Паутинная оболочка спинного мозга расположена. Оболочки спинного мозга. Твердая оболочка, паутинная оболочка, мягкая оболочка спинного мозга. Анатомические костные ориентиры

Паутинная оболочка, arachnoidea , тонкая, прозрачная, лишена сосудов и состоит из покрытой эндотелием соединительной ткани. Она облегает спинной и головной мозг со всех сторон и связана с лежащей кнутри от нее мягкой оболочкой при помощи многочисленных арахноидальных трабекул, а в ряде мест с ней срастается.

Паутинная оболочка спинного мозга

Рис. 960. Паутинная оболочка спинного мозга (фотография. Препарат В. Харитоновой). (Участок тотально окрашенного препарата. Трабекулы подпаутинного пространства.)

Паутинная оболочка спинного мозга, arachnoidea mater spinalis (рис. ; см. рис. , ), так же как и твердая оболочка спинного мозга, представляет собой мешок, относительно свободно окружающий спинной мозг.

Между паутинной и мягкой оболочками спинного мозга находится подпаутинное пространство, cavitas subarachnoidea , – более или менее обширная полость, особенно в передних и задних отделах, достигающая в по перечном направлении 1–2 мм и выполненная спинномозговой жидкостью, liquor cerebrospinalis .

Паутинная оболочка спинного мозга связана с твердой оболочкой спинного мозга в области корешков спинномозговых нервов, в тех местах, где эти корешки проникают через твердую оболочку спинного мозга (см. ранее). С мягкой оболочкой спинного мозга она связана посредством многочисленных, особенно в задних отделах, арахноидальных трабекул, которые образуют заднюю подпаутинную перегородку.

Кроме того, паутинная оболочка спинного мозга связана как с твердой, так и с мягкой оболочками спинного мозга при помощи особых зубчатых связок, ligamenta denticulata . Они представляют собой соединительнотканные пластинки (всего 20–25), располагающиеся во фронтальной плоскости по обеим боковым сторонам спинного мозга и идущие от мягкой оболочки к внутренней поверхности твердой оболочки.

Паутинная оболочка головного мозга

Паутинная оболочка головного мозга, arachnoidea mater encephali (рис. , ), покрытая, как и одноименная оболочка спинного мозга, эндотелием, связана с мягкой оболочкой головного мозга подпаутинными трабекулами, а с твердой оболочкой – грануляциями паутинной оболочки. Между ней и твердой оболочкой головного мозга имеется щелевидное субдуральное пространство, выполненное незначительным количеством спинномозговой жидкости.

Наружная поверхность паутинной оболочки головного мозга не сращена с прилегающей к ней твердой оболочкой. Однако местами, главным образом по сторонам верхнего сагиттального синуса и в меньшей степени по сторонам поперечного синуса, а также возле других синусов, ее отростки различной величины – так называемые грануляции паутинной оболочки, granulationes arachnoideales , входят в твердую оболочку головного мозга и вместе с ней – во внутреннюю поверхность черепных костей или в синусы. В этих местах в костях образуются небольшие углубления, так называемые ямочки грануляций; их особенно много возле сагиттального шва свода черепа. Грануляции паутинной оболочки представляют собой органы, осуществляющие путем фильтрации отток спинномозговой жидкости в венозное русло.

Внутренняя поверхность паутинной оболочки обращена к мозгу. На выдающихся частях извилин головного мозга она тесно прилежит к мягкой оболочке головного мозга, не следуя, однако, за последней в глубину борозд и щелей. Таким образом, паутинная оболочка головного мозга перекидывается как бы мостиками от извилины к извилине, а в местах, где сращения отсутствуют, остаются пространства, называемые подпаутинными пространствами, cavitates subarachnoideale .

Подпаутинные пространства всей поверхности головного мозга, как и спинного, сообщаются между собой. В некоторых местах эти пространства довольно значительны и носят название подпаутинных цистерн, cisternae subarachnoideae (рис. , ). Выделяются наиболее крупные цистерны:

  1. мозжечково-мозговая цистерна, cisterna cerebellomedullaris , залегает между мозжечком и продолговатым мозгом;
  2. цистерна латеральной ямки большого мозга, cisterna fossae lateralis cerebri , – в латеральной борозде, соответствуя латеральной ямке большого мозга;
  3. межножковая цистерна, cisterna interpeduncularis , – между ножками мозга;
  4. цистерна перекреста, cisterna chiasmatis , – между перекрестом зрительных нервов и лобными долями мозга.

Кроме того, встречается ряд крупных подпаутинных пространств, которые можно отнести к цистернам: идущая вдоль верхней поверхности и колена мозолистого тела цистерна мозолистого тела ; расположенная на дне поперечной щели большого мозга, между затылочными долями полушарий и верхней поверхностью мозжечка, обходящая цистерна , имеющая вид канала, идущего по бокам ножек мозга и крыше среднего мозга; боковая цистерна моста , залегающая под средними мозжечковыми ножками, и, наконец, в области базилярной борозды моста – средняя цистерна моста .

Подпаутинные полости мозга сообщаются между собой, а также через срединную и латеральные апертуры с полостью IV желудочка, а через последний – с полостью остальных желудочков мозга.

В подпаутинном пространстве собирается спинномозговая жидкость, liquor cerebrospinalis , из разных отделов мозга.

Отток жидкости отсюда идет через периваскулярные, периневральные щели и через грануляции паутинной оболочки в лимфатические и венозные пути.

Спинной мозг снаружи покрыт оболочками, которые являются продолжением оболочек головного мозга. Выполняют функции защиты от механических повреждений, обеспечивают питание нейронов, контролируют водный обмен и метаболизм нервной ткани. Между оболочками циркулирует спинномозговая жидкость, которая отвечает за обмен веществ.

Спинной и головной мозг – части центральной нервной системы, которая отвечает и контролирует все процессы, происходящие в организме – от мыслительных до физиологических. Функции головного мозга более обширные. Спинной мозг отвечает за двигательную активность, осязание, чувствительность рук и ног. Оболочки спинного мозга выполняют определенные задачи и обеспечивают слаженную работу по обеспечению питания и выведения продуктов метаболизма из мозговых тканей.

Строение спинного мозга и окружающих тканей

Если внимательно изучить строение позвоночника, то станет ясно, что серое вещество надежно спрятано сначала за подвижными позвонками, потом за оболочками, которых имеется три, далее следует белое вещество спинного мозга, которое обеспечивает проведение восходящих и нисходящих импульсов. По мере подъема вверх по позвоночному столбу, количество белого вещества увеличивается, так как появляется больше подконтрольных участков – руки, шея.

Белое вещество – это аксоны (нервные клетки), покрытые миелиновой оболочкой.

Серое вещество обеспечивает связь внутренних органов с головным мозгом при помощи белого вещества. Отвечает за процессы памяти, зрение, эмоциональный статус. Нейроны серого вещества не защищены миелиновой оболочкой и весьма уязвимы.

Чтобы обеспечить одновременно питание нейронов серого вещества и защитить его от повреждений и инфекции, природа создала несколько препятствий в виде спинномозговых оболочек. Головной и спинной мозг имеют идентичную защиту: оболочки спинного мозга являются продолжением оболочек головного мозга. Чтобы разобраться, как работает спинномозговой канал, необходимо провести морфофункциональную характеристику каждой отдельной его части.

