Глобальные экологические проблемы мирового океана

Ежегодно в Мировой океан попадает более 10 млн т нефти и до 20 % Мирового океана уже покрыты нефтяной пленкой. В пер­вую очередь это связано с тем, что добыча нефти и газа в Миро­вом океане стала важнейшим компонентом нефтегазового комп­лекса. В 1993 г. в океане добыто 850 млн т нефти (почти 30 % миро­вой добычи). В мире пробурено около 2500 скважин.

Загрязнение гидросферы водным транспортом происходит по двум каналам: во-первых, морские и речные суда загрязняют ее отходами, получаемыми в результате эксплуатационной деятель­ности, и, во-вторых, выбросами в случае аварий, токсичных грузов, большей частью нефти и нефтепродуктов. Энергетические уста­новки судов (в основном дизельные двигатели) постоянно за­грязняют атмосферу, откуда токсичные вещества частично или почти полностью попадают в воды рек, морей и океанов.

1. Нефть и нефтепродукты являются главными загрязнителями водного бассейна. На танкерах, перевозящих нефть и ее производ­ные, перед каждой очередной загрузкой, как правило, промыва­ются емкости (танки) для удаления остатков ранее перевезенного груза. Промывочная вода, а с ней и остатки груза обычно сбрасы­ваются за борт. К числу наибо­лее распространенных и вредных загрязняющих веществ относят­ся нефть, ежегодное поступление которой в моря и океаны, по данным ООН, достигает 6...7 млн т.

Огромный ущерб Океану нанесло крушение американского су­пертанкера «Торри Каньон» у юго-западного побережья Англии в марте 1967 г.: 120 тыс. т нефти вылилось в воду и было подожжено зажигательными бомбами с самолетов. Нефть горела несколько дней. Были загрязнены пляжи и побережье Англии и Франции.

За десятилетие после катастрофы танкера «Торри Каньон» в морях и океанах погибло более 750 крупных танкеров. Большин­ство этих крушений сопровождалось массовыми выбросами неф­ти и нефтепродуктов в море.

Поля нефтяных загрязнений, формирующие локальные зоны, остаются устойчивыми во времени, поэтому в их распространении огромную роль играют океанические циркуляции. Именно они пе­реносят нефтяные загрязнения в наиболее чистые районы Миро­вого океана, в том числе и в Северный Ледовитый океан.

Поступившие в воду нефтепродукты деградируют в результате химического, фотохимического и бактериального разложения, а также деятельности некоторых морских организмов и высших растений. Однако «процесс» естественной нейтрализации нефте­продуктов достаточно длителен и может составлять от одного до нескольких месяцев.

Таким образом, нефтяные пленки являются тем техногенным фактором, который влияет на формирование и протекание гидро­логических и гидрохимических процессов в поверхностных слоях воды морей и океанов.


Нефтяные загрязнения воздействуют и на живые организмы, экранируя солнечное излучение и замедляя обновление кислоро­да в воде. В результате перестает размножаться планктон - ос­новной продукт питания морских обитателей. Толстые нефтяные пленки нередко становятся причиной гибели морских птиц.

Нефть отрицательно влияет на физиологические процессы, протекающие в живых организмах, вызывают патологические из­менения в тканях и органах, нарушает работу ферментативного аппарата, нервной системы. Нефть - своего рода наркотик для морских обитателей. Замечено, что некоторые рыбы, «хлебнув» однажды нефти, уже не стремятся покинуть отравленную зону. Кроме того, она отрицательно влияет на вкусовые качества мяса морских обитателей.

2. Происходит загрязнение Мирового океана и другими видами отходов промышленности . Во все моря мира сброшено примерно 20 млрд т мусора (1988 г.). Подсчитано, что на 1 км 2 океана прихо­дится в среднем 17 т отбросов. Зафиксировано, что в один день в Северное море было сброшено 98000 т отбросов (1987 г.).

До 2 млн морских птиц и 100 тыс. морских животных, в том числе до 30 тыс. тюленей, ежегодно погибают, проглотив какие-либо пласт­массовые изделия или запутавшись в обрывках сетей и тросов.

ФРГ, Бельгия, Голландия, Англия сбрасывают в Северное море ядовитые кислоты, в основном 18 - 20% серной кислоты, тяже­лые металлы в грунте и осадках сточных вод, содержащих мышьяк и ртуть, а также углеводороды, в том числе ядовитый диоксин (1987 г.).

С судов ежегодно сбрасывалось 145 млн т обычного мусора. Англия сбрасывала 5 млн т канализа­ционных стоков в год.

В результате добычи нефти из трубопроводов, связывающих не­фтяные платформы с материком, каждый год в море вытекало около 30 тыс. т нефтепродуктов. Последствия этого загрязнения нетрудно видеть. Целый ряд видов, которые некогда обитали в Северном море, в том числе лосось, осетр, устрицы, скаты и пикша, просто-напросто исчезли. Гибнут тюлени, другие обита­тели этого моря нередко страдают от инфекционных заболеваний кожи, имеют деформированный скелет и злокачественные опухо­ли. Гибнет птица, питающаяся рыбой или отравившаяся морской водой. Наблюдалось цветение ядовитых водорослей, которое при­вело к уменьшению рыбных запасов (1988 г.).

