирилла и Мефодия

Химическое действие тока. Химическое действие электрического тока впервые было открыто в 1800 г Опыт. Проведем опыт с раствором медного купороса. Два угольных электрода, опускаем в дисцилированную воду замыкаем цепь. Наблюдаем, что лампочка не загорается. Берем раствор медного купороса и подсоединяем к источнику тока. Эл лампочка загорается. Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSО 4 ) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов. Путем электролиза получают алюминий,химические чистые металлы, производят никелирование, хромирование, золочение. Для защиты металлов от коррозии их поверхность часто покрывают трудно окисляемыми металлами, т. е. производят никелирование или хромирование. Этот процесс называется гальваностегией. Ребята,какие способы защиты металлов от коррозии вы знаете?

Магнитное действие тока. Опыт. Катушку с железным сердечником включаем в цепь и наблюдает притяжение металлических предметов. Использование магнитного действия тока в гальванометрах. Гальванометр. Схематическое обозначение Закрепление изученного материала. Вопросы по новой теме. К итайский философ Конфуций как -то сказал «Хорошо обладать природным дарованием, но упражнения, друзья, дают нам больше, чем природное дарование». Русская пословица гласит: « Учиться всегда пригодится » .1) Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками? (Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Домашнее задание. П. 34,35Л. №1260, 1261. Подготовить сообщение о металлах «Алюминий», «Золото», «Железо»


Давайте рассмотрим, какие элементы можно соединять проводами, чтобы получилась электрическая цепь: гальванический элемент, батарея элементов, лампочка, звонок, сопротивление, выключатель (или ключ), амперметр и вольтметр.

Чертеж, на котором изображены способы соединения элементов в цепь, называют схемой. Вот так выглядит схема электрического фонарика.

А вот так выглядит схема, состоящая из источника, одного звонка и двух (или более) кнопок, по которым можно независимо включить звонок, например, в больнице (или в самолете), когда нужно вызвать больному медицинскую сестру.

Вспомним строение металлов: в узлах кристаллической решетки находятся положительные ионы, а электроны свободно перемещаются между этими узлами, создавая «электронный газ», занимающий весь объем металлического проводника. Поэтому электрический ток в металлах представляет собой упорядоченное движение электронов. В отсутствии электрического поля электроны движутся беспорядочно, хаотично, с достаточно большими скоростями.

Но когда подается электрическое поле от источника, а скорость его распространения составляет 300000км/с, то все электроны во всем объеме металлического проводника начинают упорядоченное движение с небольшой скоростью, которая составляет нескольких мм/с.

Для существования электрического тока необходимо: наличие свободных заряженных частиц, электрического поля (источника), потребителя и проводников электрического тока.

Электрический ток при прохождении через нагрузку, обладает различными действиями. Какие же действия мы можем наблюдать?

Тепловое действие . Для наблюдения за этим действием проведем опыт.

На двух изолированных стойках поместим длинный провод. В нескольких местах прикрепим легко свисающие кисточки бумажек. Провод подсоединим к регулируемому источнику (типа ЛАТР, чтобы можно было постепенно повышать напряжение). Включаем установку, медленно увеличиваем напряжение, при определенном значении провод начинает нагреваться, и бумажки загораются. Обратим внимание на то, что во время опыта провод сильнее провисает. Это происходит из-за того, что он нагрелся, а при нагревании все тела расширяются, а проволока – удлиняется.

Механическое действие . Подключим небольшой вентилятор. Почему лопасти крутятся? Потому что при прохождении электрического тока через двигатель рамки в магнитном поле вращаются (механическое перемещение) и вращают лопасти вентилятора.

Магнитное действие . Рассмотрим опыт Эрстеда, который он провел в 1820 году. На установке по первому опыту мы во время включения тока поднесем магнитную стрелку на стойке. Стрелка отклонится от обычного направления в магнитном поле Земли и повернется перпендикулярно проводнику, фиксируя наличие более сильного магнитного поля около проводника, по которому течет ток. При выключении тока видим, что стрелочка отклоняется и вновь показывает направление на «север».

Химическое действие . В качестве нагрузки теперь включим в электрическую цепь два угольных электрода, вставленных в стеклянный стакан, в котором налит раствор медного купороса.