Функции твердой оболочки

Твердая мозговая оболочка расположена сразу за стенками позвоночного канала. Она наиболее плотная, состоит из соединительной ткани. С наружной стороны имеет шероховатую структуру, а гладкой стороной обращена внутрь. Шероховатый слой обеспечивает плотное смыкание с позвоночными костями и удерживает мягкие ткани в позвоночном столбе. Слой гладкого эндотелия твердой оболочки спинного мозга – наиболее важный компонент. В его функции входит:

  • производство гормонов – тромбина и фибрина;
  • обмен тканевой и лимфатической жидкости;
  • контроль артериального давления;
  • противовоспалительная и иммуномодулирующая.

Соединительная ткань в процессе развития зародыша происходит из мезенхимы – клеток, из которых впоследствии развиваются сосуды, мышцы, кожа.

Строение наружной оболочки спинного мозга обусловлено необходимой степенью защиты серого и белого вещества: чем выше – тем толще и плотнее. Вверху срастается с затылочной костью, а в районе копчика истончается до нескольких слоев клеток и выглядит как нить.

Из того же вида соединительной ткани сформирована защита для спинномозговых нервов, которая прикрепляется к костям и надежно фиксирует центральный канал. Существует несколько видов связок, которыми внешняя соединительная ткань скреплена с надкостницей: это латеральные, передние, дорсальные связующие элементы. При необходимости извлечения твердой оболочки из костей позвоночника – хирургической операции – данные связки (или тяжи) представляют проблему из-за своего строения для врача-хирурга.

Паутинная оболочка

Схема расположения оболочек описана от внешней к внутренней. Паутинная оболочка спинного мозга расположена за твердой. Через небольшое пространство она примыкает изнутри к эндотелию и также покрыта эндотелиальными клетками. По виду – полупрозрачная. В паутинной оболочке имеется огромное количество глиальных клеток, которые помогают генерировать нервные импульсы, участвуют в обменных процессах нейронов, выделяет биологически активные вещества, осуществляет опорную функцию.

Спорным для медиков является вопрос об иннервации паутинной пленки. В ней нет кровеносных сосудов. Также некоторые ученые рассматривают пленку как часть мягкой оболочки, так как на уровне 11-го позвонка они сливаются в одно целое.

Срединная оболочка спинного мозга называется паутинной, так как имеет очень тонкое строение в виде паутины. Содержит фибробласты – клетки, которые производят внеклеточный матрикс. В свою очередь он обеспечивает транспортировку питательных и химических веществ. При помощи паутинной оболочки происходит движение ликвора в венозную кровь.

Грануляциями средней оболочки спинного мозга являются ворсинки, которые проникают в наружную твердую оболочку и совершают обмен ликворной жидкости через венозные синусы.

Внутренняя оболочка

Мягкая оболочка спинного мозга соединяется с твердой с помощью связок. Более широкой площадью связка прилежит к мягкой оболочке, а более узкой – к внешней оболочке. Таким образом происходит скрепление и фиксация трех оболочек спинного мозга.

Анатомия мягкого слоя более сложная. Это рыхлая ткань, в которой находятся кровеносные сосуды, доставляющие питание нейронам. Из-за большого количества капилляров цвет ткани розовый. Мягкая оболочка полностью окружает спинной мозг, по своей структуре более плотная, чем аналогичная ткань головного мозга. Оболочка настолько плотно прилегает к белому веществу, что при малейшем рассечении оно появляется из разреза.

Примечательно, что такое строение имеется только у человека и других млекопитающих.

Данный слой хорошо омывается кровью и выполняет благодаря этому защитную функцию, так как в крови находится большое количество лейкоцитов и других клеток, отвечающих за иммунитет человека. Это крайне важно, так как попадание микробов или бактерий внутрь спинного мозга способны вызвать интоксикацию, отравление и гибель нейронов. В такой ситуации можно потерять чувствительность определенных участков тела, за которые отвечали погибшие нервные клетки.

Мягкая оболочка имеет двухслойное строение. Внутренний слой – это те же глиальные клетки, которые непосредственно соприкасаются со спинным мозгом и обеспечивают его питание и вывод продуктов распада, а также участвуют в передаче нервных импульсов.

Пространства между оболочками спинного мозга

3 оболочки не соприкасаются между собой плотно. Между ними существуют пространства, которые имеют свои функции и названия.

Эпидуральное пространство находится между костями позвоночника и твердой оболочкой. Заполнено жировой тканью. Это своего рода защита от недостатка питания. В экстренных ситуациях жир может стать источником питания нейронов, что позволит нервной системе функционировать и контролировать процессы в организме.

Рыхлость жировой ткани является амортизатором, который при механическом воздействии снижает нагрузку на глубокие слои спинного мозга – белое и серое вещество, не допуская их деформации. Оболочки спинного мозга и пространства между ними представляют собой буфер, через который происходит сообщение верхних и глубоких слоев ткани.

Субдуральное пространство находится между твердой и арахноидальной(паутинной) оболочкой. Оно заполнено спинномозговой жидкостью. Это наиболее часто меняющаяся среда, объем которой приблизительно 150 – 250 мл у взрослого человека. Жидкость вырабатывается организмом и обновляется 4 раза в сутки. Всего за сутки головным мозгом продуцируется до 700 мл спинномозговой жидкости (ликвора).

Ликвор выполняет защитную и трофическую функции.

  1. При механическом воздействии — ударе, падении, сохраняет давление и препятствует деформации мягких тканей, даже при надломах и трещинах костей позвоночника.
  2. В составе ликвора имеются питательные вещества – белки, минералы.
  3. Лейкоциты и лимфоциты в спинномозговой жидкости подавляют развитие инфекции вблизи центральной нервной системы, поглощая бактерии и микроорганизмы.

Ликвор является важной жидкостью, с помощью которой врачи определяют наличие у человека инсульта или мозговых повреждений, при котором нарушается гематоэнцефалический барьер. В таком случае в жидкости появляются эритроциты, чего в норме быть не должно.

Состав ликвора меняется в зависимости от работы других органов и систем человека. К примеру, при нарушениях в системе пищеварения, жидкость становится более вязкой, в результате чего протекание затрудняется, и появляются болезненные ощущения, в основном головные боли.

Снижение уровня кислорода также нарушает работу нервной системы. Сначала изменяется состав крови и межклеточной жидкости, затем процесс передается на спинномозговую жидкость.

Большой проблемой для организма является обезвоживание. В первую очередь страдает центральная нервная система, которая в тяжелых условиях внутренней среды не в состоянии контролировать работу остальных органов.

Подпаутинное пространство спинного мозга (другими словами – субарахноидальное) находится между мягкой оболочкой и паутинной. Здесь находится наибольшее количество ликвора. Связано это с необходимостью обеспечить наибольшую безопасность некоторых отделов центральной нервной системы. К примеру – ствола, мозжечка или продолговатого мозга. Особенно много цереброспинальной жидкости в районе ствола, так как там находятся все жизненно важные отделы, которые отвечают за рефлексы, дыхание.

При наличии достаточного количества жидкости, механические внешние воздействия на область мозга или позвоночника доходят до них в значительно меньшей мере, так как жидкость компенсирует и снижает удар извне.

В арахноидальном пространстве жидкость циркулирует в различных направлениях. Скорость зависит от частоты движений, дыхания, то есть, напрямую связана с работой сердечно-сосудистой системы. Поэтому важно соблюдать режим физической нагрузки, прогулок, правильного питания и употребления воды.