В Балтийском море в течение 1989 г. погибли 17 тыс. тюленей. Проведенные исследования показали, что ткани погибших жи­вотных буквально пропитаны ртутью, которая попадала в их орга­низм из воды.

В 1992 г. министрами 12 государств и представителем Европей­ского сообщества была подписана новая Конвенция по охране среды бассейна Балтийского моря.

Средиземному морю грозит участь превратиться в мусорную свалку, сточную яму трех континентов. Ежегодно в море попадает 60 тыс. т моющих веществ, 24 тыс. т хрома, тысячи тонн нитратов, применяемых в сельском хозяйстве. 85 % вод, сбрасываемых из 120 крупных приморских городов, не очищаются, а самоочищение (пол­ное обновление вод) Средиземного моря осуществляется через Гибралтарский пролив (1989 г.) за 80 лет.

Из-за загрязнений Аральское море с 1984 г. полностью потеряло рыбохозяйственное значение. Его уникальная экосистема погибла.

3. Тяжелые металлы . Большие массы этих соедине­ний поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий, так как они сохраняют токсичность бесконечно долго. Например, ртутьсодержащие со­единения (особенно метилртуть) - сильнейшие яды, действую щие на нервную систему, представляют угрозу для жизни всего живого. В 50-60-е годы XX в. в районе бухты Миномата (Япония) было зарегистрировано массовое отравление, жертвами которого стали десятки тысяч человек, употреблявших в пищу зараженную рыбу. Причиной заражения было предприятие, сбрасывающее ртуть в воду залива.

Владельцы химического комбината «Тиссо» в городке Мина-мата на острове Кюсю (Япония) долгие годы сбрасывали в океан сточные воды, насыщенные ртутью. Прибрежные воды и рыба ока­зались отравленными, и с 50-х годов XX в. 1200 человек умерли, а 100 тыс. получили отравления различной тяжести, в том числе психопаралитические заболевания.

В Мировой океан в год поступает до 2 млн т свинца, до 20 тыс. т кадмия и до 10 тыс. т ртути. Попав в морскую воду, тяжелые ме­таллы концентрируются главным образом в поверхностной плен­ке, в придонном осадке и в биоте, тогда как в самой воде они ос­таются лишь в сравнительно небольших концентрациях. Здесь особо значима поверхностная пленка, которая обычно простира­ется на глубину 50...500 мкм. Именно в данной области проте­кают все равновесные процессы массообмена между водой и ат­мосферой.

Большие количества тяжелых металлов сосредоточиваются в донных осадках. Это подтверждается тем, что концентрация ме­таллов в осадке может быть на несколько порядков выше, чем в воде.

4. РАО . Серьезную экологическую угрозу для жизни в Мировом океа­не и, следовательно, для человека представляет захоронение на морском дне радиоактивных отходов (РАО) и сброс в море жид­ких радиоактивных отходов (ЖРО). Западные страны (США, Ве­ликобритания, Франция, Германия, Италия и др.) и СССР с 1946 г. начали активно использовать океанские глубины для того, чтобы избавиться от РАО.

В 1959 г. ВМС США затопили в 120 милях от Атлантического побережья США неудачный ядерный реактор от атомной подвод­ной лодки. По данным Гринпис, СССР сбросил в море около 17 тыс. бетонных контейнеров с РАО, а также более 30 корабель­ных атомных реакторов.

Наиболее тяжелая обстановка сложилась в Баренцевом и Кар­ском морях вокруг ядерного полигона на Новой Земле. Там поми­мо бесчисленного количества контейнеров затоплено 17 реакто­ров, в том числе с ядерным топливом, несколько аварийных атом­ных подводных лодок, а также центральный отсек атомохода «Ле­нин» с тремя аварийными реакторами. Тихоокеанский флот СССР захоранивал ядерные отходы в 10 местах в Японском и Охотском морях - недалеко от берегов Сахалина и от Владивостока, в том числе 18 реакторов.

США и Япония сбрасывали отходы деятельности АЭС в Япон­ское, Охотское моря и Северный Ледовитый океан.

Жидкие радиоактивные отходы СССР сливал в дальневосточ­ных морях с 1966 по 1991 г. (в основном вблизи юго-восточной части Камчатки и в Японское море). Северный флот ежегодно сбра­сывал в воду 10 тыс. м 3 таких отходов.

В 1972 г. была подписана Лондонская конвенция, запрещаю­щая сброс на дно морей и океанов радиоактивных и ядовитых химических отходов. К этой конвенции присоединилась и Россия.