Предварительно необходимо зачистить электроды наждачной бумагой, для удаления каких-либо примесей. Включаем цепь в регулируемый источник…и через некоторое время выключаем и видим, что на отрицательном электроде (катоде) выделился тонкий слой меди.

Есть еще физиологическое действие электрического тока: действие на живые организмы. Впервые при препарировании лапок лягушки Луиджи Гальвани обнаружил сокращение мышц лапки. То – есть, при прохождении тока через организм, все мышцы сокращаются, пытаясь защитить организм от неприятных последствий.

Направление электрического тока было придумано американским банкиром Бенджамином Франклином, который в свободное время занимался электричеством.

Он считал, что деньги из большой положительной кучи перетекают в маленькие отрицательные карманы клиентов. Поэтому предложил: ток идет от положительного полюса к отрицательному.

Это правило было принято во всем мире.

Лишь много позже, после открытия Томсоном электрона, поняли, что физическое (истинное) направление тока от «минуса» к « плюсу». Ток идет от мест на источнике, где накопилось избыточное количество электронов, в те места, где электронов не хватает.

Но уже были придуманы правила: правило буравчика, правило левой руки, правило правой руки, правило Ампера и другие для направления тока от «плюса» к « минусу». И было решено ничего не менять, а так и считать, что ток идет от «плюса» к «минусу».

Таким образом, мы рассмотрели, что собой представляет ток в металлах, какими действиями обладает ток и в чем отличие общепринятого направления тока от «плюса» к «минусу» от истинного физического направления.

Практически все металлы можно рассматривать, как проводники электрического тока. Это обусловлено их строением, представляющим собой кристаллическую пространственную решетку. Узлы этой решетки совпадают с центрами положительных ионов, вокруг которых наблюдается хаотическое движение свободных электронов. Этим объясняется явление проводимости, благодаря которому применение электрического тока в металлах получило наиболее широкое распространение.

Физические свойства металлов

Свойства металлов полностью зависят от их внутреннего строения. Твердое состояние металлов представляет собой кристаллическую решетку пространственного типа, где кристаллы расположены упорядоченно. Как уже было отмечено, между узлами кристаллической решетки наблюдается движение свободных электронов.

Абсолютное значение их отрицательных зарядов совпадает с положительным зарядом всех ионов, расположенных в узлах кристаллической решетки. Когда пропускается электрический ток, ионы остаются на своем месте. Происходит перемещение свободных электронов, одинаковых в любом веществе.

Электрический ток в металлах: применение

То, что в металлах существуют электроны, проводящие ток, было доказано очень давно. Прежде всего, эти полезные свойства используются при передаче электроэнергии от источника к потребителям. В основе работы генераторов и электродвигателей также используются физические свойства металлов. Они применяются и в нагревательных приборах всех типов, предназначенных для промышленного производства и домашних условий.

Таким образом, электрический ток в металлах является упорядоченным движением свободных электронов, на которые воздействует электрическое поле. При его отсутствии, движение электронов становится хаотичным, подобно движению молекул жидкостей или газов. Однако, при наличии в проводнике электрического поля, происходит смещение электронов к положительному полюсу источника тока, то есть их движение становится упорядоченным.

Сами электроны в проводнике перемещаются с невысокой скоростью, в отличие от электрического поля, которое перемещается в проводнике со скоростью, приближающейся к скорости света. Именно эта величина служит показателем скорости распространения в .

Электрический ток в металле: электронная проводимость

И вращающихся вокруг них электронов. Электроны притягиваются ядрами, и чтобы их «оторвать», требуется приложить некоторое усилие. В таком случае мы будем иметь положительно заряженное ядро и отрицательно заряженные электроны.

Получается, что чтобы в проводнике появился электрический ток, надо вырвать множество электронов из оков атомов и сопровождать их на всем пути действия тока, чтобы их не захватили новые атомы. Очевидно, что для этого потребуется довольно приличная сила. Однако, при возникновении электрического поля , ток начинает бежать в металлических проводниках без всякого усилия. Как же это получается? Какова природа электрического тока в металлах, что они могут беспрепятственно проводить ток практически без потерь?