Обмен цереброспинальной жидкости

Ликвор через венозные синусы попадает в кровеносную систему и далее направляется на очистку. Система, которая продуцирует жидкость, предохраняет ее от возможного попадания отравляющих веществ из крови, поэтому избирательно пропускает элементы из крови в ликвор.

Оболочки и межоболочечные пространства спинного мозга омываются замкнутой системой спинномозговой жидкости, поэтому при нормальных условиях обеспечивают стабильную работу центральной нервной системы.

Различные патологические процессы, которые начинаются на каком-либо участке центральной нервной системы, могут распространяться на соседние. Причина этого – непрерывная циркуляция ликвора и перенос инфекции на все отделы головного и спинного мозга. Не только инфекционные, но и дегенеративные, а также метаболические расстройства оказывают влияние на всю центральную нервную систему.

Анализ спинномозговой жидкости является главным при определении степени повреждения тканей. Состояние ликвора позволяет прогнозировать течение заболеваний и следить за эффективностью лечения.

Излишки СО2, азотной и молочной кислот удаляются в кровеносное русло, чтобы не создавать токсического воздействия на нервные клетки. Можно сказать, что ликвор имеет строго постоянный состав и поддерживает это постоянство при помощи реакций организма на появление раздражителя. Происходит замкнутый круг: организм старается угодить нервной системе, поддерживая баланс, а нервная система с помощью отлаженных реакций помогает организму этот баланс поддерживать. Такой процесс называется гомеостаз. Он является одним из условий выживания человека во внешней среде.

Связь оболочек между собой

Связь оболочек спинного мозга прослеживается с самого раннего момента формирования – на этапе эмбрионального развития. В возрасте 4 недель зародыш уже имеет зачатки центральной нервной системы, в которой из всего лишь нескольких видов клеток формируются различные ткани организма. В случае с нервной системой – это мезенхима, которая дает начало соединительной ткани, из которой состоят оболочки спинного мозга.

В сформированном организме некоторые оболочки проникают одна в другую, что обеспечивает обмен веществ и выполнение общих функций по защите спинного мозга от внешних воздействий.

Уважаемые коллеги, предлагаемый вам материал в свое время был подготовлен автором для главы руководства по нейроаксиальной анестезии, которое, в силу ряда причин, не было завершено и не вышло в свет. Мы полагаем, что представленная ниже информация будет интересна не только начинающим анестезиологам, но и опытным специалистам, поскольку она отражает наиболее современные представления об анатомии позвоночника, эпидурального и субарахноидального пространств с точки зрения анестезиолога.

Анатомия позвоночника

Как известно, позвоночный столб состоит из 7 шейных, 12 грудных и 5 поясничных позвонков с прилегающими к ним крестцом и копчиком. Он имеет несколько клинически значимых изгибов. Наибольшие изгибы кпереди (лордоз) расположены на уровнях С5 и L4-5, кзади — на уровнях Th5 и S5. Эти анатомические особенности в совокупности с баричностью местных анестетиков играют важную роль в сегментарном распределении уровня спинального блока.

Особенности отдельных позвонков оказывают влияние на технику, в первую очередь, эпидуральной пункции. Остистые отростки отходят под различными углами на разных уровнях позвоночника. В шейном и поясничном отделах они располагаются почти горизонтально по отношению к пластине, что облегчает срединный доступ при перпендикулярном расположении иглы к оси позвоночника. На средне-грудном уровне (Th5-9) остистые отростки отходят под достаточно острыми углами, что делает предпочтительным парамедиальный доступ. Отростки верхних грудных (Th1-4) и нижних грудных (Th10-12) позвонков ориентированы промежуточно по сравнению с двумя вышеуказанными особенностями. На этих уровнях ни один из доступов не имеет преимуществ перед другим.

Доступ к эпидуральному (ЭП) и субарахноидальному пространству (СП) осуществляется между пластинами (интерламинарно). Верхние и нижние суставные отростки формируют фасеточные суставы, которые играют важную роль в правильном размещении пациента перед пункцией ЭП. Правильное расположение пациента перед пункцией ЭП определяется ориентацией фасеточных суставов. Поскольку фасеточные суставы поясничных позвонков ориентированы в сагиттальной плоскости и обеспечивают сгибание вперед-назад, то максимальное сгибание позвоночника (поза эмбриона) увеличивает интерламинарные пространства между поясничными позвонками.

Фасеточные суставы грудных позвонков ориентированы горизонтально и обеспечивают ротационные движения позвоночника. Следовательно, избыточное сгибание позвоночника не дает дополнительных преимуществ при пункции ЭП на грудном уровне.

Анатомические костные ориентиры

Идентификация необходимого межпозвонкового промежутка является залогом успеха эпидуральной и спинальной анестезии, а также необходимым условием безопасности пациента.

В клинических условиях выбор уровня пункции осуществляется анестезиологом посредством пальпации с целью выявления определенных костных ориентиров. Известно, что 7-й шейный позвонок имеет наиболее выраженный остистый отросток. В то же время необходимо учитывать, что у пациентов со сколиозом наиболее выступающим может быть остистый отросток 1-го грудного позвонка (примерно у ⅓ пациентов).

Линия, соединяющая нижние углы лопаток, проходит через остистый отросток 7-го грудного позвонка, а линия, соединяющая гребни подвздошных костей (линия Тюффье), проходит через 4-й поясничный позвонок (L4).

Идентификация необходимого межпозвонкового промежутка при помощи костных ориентиров далеко не всегда является корректной. Известны результаты исследования Broadbent и соавт. (2000), в котором один из анестезиологов при помощи маркера отмечал определенный межпозвонковый промежуток на поясничном уровне и пытался идентифицировать его уровень в положении больного сидя, второй совершал ту же попытку в положении пациента на боку. Затем над сделанной отметкой прикрепляли контрастный маркер и проводили магнитно-резонансную томографию.

Чаще всего истинный уровень, на котором была сделана отметка, находился от одного до четырех сегментов ниже, по сравнению с теми значениями, которые были указаны анестезиологами, участвовавшими в исследовании. Правильно идентифицировать межпозвонковый промежуток удалось лишь в 29% случаев. Точность определения не зависела от положения пациента, но ухудшалась у пациентов с избыточным весом. Кстати говоря, спинной мозг заканчивался на уровне L1 только у 19% пациентов (у остальных на уровне L2), что создавало угрозу его повреждения при ошибочном выборе высокого уровня пункции. Что затрудняет правильный выбор межпозвонкового промежутка?

Есть данные о том, что линия Тюффье соответствует уровню L4 лишь у 35% людей (Reynolds F., 2000). Для остальных 65% эта линия расположена на уровне от L3-4 до L5-S1.

Необходимо отметить, что ошибка на 1-2 сегмента при выборе уровня пункции эпидурального пространства, как правило, не сказывается на эффективности эпидуральной анестезии и анальгезии.

Связки позвоночника

По передней поверхности тел позвонков от черепа до крестца проходит передняя продольная связка, которая жестко фиксирована к межпозвонковым дискам и краям тел позвонков. Задняя продольная связка соединяет задние поверхности тел позвонков и образует переднюю стенку позвоночного канала.

Пластины позвонков соединяются желтой связкой, а задние остистые отростки — межостистыми связками. По наружной поверхности остистых отростков C7-S1 проходит надостистая связка. Ножки позвонков не соединены связками, в результате образуются межпозвонковые отверстия, через которые выходят спинномозговые нервы.