1. Особенности поведения загрязняющих веществ в океане

2. Антропогенная экология океана - новое научное направление в океанологии

3. Концепция ассимиляционной емкости

4. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря

1 Особенности поведения загрязняющих веществ в океане. Последние десятилетия знаменуются усилением антропогенных воздействий на морские экосистемы в результате загрязнения морей и океанов. Распространение многих загрязняющих веществ приобрело локальный, региональный и даже глобальный масштабы. Поэтому загрязнение морей, океанов и их биоты стало важнейшей международной проблемой, а необходимость охраны морской среды от загрязнений диктуется требованиями рационального использования природных ресурсов.

Под загрязнением моря понимается: «введение человеком прямо или косвенно веществ или энергии в морскую среду (включая эстуарии), влекущее такие вредные последствия, как ущерб живым ресурсам, опасность для здоровья людей, помехи в морской деятельности, включая рыболовство, ухудшение качества морской воды и умень­шение ее полезных свойств». Этот список включает вещества с токсическими свойствами, сбросы нагретых вод (тепловое загрязнение), патогенные микробы, твердые отходы, взвешенные вещества, биогенные вещества и некоторые другие формы антропогенных воздействий.

Наиболее актуальной в наше время стала проблема химиче­ского загрязнения океана.

К источникам загрязнения океана и морей можно отнести следующие:

Сброс промышленных и хозяйственных вод непосредственно в море или с речным стоком;

Поступление с суши различных веществ, применяемых в сельском и лесном хозяйстве;

Преднамеренное захоронение в море загрязняющих веществ; утечки различных веществ в процессе судовых операций;

Аварийные выбросы с судов или подводных трубопроводов;

Разработка полезных ископаемых на морском дне;

Перенос загрязняющих веществ через атмосферу.

Перечень получаемых океаном загрязняющих веществ чрезвычайно обширен. Все они различаются между собой по степени токсичности и масштабам распространения - от прибрежных (локальных) до глобальных.

В Мировом океане находят все новые загрязняющие вещества. Глобальное распространение приобретают наиболее опасные для организмов хлорорганические соединения, полиароматические углеводороды и некоторые другие. Они обладают высокой биоаккумулятивной способностью, резким токсическим и канцерогенным эффектом.

Неуклонное нарастание суммарного воздействия многих источников загрязнения приводит к прогрессирующей эвтрофикации прибрежных морских зон и микробиологическому загрязнению воды, что существенно затрудняет использование воды для раз­личных нужд человека.


Нефть и нефтепродукты. Нефть представляет собой вязкую маслянистую жидкость, обычно имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов (от C 5 до С 70) и содержат 80-85 % С, 10-14 % Н, 0,01-7 % S, 0,01 % N и 0-7 % О 2 .

Основные компоненты нефти - углеводороды (до 98 %) - подразделяются на четыре класса.

1. Парафины (алканы) (до 90 % от общего состава нефти) -устойчивые насыщенные соединения C n H 2n-2 , молекулы которых выражены прямой или разветвленной (изоалканы) цепью атомов углерода. Парафины включают газы метан, этан, пропан и другие, соединения с 5-17 атомами углерода являются жидкостями, а с большим числом атомов углерода - твердыми веществами. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины. (нафтены)-насыщенные циклические соединения С n Н 2 n с 5-6 атомами углерода в кольце (30-60 % от общего состава нефти). Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические нафтены. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды (20-40 % от общего состава нефти) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем соответствующие нафтены. Атомы углерода в этих соединениях также могут замещаться алкильными группами. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), трициклические (антрацен, фенантрен) и полициклические (например, пирен с 4 кольцами) углеводороды.

4. Олефипы (алкены) (до 10 % от общего состава нефти) -ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

В зависимости от месторождения, нефти существенно различа­ются по своему составу. Так, пенсильванская и кувейтская нефти квалифицируются как парафинистые, бакинская и калифорний­ская - преимущественно нафтеновые, остальные нефти - проме­жуточных типов.

В нефти присутствуют также серосодержащие соединения (до 7% серы), жирные кислоты (до 5% кислорода), азотные соединения (до 1 % азота) и некоторые металлоорганические производные (с ванадием, кобальтом и никелем).

Количественный анализ и идентификация нефтепродуктов в морской среде представляют значительные трудности не только из-за их многокомпонентности и различия форм существования, но и вследствие природного фона углеводородов естественного и биогенного происхождения. Например, около 90 % растворенных в поверхностных водах океана низкомолекулярных углеводородов типа этилена связано с метаболической активностью организмов и распадом их остатков. Однако в районах интенсивного загряз­нения уровень содержания подобных углеводородов повышается на 4-5 порядков.

Углеводороды биогенного и нефтяного происхождения, по данным экспериментальных исследований, имеют ряд различий.

1. Нефть представляет собой более сложную смесь углеводородов с большим диапазоном структур и относительной молекулярной массой.

2. Нефть содержит несколько гомологических серий, в которых соседние члены обычно имеют равные концентрации. Например, в ряду алканов С 12 -C 22 отношение четных и нечетных членов равно единице, тогда как биогенные углеводороды в том же ряду содержат преимущественно нечетные члены.