Природа тока в металлах

Дело в том, что в металлах структура строения вещества такова, что частицы расположены в кристаллических решетках, образованных положительными ионами, то есть ядрами атомов. А отрицательные ионы, то есть электроны, свободно перемещаются между ядрами, не будучи связанными с ними. Заряд всех электронов в спокойном состоянии компенсирует положительный заряд ядер. Когда возникает действующее на электроны электрическое поле, они начинают двигаться в одном направлении по всей длине проводника.

Так образуется электрический ток в металлах. Скорость движения каждого конкретного электрона невелика - около нескольких миллиметров в секунду. Но скорость распространения электрического поля равна скорости света, около 300 000 км/с. Электрическое поле приводит в движение все электроны на своем пути, и ток распространяется в металлических проводах со скоростью света.

Действие электрического тока

С какой бы скоростью ни двигались электроны в металле, мы не можем увидеть это воочию - они слишком малы. Судить о наличии в проводнике тока, мы можем лишь по производимому им действию. Действие электрического тока может быть очень разнообразным. Тепловое действие тока проявляется в нагревании проводника. Это действие широко используется в электронагревательных приборах: чайниках, обогревателях, фенах.

Еще ток обладает химическим действием. В некоторых растворах при воздействии электрическим током выделяются различные вещества. Так добывают чистые вещества из солей и щелочей. Ток обладает также и магнитным действием. Причем магнитное действие тока проявляется всегда и в любых проводниках. Заключается магнитное действие тока в том, что вокруг проводника с током образуется магнитное поле. Это поле можно уловить и измерить. Для использования магнитного действия тока сооружают спиральные обмотки из изолированных проводов и пропускают по ним ток. Таким образом, концентрируют и усиливают магнитное действие тока и создают электромагниты.

Электричество и магнетизм вообще неразрывно связаны друг с другом. Самый простой пример: притягивание наэлектризованной расческой волос - есть не что иное, как магнитное действие электрического заряда. Человек очень активно использует магнитные свойства тока. От выработки электроэнергии, в которой преобразуют механическую энергию в электрическую с помощью магнитов, до конкретных электроприборов, производящих обратное преобразование электричества в механическую работу - везде используется магнитное действие тока.

Направление тока

За направление электрического тока в цепи принято направление движения положительных зарядов. А так как мы знаем, что двигается не положительный, а отрицательный заряд - электроны, то соответственно направление тока - это направление, в котором двигались бы положительные заряды, если бы они перемещались. Это направление, противоположное движению электронов.

Почему приняли такое направление? Дело в том, что когда-то не знали, за счет чего в реальности передается электрический заряд, но электричество использовали, и надо было создавать правила и законы для расчетов. И условно приняли за направление тока направление движения положительных зарядов. А когда разобрались, уже никто не стал переписывать заново законы и правила. Поэтому так и осталось. А куда конкретно двигаются электроны, учитывают в случае необходимости.

Нужна помощь в учебе?

Предыдущая тема: Электрическая цепь и составные её части
Следующая тема:   Сила тока: природа, формула, измерение амперметром

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов.

Идея таких опытов и первые качественные результаты принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси (1913 г.). В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику и выполнили количественные измерения, доказав, что ток в металлических проводниках обусловлен движением электронов.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов.

В 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла.

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер . Высота этого барьера называется работой выхода . При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.



При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток.

Средняя скорость дрейфа:

Концентрация свободных электронов в металлах примерно равна концентрации атомов n ~ 10 28 –10 29 м –3 , модуль заряда электрона e = 1,6 * 10 19 Кл. Для проводника с площадью поперечного сечения S = 1 мм 2 = 10 -6 м 2 при силе тока I = 1 A скорость упорядоченного движения электронов равна

За 1 с электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм.

Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения .

Малая скорость дрейфа противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с . Через время порядка l / с (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Например, эта теория не может объяснить, почему молярная теплоемкость металлов , также как и молярная теплоемкость диэлектрических кристаллов, равна 3R , где R – универсальная газовая постоянная (закон Дюлонга и Пти). Наличие свободных электронов не сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает в то время как из эксперимента получается зависимость ρ ~ T .

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах.

Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах.

При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Наибольший интерес представляет явление сверхпроводимости , открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре T кр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля.

Критическая температура у ртути равна 4,1 К , у алюминия 1,2 К , у олова 3,7 К . Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni 3 Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

He -268.94°C, N(азот) -195,82°C, Н(водород) -252,77°C