Желтая связка состоит из двух листков, сращенных по средней линии под острым углом. В связи с этим она как бы натянута в виде «тента». В шейном и грудном отделах желтая связка может быть не сращена по средней линии, что вызывает проблемы при идентификации ЭП по тесту потери сопротивления. Желтая связка тоньше по средней линии (2-3 мм) и толще по краям (5-6 мм). В целом она имеет наибольшую толщину и плотность на поясничном (5-6 мм) и грудном уровнях (3-6 мм), и наименьшую в шейном отделе (1,53 мм). Вместе с дужками позвонков желтая связка формирует заднюю стенку позвоночного канала.

При проведении иглы срединным доступом она должна пройти сквозь надостистые и межостистые связки, а затем сквозь желтую связку. При парамедиальном доступе игла минует надостистую и межостистую связки, сразу достигая желтой связки. Желтая связка плотнее других (на 80% состоит из эластических волокон), поэтому возрастание сопротивления при прохождении ее иглой, с последующей его потерей, как известно, используют для идентификации ЭП.

Расстояние между желтой связкой и твердой мозговой оболочкой в поясничном отделе не превышает 5-6 мм и зависит от таких факторов, как артериальное и венозное давление, давление в спинномозговом канале, давление в брюшной полости (беременность, абдоминальный компартмент-синдром и т. д.) и полости грудной клетки (ИВЛ).

С возрастом желтая связка уплотняется (оссифицируется), что затрудняет проведение через нее иглы. Данный процесс наиболее выражен на уровне нижних грудных сегментов.

Оболочки спинного мозга

Спинномозговой канал имеет три соединительно-тканных оболочки, защищающих спинной мозг: твердую мозговую оболочку, паутинную (арахноидальную) оболочку и мягкую мозговую оболочку. Эти оболочки участвуют в формировании трех пространств: эпидурального, субдурального и субарахноидального. Непосредственно спинной мозг (СМ) и корешки укрывает хорошо васкуляризированная мягкая мозговая оболочка, субарахноидальное пространство ограничено двумя прилегающими друг к другу оболочками — паутинной и твердой мозговой.

Все три оболочки СМ продолжаются и в латеральном направлении, формируя соединительнотканное покрытие спинномозговых корешков и смешанных спинномозговых нервов (эндоневрий, периневрий и эпиневрий). Субарахноидальное пространство тоже на коротком протяжении распространяется вдоль корешков и спинномозговых нервов, заканчиваясь на уровне межпозвонковых отверстий.

В отдельных случаях манжеты, образованные твердой мозговой оболочкой, удлиняются на сантиметр и более (в редких случаях на 6-7 см) вдоль смешанных спинномозговых нервов и значительно выходят за пределы межпозвонковых отверстий. Этот факт необходимо учитывать при выполнении блокады плечевого сплетения из надключичных доступов, поскольку в этих случаях даже при правильной ориентации иглы возможно интратекальное введение местного анестетика с развитием тотального спинального блока.

Твердая мозговая оболочка (ТМО) представляет собой листок соединительной ткани, состоящей из коллагеновых волокон, ориентированных как поперечно, так и продольно, а также некоторого количества эластических волокон, ориентированных в продольном направлении.

На протяжении длительного времени считали, что волокна ТМО имеют преимущественно продольную ориентацию. В связи с этим рекомендовали при пункции субарахноидального пространства ориентировать срез спинальной иглы с режущим кончиком вертикально, чтобы он не пересекал волокна, а как бы их раздвигал. Позднее при помощи электронной микроскопии выявили достаточно беспорядочное расположение волокон ТМО — продольное, поперечное и частично циркулярное. Толщина ТМО вариабельна (от 0,5 до 2 мм) и может отличаться на разных уровнях у одного и того же пациента. Чем толще ТМО, тем выше ее способность к ретракции (стягиванию) дефекта.

ТМО, наиболее толстая из всех оболочек СМ, на протяжении длительного времени рассматривалась как наиболее значимый барьер между ЭП и подлежащими тканями. В действительности это не так. Экспериментальные исследования с морфином и альфентанилом, выполненные на животных, показали, что ТМО является наиболее проницаемой оболочкой СМ (Bernards C., Hill H., 1990).

Ложное умозаключение о ведущей барьерной функции ТМО на пути диффузии привело к неправильной трактовке ее роли в генезе постпункционной головной боли (ППГБ). Если предположить, что ППГБ обусловлена подтеканием спинномозговой жидкости (СМЖ) через пункционный дефект в оболочках СМ, мы должны сделать правильный вывод о том, какая из них ответственна за эту утечку.

Поскольку СМЖ находится под паутинной оболочкой, то именно дефект этой оболочки, а не ТМО играет роль в механизмах ППГБ. В настоящее время нет доказательных данных, свидетельствующих о том, что именно дефект оболочек СМ, а значит его форма и размер, а также скорость потерь СМЖ (а значит, размер и форма кончика иглы) оказывают влияние на развитие ППГБ.

Это вовсе не означает, что некорректными являются клинические наблюдения, свидетельствующие, что использование тонких игл, игл типа «pencil-point», а также вертикальная ориентация среза игл типа Quincke снижают частоту ППГБ. Однако некорректны объяснения данного эффекта, в частности, утверждения, что при вертикальной ориентации среза игла не пересекает волокна ТМО, а «раздвигает» их. Данные заявления полностью игнорируют современные представления об анатомии ТМО, состоящей из беспорядочно расположенных волокон, а не ориентированных вертикально. В то же время клетки паутинной оболочки имеют цефало-каудальную ориентацию. В связи с этим при продольной ориентации среза игла оставляет в ней узкое щелевидное отверстие, повреждая меньшее количество клеток, чем при перпендикулярной ориентации. Однако это только предположение, требующее серьезных экспериментальных подтверждений.

Паутинная оболочка

Паутинная оболочка состоит из расположенных в одной плоскости и перекрывающих друг друга 6-8 слоев плоских эпителиально-подобных клеток, плотно соединенных между собой и имеющих продольную ориентацию. Паутинная оболочка является не просто пассивным резервуаром для СМЖ, она активно участвует в транспорте различных веществ.

Не так давно было установлено, что в паутинной оболочке вырабатываются метаболические энзимы, которые могут оказывать воздействие на метаболизм отдельных веществ (например, адреналина) и нейротрансмиттеры (ацетилхолин), имеющие значение для реализации механизмов спинальной анестезии. Активный транспорт веществ через паутинную оболочку осуществляется в области манжет спинномозговых корешков. Здесь происходит одностороннее перемещение веществ из СМЖ в ЭП, что увеличивает клиренс введенных в СП местных анестетиков. Пластинчатое строение паутинной оболочки способствует ее легкому отделению от ТМО при спинальной пункции.

Тонкая паутинная оболочка, на самом деле, обеспечивает более 90% резистентности на пути диффузии препаратов из ЭП в СМЖ. Дело в том, что дистанция между беспорядочно ориентированными коллагеновыми волокнами ТМО достаточно велика для того, чтобы создавать барьер на пути молекул лекарственных средств. Клеточная архитектоника паутинной оболочки, напротив, обеспечивает наибольшее препятствие диффузии и объясняет тот факт, что СМЖ находится в субарахноидальном пространстве, но отсутствует в субдуральном.