3. Нефть содержит более широкий диапазон циклоалканов и ароматических углеводородов. Многие соединения, такие, как моно-, ди-, три- и тетраметилбензолы не обнаружены в морских организмах.

4. Нефть содержит многочисленные нафтено-ароматические углеводороды, разнообразные гетеросоединения (имеющие в составе серу, азот, кислород, ионы металлов), тяжелые асфальтоподобные вещества - все они практически отсутствуют в организмах.

Нефть и нефтепродукты являются наиболее распространен­ными загрязняющими веществами в Мировом океане.

Пути поступления и формы существования нефтяных углеводо­родов многообразны (растворенная, эмульгированная, пленочная, твердообразная). М. П. Нестерова (1984) отмечает следующие пути поступления:

сбросы в портах и припортовых акваториях, вклюная потери при загрузке бункеров наливных судов (17 %~);

Сброс промышленных- отходов и сточных вод (10%);

Ливневые стоки (5 %);

Катастрофы судов и буровых установок в море (6 %);

Бурение на шельфах (1 %);

Атмосферные выпадения (10 %)",

Вынос речным стоком во всем многообразии форм (28%).

Сбросы в море промывочных, балластных и льяльных вод с судов (23%);

Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,-все это обусловливает присут­ствие постоянных полей загрязнений на трассах морских путей.

Свойством нефтей является их флуоресценция при ультрафиолето­вом облучении. Максимальная интенсивность флуоресценции наб­людается в интервале волн 440-483 нм.

Различие оптических характеристик нефтяных пленок и мор­ской воды позволяет проводить дистанционное обнаружение и оценку нефтяных загрязнений на поверхности моря в ультрафиолетовой, видимой и инфракрасной частях спектра. Для этого при­меняются пассивные и активные методы. Большие массы нефти с суши поступают в моря по рекам, с бытовыми и ливневыми стоками.

Судьба разлитой в море нефти определяется суммой следую­щих процессов: испарение, эмульгирование, растворение, окисле­ние, образование нефтяных агрегатов, седиментация и биодеградация.

Попадая в морскую среду, нефть сначала растекается в виде поверхностной пленки, образуя слики различной мощности. По цвету пленки можно приблизительно оценить ее толщину. Нефтяная пленка изменяет интенсивность и спект­ральный состав проникающего в водную массу света. Пропуска­ние света тонкими пленками сырой нефти составляет 1 -10 % (280 нм), 60-70 % (400 нм). Пленка нефти толщиной 30-40 мкм полностью поглощает инфракрасное излучение.

В первое время существования нефтяных сликов большое зна­чение имеет процесс испарения углеводородов. По данным наблю­дений, за 12 ч улетучивается до 25 % легких фракций нефти, при температуре воды 15 °С все углеводороды до C 15 испаряются за 10 сут (Нестерова, Немировская, 1985).

Все углеводороды обладают слабой растворимостью в воде, уменьшающейся с увеличением числа атомов углерода в моле­куле. В 1 л дистиллированной воды растворяется около 10 мг соединений с С 6 , 1 мг - с С 8 и 0,01 мг соединений с С 12 . Например, при средней температуре морской воды растворимость бензола составляет 820 мкг/л, толуола - 470, пентана - 360, гексана - 138 и гептана - 52 мкг/л. Растворимые компоненты, содержание которых в сырой нефти не превышает 0,01 %, являются наиболее токсичными- для водных организмов. К ним же относятся и веще­ства типа бенз(а)пирена.

Смешиваясь с водой, нефть образует эмульсии двух типов: пря­мые «нефть в воде» и обратные «вода в нефти». Прямые эмуль­сии, составленные капельками нефти диаметром до 0,5 мкм, ме­нее устойчивы и особенно характерны для нефтей, содержащих поверхностно-активные вещества. После удаления летучих и растворимых фракций остаточная нефть чаще образует вязкие обратные эмульсии, которые стабилизируются высокомолекуляр­ными соединениями типа смол и асфальтенов и содержат 50- 80 % воды («шоколадный мусс»). Под влиянием абиотических процессов вязкость «мусса» повышается и начинается его слипа­ние в агрегаты - нефтяные комочки размерами от 1 мм до 10 см (чаще 1-20 мм). Агрегаты представляют собой смесь вы­сокомолекулярных углеводородов, смол и асфальтенов. Потери нефти на формирование агрегатов составляют 5-10%- Высоко­вязкие структурированные образования - «шоколадный мусс» и нефтяные комочки - могут длительное время сохраняться на поверхности моря, переноситься течениями, выбрасываться на берег и оседать на дно. Нефтяные комочки нередко заселяются перифитоном (сине-зеленые и диатомовые водоросли, усоногие рачки и другие беспозвоночные).