Осознание роли паутинной оболочки, как основного барьера на пути диффузии из ЭП в СМЖ, позволяет по-новому взглянуть на зависимость диффузионной способности препаратов от их способности растворяться в жирах. Традиционно принято считать, что более липофильные препараты характеризуются большей диффузионной способностью. На этом основаны рекомендации предпочтительного использования для ЭА липофильных опиоидов (фентанил), обеспечивающих быстро развивающуюся сегментарную анальгезию. В то же время в экспериментальных исследованиях установлено, что проницаемость гидрофильного морфина через оболочки спинного мозга существенно не отличается от таковой фентанила (Bernards C., Hill H., 1992). Установлено, что спустя 60 мин после эпидуральной инъекции 5 мг морфина на уровне L3-4 определяются в ликворе уже на уровне шейных сегментов (Angst M. et al., 2000).

Объяснением этому является тот факт, что диффузия из эпидурального в субарахноидальное пространство осуществляется непосредственно сквозь клетки паутинной оболочки, поскольку межклеточные связи настолько плотны, что исключают возможность проникновения молекул между клетками. В процессе диффузии препарат должен проникнуть в клетку через двойную липидную мембрану, а затем, еще раз преодолев мембрану, попасть в СП. Паутинная оболочка состоит из 6-8 слоев клеток. Таким образом, в процессе диффузии вышеуказанный процесс повторяется 12-16 раз.

Препараты с высокой жирорастворимостью термодинамически более стабильны в двойном липидном слое, чем в водном внутри- или внеклеточном пространстве, в связи с этим, им «труднее» покинуть мембрану клетки и переместиться во внеклеточное пространство. Таким образом, замедляется их диффузия сквозь паутинную оболочку. Препараты с плохой растворимостью в жирах имеют противоположную проблему — они стабильны в водной среде, но с трудом проникают в липидную мембрану, что тоже замедляет их диффузию.

Препараты, с промежуточной способностью растворяться в жирах, в наименьшей степени подвержены вышеуказанным водно-липидным взаимодействиям.

В то же время способность проникать через оболочки СМ не является единственным фактором, определяющим фармакокинетику препаратов, введенных в ЭП. Другим важным фактором (который зачастую игнорируется) является объем их поглощения (секвестрации) жировой клетчаткой ЭП. В частности, установлено, что длительность пребывания опиоидов в ЭП линейно зависит от их способности растворяться в жирах, поскольку эта способность определяет объем секвестрации препарата в жировой клетчатке. За счет этого затрудняется проникновение липофильных опиоидов (фентанил, суфентанил) к СМ. Имеются веские основания полагать, что при непрерывной эпидуральной инфузии этих препаратов анальгетический эффект достигается преимущественно за счет их абсорбции в кровоток и супрасегментарного (центрального) действия. В отличие от этого, при болюсном введении анальгетический эффект фентанила обусловлен в основном его действием на сегментарном уровне.

Таким образом, распространенное представление о том, что препараты с большей способностью растворяться в жирах после эпидурального введения быстрее и проще проникают в СМ, является не совсем корректным.

Эпидуральное пространство

ЭП является частью спинномозгового канала между его наружной стенкой и ТМО, простирается от большого затылочного отверстия до крестцово-копчиковой связки. ТМО прикрепляется к большому затылочному отверстию, а также к 1-му и 2-му шейным позвонкам, в связи с этим растворы, введенные в ЭП, не могут подняться выше этого уровня. ЭП расположено кпереди от пластины, с боков ограничено ножками, а спереди телом позвонка.

ЭП содержит:

  • жировую клетчатку,
  • спинномозговые нервы, выходящие из спинномозгового канала через межпозвонковые отверстия,
  • кровеносные сосуды, питающие позвонки и спинной мозг.

Сосуды ЭП в основном представлены эпидуральными венами, формирующими мощные венозные сплетения с преимущественно продольным расположением сосудов в боковых частях ЭП и множеством анастомотических веточек. ЭП имеет минимальное наполнение в шейном и грудном отделах позвоночника, максимальное — в поясничном отделе, где эпидуральные вены имеют максимальный диаметр.

Описания анатомии ЭП в большинстве руководств по регионарной анестезии представляют жировую клетчатку в виде однородного слоя, прилегающего к ТМО и заполняющего ЭП. Вены ЭП обычно изображают в виде сплошной сети (венозное сплетение Батсона), прилегающей к СМ на всем его протяжении. Хотя еще в 1982 г. были опубликованы данные исследований, выполненных с использованием КТ и контрастирования вен ЭП (Meijenghorst G., 1982). Согласно этим данным, эпидуральные вены располагаются преимущественно в переднем и отчасти в боковых отделах ЭП. Позднее эти сведения были подтверждены в работах Hogan Q. (1991), показавшего, кроме того, что жировая клетчатка в ЭП скомпонована в виде отдельных «пакетов», располагающихся в основном в заднем и боковых отделах ЭП, т. е. не имеет характера сплошного слоя.

Переднезадний размер ЭП прогрессивно сужается с поясничного уровня (5-6 мм) к грудному (3-4 мм) и становится минимальным на уровне С3-6.

В обычных условиях давление в ЭП имеет отрицательное значение. Наиболее низким оно является в шейном и грудном отделах. Увеличение давления в грудной клетке при кашле, пробе Вальсальвы приводит к повышению давления в ЭП. Введение жидкости в ЭП повышает давление в нем, величина этого повышения зависит от скорости и объема введенного раствора. Параллельно увеличивается давление и в СП.

Давление в ЭП становится положительным в поздних сроках беременности за счет повышения внутрибрюшного давления (через межпозвонковые отверстия передается в ЭП) и расширения эпидуральных вен. Уменьшение объема ЭП способствует более широкому распространению местного анестетика.

Непреложным является факт, что препарат, введенный в ЭП, попадает в СМЖ и СМ. Менее изученным является вопрос — каким образом он туда попадает? В ряде руководств по регионарной анестезии описывается латеральное распространение препаратов, введенных в ЭП с последующей их диффузией через манжеты спинномозговых корешков в СМЖ (Cousins M., Bridenbaugh P., 1998).

Данная концепция логически обосновывается несколькими фактами. Во-первых, в манжетах спинномозговых корешков имеются паутинные грануляции (ворсинки), аналогичные таковым в головном мозге. Через эти ворсинки осуществляется секреция СМЖ в субарахноидальное пространство. Во-вторых, еще в конце XIX в. в экспериментальных исследованиях Key и Retzius было установлено, что вещества, введенные в СП животных, позднее обнаруживались в ЭП. В-третьих, было выявлено, что эритроциты удаляются из СМЖ путем пассажа через те же паутинные ворсинки. Эти три факта логически были объединены, и сделан вывод, что молекулы лекарственных веществ, размер которых меньше, чем размер эритроцитов, также могут проникать из ЭП в субарахноидальное через паутинные ворсинки. Этот вывод, конечно, привлекателен, но он является ложным, построен на умозрительных заключениях и не подкреплен ни одним экспериментальным или клиническим исследованием.

Между тем при помощи экспериментальных нейрофизиологических исследований установлено, что транспорт любых веществ через паутинные ворсинки осуществляется путем микропиноцитоза и только в одном направлении — из СМЖ наружу (Yamashima T. et al., 1988 и др.). Если бы это было не так, то любая молекула из венозного кровотока (большинство ворсинок омывается венозной кровью) могла бы легко проникнуть в СМЖ, обходя, таким образом, гематоэнцефалический барьер.

Существует еще одна распространенная теория, объясняющая проникновение препаратов из ЭП в СМ. Согласно этой теории, препараты с высокой способностью растворяться в жирах (а точнее, неионизированные формы их молекул) диффундируют через стенку корешковой артерии, проходящей в ЭП, и с током крови попадают в СМ. Данный механизм также не имеет никаких подтверждающих данных.

В экспериментальных исследованиях на животных изучена скорость проникновения в СМ фентанила, введенного в ЭП, при интактных корешковых артериях и после наложения зажима на аорту, блокирующего кровоток в этих артериях (Bernards S., Sorkin L., 1994). Не выявлено различий в скорости проникновения фентанила в СМ, однако выявлена замедленная элиминацию фентанила из СМ при отсутствии кровотока по корешковым артериям. Таким образом, корешковые артерии играют важную роль лишь в «вымывании» препаратов из СМ. Тем не менее опровергнутая «артериальная» теория транспорта препаратов из ЭП в СМ продолжает упоминаться в специальных руководствах.

Таким образом, в настоящее время экспериментально подтвержден лишь один механизм проникновения лекарственных препаратов из ЭП в СМЖ/СМ — диффузия через оболочки СМ (см. выше).

Новые данные по анатомии эпидурального пространства

Большинство ранних исследований анатомии ЭП были выполнены с помощью введения рентгеноконтрастных растворов или при аутопсии. Во всех этих случаях исследователи сталкивались с искажением нормальных анатомических соотношений, обусловленных смещением компонентов ЭП относительно друг друга.

Интересные данные были получены в последние годы при помощи компьютерной томографии и эпидуроскопической техники, позволяющей изучать функциональную анатомию ЭП в непосредственной связи с техникой эпидуральной анестезии. Например, при помощи компьютерной томографии было подтверждено, что спинальный канал выше поясничного отдела имеет овальную форму, а в нижних сегментах – треугольную.

С помощью 0,7 мм эндоскопа, введенного через иглу Туохи 16G, было установлено, что объем ЭП увеличивается при глубоком дыхании, что может облегчить его катетеризацию (Igarashi, 1999). По данным КТ, жировая ткань преимущественно сконцентрирована под желтой связкой и в области межпозвонковых отверстий. Жировая клетчатка практически полностью отсутствует на уровнях С7-Тh1, при этом твердая оболочка непосредственно соприкасается с желтой связкой. Жир эпидурального пространства скомпонован в ячейки, покрытые тонкой мембраной. На уровне грудных сегментов жир фиксирован к стенке канала только по задней средней линии, а в ряде случаев рыхло прикрепляется к твердой оболочке. Это наблюдение может частично объяснить случаи асимметрического распределения растворов МА.

При отсутствии дегенеративных заболеваний позвоночника, межпозвонковые отверстия обычно открыты, независимо от возраста, что позволяет введенным растворам свободно покидать ЭП.

При помощи магнитно-резонансной томографии были получены новые данные об анатомии каудальной (сакральной) части ЭП. Расчеты, выполненные на костном скелете, свидетельствовали о том, что его средний объем составляет 30 мл (12-65 мл). Исследования, выполненные с применением МРТ, позволили учесть объем ткани, заполняющей каудальное пространство, и установить, что его истинный объем не превышает 14,4 мл (9,5-26,6 мл) (Crighton, 1997). В той же работе было подтверждено, что дуральный мешок заканчивается на уровне средней трети сегмента S2.

Воспалительные заболевания и ранее перенесенные операции искажают нормальную анатомию ЭП.

Субдуральное пространство

С внутренней стороны к ТМО очень близко прилежит паутинная оболочка, которая тем не менее с ней не соединяется. Пространство, образуемое этими оболочками, называют субдуральным.

Термин «субдуральная анестезия» является некорректным и не идентичным термину «субарахноидальная анестезия». Случайное введение анестетика между паутинной и твердой мозговой оболочками может явиться причиной неадекватной спинальной анестезии.

Субарахноидальное пространство

Начинается от большого затылочного отверстия (где переходит в интракраниальное субарахноидальное пространство) и продолжается приблизительно до уровня второго крестцового сегмента, ограничивается паутинной и мягкой мозговой оболочками. Оно включает в себя СМ, спинномозговые корешки и спинномозговую жидкость.

Ширина спинального канала составляет около 25 мм на шейном уровне, на грудном он сужается до 17 мм, на поясничном (L1) расширяется до 22 мм, а еще ниже — до 27 мм. Переднезадний размер на всем протяжении составляет 15-16 мм.

Внутри спинального канала располагаются СМ и конский хвост, СМЖ, а также кровеносные сосуды, питающие СМ. Окончание СМ (conus medullaris) находится на уровне L1-2. Ниже конуса СМ трансформируется в пучок нервных корешков (конский хвост), свободно «плавающих» в СМЖ в пределах дурального мешка. В настоящее время рекомендуется осуществлять пункцию субарахноидального пространства в межпозвонковом промежутке L3-4, чтобы снизить до минимума вероятность травмы иглой СМ. Корешки конского хвоста достаточно мобильны, и опасность их травмирования иглой крайне мала.

Спинной мозг

Располагается на протяжении от большого затылочного отверстия до верхнего края второго (очень редко третьего) поясничного позвонка. Его средняя протяженность составляет 45 см. У большинства людей СМ заканчивается на уровне L2, в редких случаях достигая нижнего края 3-го поясничного позвонка.

Кровоснабжение спинного мозга

СМ снабжается спинальными ветвями позвоночной, глубокой шейной, межреберных и поясничной артерий. Передние корешковые артерии входят в спинной мозг поочередно — то справа, то слева (чаще слева). Задние спинальные артерии являются ориентированными вверх и вниз продолжениями задних корешковых артерий. Ветви задних спинальных артерий соединяются анастомозами с аналогичными ветвями передней спинальной артерии, образуя многочисленные сосудистые сплетения в мягкой мозговой оболочке (пиальную сосудистую сеть).

Тип кровоснабжения СМ зависит от уровня вхождения в спинномозговой канал самой большой по диаметру корешковой (радикуломедулярной) артерии — так называемой артерии Адамкевича. Возможны различные анатомические варианты кровоснабжения СМ, в том числе такой, при котором все сегменты ниже Th2-3 питаются из одной артерии Адамкевича (вариант а, около 21% всех людей).

В других случаях возможны:

б) нижняя дополнительная радикуломедуллярная артерия, сопровождающая один из поясничных или 1-й крестцовый корешок,

в) верхняя дополнительная артерия, сопровождающая один из грудных корешков,

г) рассыпной тип питания СМ (три и более передних радикуломедуллярных артерии).

Как в варианте а, так и в варианте в, нижняя половина СМ снабжается только одной артерией Адамкевича. Повреждение данной артерии, компрессия ее эпидуральной гематомой или эпидуральным абсцессом способны вызвать тяжкие и необратимые неврологические последствия.

От СМ кровь оттекает через извилистое венозное сплетение, которое также располагается в мягкой оболочке и состоит из шести продольно ориентированных сосудов. Это сплетение сообщается с внутренним позвоночным сплетением ЭП из которого кровь оттекает через межпозвонковые вены в системы непарной и полунепарной вен.

Вся венозная система ЭП не имеет клапанов, поэтому она может служить дополнительной системой оттока венозной крови, например, у беременных при аорто-кавальной компрессии. Переполнение кровью эпидуральных вен повышает риск их повреждения при пункции и катетеризации ЭП, в том числе увеличивается вероятность случайного внутрисосудистого введения местных анестетиков.