Пестициды составляют обширную группу искусственно создан­ных веществ, используемых для борьбы с вредителями и болез­нями растений. В зависимости от целевого назначения пестициды делятся на следующие группы: инсектициды – для борьбы с вред­ными насекомыми, фунгициды и бактерициды – для борьбы с грибными и бактериальными болезнями растений, гербициды – против сорных растений и т. д. Согласно расчетам экономистов, каждый рубль, затраченный на химическую защиту растений от вредителей и болезней, обеспечивает сохранение урожая и его качество при возделывании зерновых и овощных культур в сред­нем на 10 руб., технических и плодовых – до 30 руб. Вместе с тем экологическими исследованиями установлено, что пестициды, уничтожая вредителей урожаев, наносят огромный вред многим полезным организмам и подрывают здоровье природных биоцено­зов. В сельском хозяйстве уже давно стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологи­чески чистым) методам борьбы с вредителями.

В настоящее время более 5 млн. т пестицидов ежегодно посту­пает на мировой рынок. Около 1,5 млн. т этих веществ уже вошло в состав наземных и морских экосистем эоловым или водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязня­ющих сточные воды.

В водной среде чаще других встречаются представители инсек­тицидов, фунгицидов и гербицидов.

Синтезированные инсектициды делятся на три основные группы: хлорорганические, фосфорорганические и карбаматы.

Хлорорганические инсектициды получают путем хлорирования ароматических или гетероциклических жидких углеводородов. К ним относятся ДДТ (дихлордифенилтрихлорэтан) и его произ­водные, в молекулах которых устойчивость алифатических и аро­матических групп в совместном присутствии возрастает, всевоз­можные хлорированные производные циклодиена (элдрин, дил-дрин, гептахлор и др.), а также многочисленные изомеры гекса-хлорциклогексана (у-ГХЦГ), из которых наиболее опасен линдан. Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации.

В водной среде часто встречаются полихлорбифенилы (ПХБ) – производные ДДТ без алифатической части, насчиты­вающие 210 теоретических гомологов и изомеров.

За последние 40 лет использовано более 1,2 млн. т ПХБ в производстве пластмасс, красителей, трансформаторов, конденсаторов и т. д. Полихлорбифенилы попадают в окружающую среду в результате сбросов промышленных сточных вод и сжига­ния твердых отходов на свалках. Последний источник поставляет ПХБ в атмосферу, откуда они с атмосферными осадками выпа­дают во всех районах земного шара. Так, в пробах снега, взятых в Антарктиде, содержание ПХБ составило 0,03 – 1,2 нг/л.

Фосфорорганические пестициды – это сложные эфиры различных спиртов ортофосфорной кислоты или одной из ее производ­ных, тиофосфорной. В эту группу входят современные инсекти­циды с характерной избирательностью действия по отношению к насекомым. Большинство органофосфатов подвержены довольно быстрому (в течение месяца) биохимическому распаду в почве и воде. Синтезировано более 50 тысяч активных веществ, из ко­торых особую известность получили паратион, малатион, фозалонг, дурсбан.

Карбаматы – это, как правило, сложные эфиры n-метакарба-миновой кислоты. Большинство из них также обладает избирательностью действия.

В качестве фунгицидов, применяемых для борьбы с грибными заболеваниями растений, ранее использовались соли меди и не­которые минеральные соединения серы. Затем широкое употреб­ление нашли ртутьорганические вещества типа хлорированной метилртути, которая из-за своей крайней токсичности для жи­вотных была заменена метоксиэтилами ртути и ацетатами фенил-ртути.

В группу гербицидов входят производные феноксиуксусной кислоты, обладающие сильным физиологическим действием. Триазины (например, симазин) и замещенные мочевины (монурон, диурон, пихлорам) составляют еще одну группу гербицидов, довольна хорошо растворимых в воде и устойчивых в почвах. Наиболее сильным из всех гербицидов является пихлорам. Для полного уничтожения некоторых видов растений требуется всего лишь 0,06 кг этого вещества на 1 га.

В морской среде постоянно обнаруживаются ДДТ и его метаболиты, ПХБ, ГХЦГ, делдрин, тетрахлорфенол и другие.

Синтетические поверхностно-активные вещества. Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в со­став синтетических моющих средств (CMC), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ по­падают в материковые поверхностные воды и морскую среду. Синтетические моющие средства содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингре­диентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты нат­рия и другие.

Молекулы всех СПАВ состоят из гидрофильной и гидрофобной частей. Гидрофильной частью служат карбоксильная (СОО -), сульфатная (OSO 3 -) и сульфонатная (SO 3 -) группы, а также скоп­ления остатков с группами -СН 2 -СН 2 -О-СН 2 -СН 2 - или группы, содержащие азот и фосфор. Гидрофобная часть состоит обычно из прямой, включающей 10-18 атомов углерода, или раз­ветвленной парафиновой цепи, из бензольного или нафталинового кольца с алкильными радикалами.

В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные (органический ион заряжен отрицательно), катионоактивные (органический ион за­ряжен положительно), амфотерные (проявляющие в кислом раст­воре катионактивные свойства, а в щелочном - анионоактивные) и неионогенные. Последние не образуют ионов в воде. Их раст­воримость обусловлена функциональными группами, имеющими -сильное сродство к воде, и образованием водородной связи между молекулами воды и атомами кислорода, входящими в полиэти-ленгликолевый радикал ПАВ.

Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 50 % всех производимых в мире СПАВ. Наибольшее рас­пространение получили алкиларилсульфонаты (сульфонолы) и алкилсульфаты. Молекулы сульфонолов содержат ароматическое кольцо, водородные атомы которого замещены одной или несколь­кими алкильными группами, а в качестве сольватирующей группы - остаток серной кислоты. Многочисленные алкилбензол-сульфонаты и алкилнафталинсульфонаты часто исполь­зуются при изготовлении различных бытовых и промышленных CMC.

Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химической технологии, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования.

В сельском хозяйстве применяются СПАВ в составе пестицидов. С помощью СПАВ эмульгируют нерастворимые в воде, но растворимые в органических растворителях жидкие и порошко­образные токсичные вещества, причем многие СПАВ сами обла­дают инсектицидными и гербицидными свойствами.

Канцерогенные вещества - это химически однородные соеди­нения, проявляющие трансформирующую активность и способ­ные вызывать канцерогенные, тератогенные (нарушение процес­сов эмбрионального развития) или мутагенные изменения в орга­низмах. В зависимости от условий воздействия они могут приво­дить к ингибированию роста, ускорению старения, токсикогенезу, нарушению индивидуального развития и изменению генофонда ор­ганизмов. К веществам, обладающим канцерогенными свойствами, отно­сятся хлорированные алифатические углеводороды с короткой щепочкой атомов углерода в молекуле, винилхлорид, пестицидные препараты и, особенно, полициклические ароматические углево­дороды (ПАУ). Последние представляют собой высокомолекуляр­ные органические соединения, в молекулах которых бензольное кольцо является основным элементом структуры. Многочисленные незамещенные ПАУ содержат в молекуле от 3 до 7 бензольных колец, разнообразно соединенных между собой. Существует также большое число полициклических структур, содержащих функциональную группу либо в бензольном кольце, либо в боко­вой цепи. Эта галоген-, амино-, сульфо-, нитропроизводные, а также спирты, альдегиды, эфиры, кетоны, кислоты, хиноны и другие соединения ароматического ряда.

Растворимость ПАУ в воде невелика и уменьшается с увеличением молекулярной массы: от 16 100 мкг/л (аценафтилен) до 0,11 мкг/л (3,4-бензпирен). Присутствие в воде солей практически не влияет на растворимость ПАУ. Однако в присутствии бензола, нефти, нефтепродуктов, детергентов и других органических ве­ществ растворимость ПАУ резко возрастает. Из группы незамещенных ПАУ в природных условиях наиболее известен и распространен 3,4-бензпирен (БП).

Источниками ПАУ в окружающей среде могут служить природные и антропогенные процессы. Концентрация БП в вулкани­ческом пепле составляет 0,3-0,9 мкг/кг. Это означает, что с пеп­лом в окружающую среду может поступать 1,2-24 т БП в год. Поэтому максимальное количество ПАУ в современных донных осадках Мирового океана (более 100 мкг/кг массы сухого веще­ства) обнаружено в тектонически активных зонах, подверженных глубинному термическому воздействию.

По имеющимся сведениям, некоторые морские растения и жи­вотные могут синтезировать ПАУ. В водорослях и морских тра­вах вблизи западного побережья Центральной Америки содержа­ние БП достигает 0,44 мкг/г, а в некоторых ракообразных в Арктике-0,23 мкг/г. Анаэробные бактерии вырабатывают до 8,0 мкг БП из 1 г липидных экстрактов планктона. С другой сто­роны, существуют специальные виды морских и почвенных бакте­рий, разлагающих углеводороды, включая ПАУ.

По оценкам Л. М. Шабада (1973) и А. П. Ильницкого (1975), фоновая концентрация БП, создаваемая в результате синтеза БП растительными организмами и вулканической дея­тельности, составляет: в почвах 5-10 мкг/кг (сухого вещества), в растениях 1-5 мкг/кг, в воде пресноводных водоемов 0,0001 мкг/л. Соответственно выводятся и градации степени за­грязненности объектов окружающей среды (табл. 1.5).

Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различ­ных материалов, древесины и топлива. Пиролитическое образование ПАУ происходит при температуре 650-900 °С и недостатке кислорода в пламени. Образование БП наблюдалось в процессе пиролиза древесины с максимальным выходом при 300-350 °С (Дикун, 1970).