Спинномозговая жидкость

Спинной мозг омывается СМЖ, которая играет амортизирующую роль, защищая его от травм. СМЖ представляет собой ультрафильтрат крови (прозрачная бесцветная жидкость), который образуется хориоидальным сплетением в боковом, третьем и четвертом желудочках головного мозга. Скорость продукции СМЖ составляет около 500 мл в день, поэтому даже потеря ее значительного объема быстро компенсируется.

СМЖ содержит протеины и электролиты (в основном Na+ и Cl-) и при 37° С имеет удельный вес 1,003-1,009.

Арахноидальные (пахионовы) грануляции, расположенные в венозных синусах головного мозга, дренируют большую часть СМЖ. Скорость абсорбции СМЖ зависит от давления в СП. Когда это давление превышает давление в венозном синусе, открываются тонкие трубочки в пахионовых грануляциях, которые пропускают СМЖ в синус. После того как давление выравнивается, просвет трубочек закрывается. Таким образом, имеет место медленная циркуляция СМЖ из желудочков в СП и далее, в венозные синусы. Небольшая часть СМЖ абсорбируется венами СП и лимфатическими сосудами, поэтому в позвоночном субарахноидальном пространстве происходит некоторая локальная циркуляция СМЖ. Абсорбция СМЖ эквивалентна ее продукции, поэтому общий объем СМЖ обычно находится в пределах 130-150 мл.

Возможны индивидуальные различия объема СМЖ в люмбосакральных отделах спинального канала, которые могут оказывать влияние на распределение МА. Исследования при помощи ЯМР выявили вариабельность объемов СМЖ люмбосакрального отдела в объемах от 42 до 81 мл (Carpenter R., 1998). Интересно отметить, что люди с избыточным весом имеют меньший объем СМЖ. Наблюдается отчетливая корреляция между объемом СМЖ и эффектом спинальной анестезии, в частности, максимальной распространенностью блока и скоростью его регрессии.

Корешки спинного мозга и спинномозговые нервы

Каждый нерв образуется за счет соединения переднего и заднего корешка СМ. Задние корешки имеют утолщения — ганглии задних корешков, которые содержат тела нервных клеток соматических и вегетативных сенсорных нервов. Передние и задние корешки по отдельности проходят латерально через паутинную и ТМО прежде, чем объединиться на уровне межпозвоночных отверстий, формируя смешанные спинномозговые нервы. Всего существует 31 пара спинномозговых нервов: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и одна копчиковая.

СМ растет медленнее позвоночного столба, поэтому он короче позвоночника. В результате этого сегменты и позвонки не находятся в одной горизонтальной плоскости. Поскольку сегменты СМ короче соответствующих позвонков, то в направлении от шейных сегментов к крестцовым постепенно увеличивается расстояние, которое необходимо преодолеть спинномозговому нерву, чтобы достичь «своего» межпозвоночного отверстия. На уровне крестца это расстояние составляет 10-12 см. Поэтому нижние поясничные корешки удлиняются и загибаются каудально, формируя вместе с крестцовыми и копчиковыми корешками конский хвост.

В пределах субарахноидального пространства корешки покрыты только слоем мягкой мозговой оболочки. Это является отличием от ЭП, где они становятся большими смешанными нервами со значительным количеством соединительной ткани как внутри, так и снаружи нерва. Это обстоятельство является объяснением того, что для спинальной анестезии требуются намного меньшие дозы местного анестетика, в сравнении с таковыми для эпидуральной блокады.

Индивидуальные особенности анатомии спинальных корешков могут определять вариабельность эффектов спинальной и эпидуральной анестезии. Размеры нервных корешков у различных людей могут значительно варьировать. В частности, диаметр корешка L5 может колебаться от 2,3 до 7,7 мм. Задние корешки имеют больший размер по сравнению с передними, но состоят из трабекул, достаточно легко отделимых друг от друга. За счет этого они обладают большей поверхностью соприкосновения и большей проницаемостью для местных анестетиков по сравнению с тонкими и не имеющими трабекулярной структуры передними корешками. Эти анатомические особенности отчасти объясняют более легкое достижение сенсорного блока по сравнению с моторным.


Спинной мозг человека по сложности строения гораздо уступает головному. Но он тоже устроен достаточно непросто. Благодаря этому нервная система человека может слаженно взаимодействовать с мышцами о внутренними органами.

Окружен тремя оболочками, которые отличаются друг от друга. Между ними есть пространства, также необходимые для питания и защиты. Как устроены оболочки спинного мозга? Каковы их функции? И какие еще структуры можно увидеть рядом с ними?

Расположение и строение

Для того, чтобы разобраться с функциями структур человеческого скелета, необходимо хорошо знать, как они устроены, где находятся и с какими другими частями тела взаимодействуют. То есть в первую очередь нужно узнать анатомические характеристики.

Спинной мозг окружают 3 оболочки из соединительной ткани. Каждая из них потом переходит в соответствующую оболочку головного мозга. Они развиваются из мезодермы (то есть среднего зародышевого листка) во время внутриутробного развития, но отличаются друг от друга по внешнему виду и структуре.

Последовательность расположения, начиная изнутри:

  1. Мягкая или внутренняя – располагается вокруг спинного мозга.
  2. Средняя, паутинная.
  3. Твёрдая или наружная – находится возле стенок позвоночного канала.

Ниже коротко рассмотрены подробности относительно строения каждой из этих структур и их расположения в позвоночном канале.

Мягкая

Внутренняя оболочка, которая также называется мягкой, вплотную окутывает непосредственно спинной мозг. Она представляет собой рыхлую соединительную ткань, очень мягкую, что видно даже из названия. В её составе выделяют два листка, между которыми расположено очень много кровеносных сосудов. Наружная часть покрыта эндотелием.

От наружного листка начинаются небольшие связки, которые соединяются с твердой оболочкой. Эти связки называются зубчатыми. Места соединения совпадают с местами выхода передних и задних корешков нервов. Эти связки очень важны для фиксации спинного мозга и его покровов, не дают ему растягиваться в длину.

Паутинная

Средняя оболочка называется паутинной. Она выглядит как тонкая полупрозрачная пластинка, которая соединяется с твердой оболочкой в месте выхода корешков. Также покрыта эндотелиальными клетками.

В этой структурной части совсем нет сосудов. Она не совсем сплошная, так по всей длине местами присутствуют маленькие щелевидные отверстия. Разграничивает субдуральное и подпаутинное пространства, в которых размещена одна из важнейших жидкостей человеческого организма – ликвор.

Твердая

Наружная или твердая оболочка наиболее массивная, состоит из двух листков и выглядит как цилиндр. Наружный листок шероховат и обращен в сторону стенок позвоночного канала. Внутренний гладкий, блестящий, покрыт эндотелием.


Она наиболее широкая в области затылочного отверстия, где частично срастается с надкостницей затылочной кости. Направляясь вниз, цилиндр заметно сужается и к надкостнице копчика прикрепляется в виде тяжа или нити.

Из ткани твёрдой оболочки формируются вместилища для каждого спинномозгового нерва. Они, постепенно расширяясь, идут в сторону межпозвоночных отверстий. К позвоночнику, а точнее, к его задней продольной связке, осуществляется крепление с помощью небольших перемычек из соединительной ткани. Таким образом, происходит фиксация к костной части скелета.

Функции

Все 3 оболочки спинного мозга необходимы для правильной работы нервной системы, в частности осуществления координированных движений и адекватной чувствительности почти всего тела. Эти функции спинного мозга могут быть полноценно проявлены лишь при условии целостности всех его структурных компонентов.

Среди наиболее важных аспектов роли 3 оболочек спинного мозга можно назвать такие:

  • Защита. Несколько соединительнотканных пластинок, которые отличаются по толщине и структуре защищают вещество спинного мозга от ударов, сотрясений и любых других механических воздействий. На костную ткань позвоночника приходится достаточно большая нагрузка при движении, но у здорового человека это никак не будет сказываться на состоянии внутрипозвоночных структур.

  • Разграничение пространств. Между соединительнотканными структурами находятся пространства, которые заполнены важными для организма объектами и веществами. Более подробно это будет рассмотрено ниже. Благодаря тому, что они ограничены друг от друга и от внешней среды, сохраняется стерильность и возможность правильно функционировать.
  • Фиксация. Мягкая оболочка прикреплена непосредственно к спинному мозгу, по всей длине связками она прочно соединена с твёрдой, а та – со связкой, которая фиксирует костные структуры позвоночника. Таким образом, по всей длине спинной мозг крепко зафиксирован и не может сдвигаться и растягиваться.
  • Обеспечение стерильности. Благодаря надежному барьеру спинной мозг и ликвор стерильны, туда не могут попасть бактерии из внешней среды. Инфицирование бывает только при повреждении или если человек болеет очень серьёзными заболеваниями на тяжелых стадиях (некоторые варианты туберкулёза, нейросифилис).
  • Проведение структур нервной ткани (передний и задний корешки нервов, а местами и ствол нерва) и сосудов, вместилище для них.

Каждая из 3 оболочек очень важна и является незаменимой структурой скелета человеческого тела. Благодаря им обеспечивается полноценная защита от инфекций и механических повреждений части центральной нервной системы и небольших участков нервов, которые идут к периферическим частям тела.

Пространства

Между оболочками, а также между ними и костью находятся три пространства спинного мозга. Каждое из них имеет своё название, структуру, размеры и содержимое.

Перечень пространств, начиная снаружи:

  1. Эпидуральное, между твёрдой оболочкой и внутренней поверхностью костной ткани спинномозгового канала. В нём находится огромное количество позвоночных сплетений сосудов, которые окутаны жировой клетчаткой.
  2. Субдуральное, между твёрдой и паутинной. Оно заполнено спинномозговой жидкостью, то есть ликвором. Но здесь его совсем немного, так как это пространство очень маленькое.
  3. Подпаутинное, между паутинной и мягкой оболочками. Это пространство расширяется в нижних отделах. В нём содержится до 140 мл ликвора. Для анализа его обычно берут именно с этого пространства в области под вторым поясничным позвонком.

Эти 3 пространства также очень важны для защиты мозгового вещества, в некоторой мере даже того, которое находится в головной части нервной системы.

Корешки


Спинной мозг со всеми структурными компонентами, входящими в его состав, поделён на сегменты. С каждого сегмента выходит пара спинномозговых нервов. Каждый нерв начинается с двух корешков, которые до выхода из межпозвоночного отверстия объединяются. Корешки также защищены твёрдой спинномозговой оболочкой.

Передний корешок отвечает за двигательную функцию, а задний – за чувствительность. При травмах оболочек спинного мозга возникает большой риск повреждения одного из них. В таком случае развивается соответствующая симптоматика: параличи или судороги, если повреждены передние корешки, и отсутствие адекватной чувствительности, если задеты задние.

Все описанные выше структуры очень важны для полноценного функционирования организма, иннервации большей части покровов тела и большинства внутренних органов, а также для передачи сигналов от рецепторов в центральную нервную систему. Для того, чтобы не нарушить взаимодействие, важно следить за здоровьем позвоночника и укрепляющих его мышц, так как без правильного расположения костно-мышечных элементов невозможна правильная фиксация, повышаются риски ущемлений и развития грыж.

Спинной мозг покрывают три оболочки из соединительной ткани (meninges ). Если рассматривать эти оболочки от наружных слоев к внутренним, то речь будет идти о твердой оболочке (dura mater ), паутинной оболочке (arachnoidea ) и мягкой оболочке (pia mater ). Рассмотрим их подробнее.

Твердая оболочка спинного мозга

Dura mater spinalis , или твердая спинномозговая оболочка, похожа на мешок, в котором находится спинной мозг. Она не соприкасается плотно со стенками позвоночного канала, покрытыми надкостницей. Другое название надкостницы спинномозгового канала - наружный листок твердой оболочки.

Между твердой оболочкой и надкостницей расположено эпидуральное пространство, или cavitas epiduralis . Это хранилище жировой клетчатки и венозных сплетений, сюда попадает венозная кровь из позвонков и спинного мозга. Со стороны черепа твердая оболочка сращена с большим отверстием затылочной кости, а заканчивается она в районе II или III крестцового позвонка, причем под конец она суживается практически до размера нити, которая прикреплена к копчику.

Внутреннюю поверхность твердой оболочки покрывает слой эндотелия , поэтому с этой стороны у нее гладкий и блестящий вид.

Паутинная оболочка

Далее идет паутинная оболочка спинного мозга, или arachnoidea spinalis . Она похожа на тонкий и прозрачный листок без сосудов, который соприкасается изнутри с твердой оболочкой, но в то же время отделяется от неё с помощью щелевидного, пронизанного тонкими перекладинами субдурального пространства (spatium subdurale ).

Спинной мозг покрывает мягкая оболочка, но между ней и паутинной оболочкой расположено подпаутинное пространство (cavitas subarachnoidalis ). В нем нервные корешки и мозг находятся в свободном положении, они орошаются спинномозговой жидкостью (liquor cerebrospinalis ). Самая широкая часть этого пространства занимает нижнюю часть арахноидального мешка, здесь оно окружено «конским хвостом» (cauda equinа ). Подпаутинное пространство наполняет жидкость, которая непрерывно сообщается с жидкостью из подпаутинного пространства как головного мозга, так и мозговых желудочков.

Также можно обнаружить перегородку (septum cervicale intermedium ), которая идет вдоль средней линии между мягкой и паутинной оболочками и покрывает шейную область сзади. Фронтальную плоскость (бока спинного мозга) занимают зубчатые связки (lig. denticulatum ). Связка состоит из двух десятков зубцов (от 19 до 23), которые занимают промежутки между задними и передними корешками. Зубчатые связки помогают удержать мозг на месте и не позволяют ему растягиваться в длину. Две эти связки делят подпаутинное пространство на два отдела: передний и задний .

Мягкая оболочка спинного мозга

Самая последняя, мягкая оболочка спинного мозга (pia mater spinalis ) - это поверхность, которая покрывает эндотелий. Она напрямую примыкает к спинному мозгу.

В мягкой оболочке между двух листков содержатся сосуды, вместе с ними в борозды спинного мозга заходит и мозговое вещество , которое образует около сосудов так называемые периваскулярные лимфатические пространства.

Другие структуры

Сосуды спинного мозга (Аа. spinales anterior et posterior ) спускаются вдоль спинного мозга. Они соединены между собой с помощью многочисленных ветвей, которые образуют в верхней части мозга сосудистую сеть (или vasocorona). От нее в стороны отходят ответвления, которые проникают, как и отростки мягкой оболочки, в мозговое вещество. Вены несут аналогичную артериям функцию и впадают, в конце концов, во внутренние позвоночные сплетения.

К лимфатической системе спинного мозга относятся пространства, окружающие сосуды (так называемые периваскулярные пространства), которые сообщаются с подпаутинным пространством.