По оценке М. Зюсса (Г976 г.), глобальная эмиссия БП в 70-х годах составляла около 5000 т в год, причем 72 % приходится на промышленность и 27 % - на все виды открытого сжигания.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк и другие) относятся к числу распространенных и весьма токсичных, загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому несмотря на очистные ме­роприятия, содержание соединений тяжелых металлов в промыш­ленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, сви­нец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород, ежегодно выделяется 3,5 тыс. т ртути. В составе атмосферной пыли содержится около 12 тыс. т ртути, причем значительная часть антропогенного происхождения. В результате извержения вулканов и с атмосферными осадками на поверхность океана ежегодно поступает 50 тыс. т ртути, а при дегазации литосферы - 25-150 тыс. т. Около половины годового промышленного произ­водства этого металла (9-10 тыс. т/год) различными путями по­падает в океан. Содержание ртути в каменном угле и нефти со­ставляет в среднем 1 мг/кг, поэтому при сжигании ископаемого топлива Мировой океан получает более 2 тыс. т/год. Годовая до­быча ртути превышает 0,1 % от ее общего содержания в Мировом океане, однако антропогенный приток уже превосходит естественный вынос реками, что характерно для многих металлов.

В районах, загрязняемых промышленными сточными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бентосные бактерии переводят хлориды в высокотоксичную (моно- и ди-) метилртуть CH 3 Hg. Заражение морепродуктов неоднократно приводило к ртутному отравлению, прибрежного населения. К 1977 г. в Японии насчитывалось 2800 жертв болезни Минамата. Причиной послужили отходы пред­приятий по производству хлорвинила и ацетальдегида, на которых, в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в за­лив Минамата.

Свинец - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец, активно рассеивается в окружающую среду в процессе хозяйст­венной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприя­тий, с выхлопными газами двигателей внутреннего сгорания.

По оценкам В. В. Добровольского (1987), перераспределение масс свинца между сушей и Мировым океаном имеет следующий вид. С. речным стоком при средней концентрации свинца в воде 1 мкг/л в океан водорастворимого свинца выносится около 40 10 3 т/год, в твердой фазе речных взвесей примерно 2800-10 3 т/год, в тонком органическом детрите-10 10 3 т/год. Если учесть, что в узкой прибрежной полосе шельфа оседает более 90 % речных взвесей и значительная часть водорастворимых соединений металлов захватывается гелями оксидов железа, то в результате пелагиаль океана получает лишь около (200- 300) 10 3 т в составе тонких взвесей и (25-30) 10 3 т растворенных соединений.

Миграционный поток свинца с континентов в океан идет не только с речным стоком, но и через атмосферу. С континенталь­ной пылью океан получает (20-30)-10 3 т свинца в год. Поступле­ние его на поверхность океана с жидкими атмосферными осад­ками оценивается в (400-2500) 10 3 т/год при концентрации в дождевой воде 1-6 мкг/л. Источниками свинца, поступающего в атмосферу являются вулканические выбросы (15-30 т/год в составе пелитовых продуктов извержений и 4 10 3 т/год в суб­микронных частицах), летучие органические соединения от расти­тельности (250-300 т/год), продукты сгорания при пожарах ((6-7) 10 3 т/год) и современная промышленность. Производ­ство свинца возросло от 20-10 3 т/год в начале XIX в. до 3500 10 3 т/год к началу 80-х годов XX в. Современный выброс свинца в окружающую среду с индустриальными и бытовыми отходами оценивается в (100-400) 10 3 т/год.

Кадмий, мировое производство которого в 70-х годах достигло 15 10 3 т/год, также поступает в океан с речным стоком и через атмосферу. Объем атмосферного выноса кадмия, по разным оценкам, составляет (1,7-8,6) 10 3 т/год.

Сброс отходов в море с целью захоронения (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлама, отхо­дов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов и т. п. Объем захоронений составляет около 10 % от всей массы загрязняющих веществ, поступающих в Мировой океан. Так, с 1976 по 1980 г. ежегодно с целью захоронения, чем и опреде­ляется понятие «дампинг», сбрасывалось более 150 млн. т разно­образных отходов.

Основанием для дампинга в море служит способность мор­ской среды к переработке большого количества органических и неорганических веществ без особого ущерба качеству воды. Од­нако эта способность не беспредельна. Поэтому дампинг рассмат­ривается как вынужденная мера, временная дань общества несо­вершенству технологии. Отсюда особую важность приобретают выработка и научное обоснование путей регулирования сбросов отходов в море.

В шламах промышленных производств присутствуют разнооб­разные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40 % органических веществ, 0,56 % азота, 0,44 % фосфора, 0,155 % цинка, 0,085 % свинца, 0,001 % кадмия, 0,001 ртути. Шламы очистных сооружений коммунальных стоков содержат (на массу сухого вещества) до. 12 % гуминовых веществ, до 3 % общего азота, до 3,8 % фосфатов, 9-13 % жиров, 7-10 % углеводов и загрязнены тяжелыми металлами. Аналогичный состав имеют и материалы дночерпания.

Во время сброса при прохождении материала через столб воды часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому рас­ходованию кислорода в воде и нередко к его полному исчезнове­нию, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количе­ства органических веществ создает в грунтах устойчивую восста­новительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов в восстановлен­ной форме. При этом происходит восстановление сульфатов и нитратов, выделяются фосфаты.

Воздействию сбрасываемых материалов в разной степени под­вергаются организмы нейстона, пелагиали и бентоса. В случае образования поверхностных пленок, содержащих нефтяные угле­водороды и СПАВ, нарушается газообмен на границе воздух- вода. Это приводит к гибели личинок беспозвоночных, личинок и мальков рыб, вызывает увеличение численности нефтеокисляющих и патогенных микроорганизмов. Наличие в воде загрязня­ющей взвеси ухудшает условия питания, дыхания и обмена ве­ществ у гидробионтов, сокращает скорость роста, тормозит по­ловое созревание планктонных ракообразных. Загрязняющие ве­щества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышен­ная мутность придонной воды приводят к засыпке и гибели от удушья прикрепленных и малоподвижных форм бентоса. У вы­живших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко из­меняется видовой состав донного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга с учетом свойств материалов и характеристик морской среды. Необходимые критерии решения проблемы со­держит «Конвенция по предотвращению загрязнения моря сбро­сами отходов и других материалов» (Лондонская конвенция по дампингу, 1972 г.). Основные требования Конвенции сле­дующие.

1. Оценка количества, состояния и свойств (физических, хи­мических, биохимических, биологических) сбрасываемых мате­риалов, их токсичности, устойчивости, склонности к накоплению и биотрансформации в водной среде и морских организмах. Использование возможностей нейтрализации, обезвреживания и реутилизации отходов.

2. Выбор районов сброса с учетом требований максимального разбавления веществ, минимального распространения их за пределы сброса, благоприятного сочетания гидрологических и гидрофизических условий.

3. Обеспечение удаленности районов сброса от районов нагула рыб и нереста, от мест обитания редких и чувствительных видов гидробионтов, от зон отдыха и хозяйственного использования.

Техногенные радионуклиды. Океану свойственна естественная радиоактивность, обуслов­ленная присутствием в нем 40 К, 87 Rb, 3 H, 14 С, а также радионуклидов рядов урана и тория. Более 90 % естественной радиоак­тивности воды океана приходится на долю 40 К, что составляет 18,5-10 21 Бк. Единица активности в системе СИ - беккерель (Бк), равен активности изотопа, в котором за время 1 с происходит 1 акт распада. Ранее широко использовалась внесистемная единица радиоактивности кюри (Ки), соответствующая актив­ности изотопа, в котором за время 1 с происходит 3,7-10 10 актов распада.

Радиоактивные вещества техногенного происхождения, глав­ным образом продукты деления урана и плутония, стали в боль­ших количествах поступать в океан после 1945 г., т. е. с начала испытаний ядерного оружия и широкого развития промышлен­ного получения делящихся материалов и радиоактивных нукли­дов. Выявляются три группы источников: 1) испытания ядерного оружия, 2) сброс радиоактивных отходов, 3) аварии судов с атомными двигателями и аварии, связанные с использованием, транспортировкой и получением радионуклидов.

Многие радиоактивные изотопы с коротким периодом полураспада, хотя и обнаруживаются после взрыва в воде и морских организмах, в глобальных радиоактив­ных выпадениях почти не встречаются. Здесь в первую очередь присутствуют 90 Sr и 137 Cs с периодом полураспада около 30 лет. Наиболее опасным радионуклидом из непрореагировавших остатков ядерных зарядов является 239 Pu (T 1/2 =24,4-10 3 лет), очень ядовитый как химическое вещество. По мере распада продуктов деления 90 Sr и 137 Cs, он становится основным компонентом загрязнения. К моменту моратория атмосферных испытаний ядерного оружия (1963 г.) активность 239 Рu в окружающей среде со­ставила 2,5-10 16 Бк.

Отдельную группу радионуклидов образуют 3 Н, 24 Na, 65 Zn, 59 Fe, 14 C, 31 Si, 35 S, 45 Ca, 54 Mn, 57,60 Co и другие, возникающие при взаимодействии нейтронов с элементами конструкций и внешней среды. Основными продуктами ядерных реакций с нейтронами в морской среде являются радиоизотопы натрия, калия, фосфора, хлора, брома, кальция, марганца, серы, цинка, происходящие из растворенных в морской воде элементов. Это наведенная актив­ность.

Большая часть радионуклидов, попадающих в морскую среду, имеет постоянно присутствующие в воде аналоги, такие, как 239 Pu, 239 Np, 99 T C) трансплутониевые не характерны для состава морской воды, и живое вещество океана должно приспосабли­ваться к ним заново.

В результате переработки ядерного топлива появляется значительное количество радиоактивных отходов в жидкой, твердой и газообразной формах. Основную массу отходов составляют радиоактивные растворы. Учитывая высокую стоимость переработки и хранения концентратов в специальных хранилищах, некоторые страны предпочитают сливать отходы в океан с речным стоком или сбрасывать их в бетонных блоках на дно глубоководных впадин океанов. Для радиоактивных изотопов Ar, Xe, Em и Т еще не разработаны надежные методы концентрирования, поэтому они могут попадать "в океаны с дождевыми и сточными водами.

При эксплуатации атомных энергетических установок на над­водных и подводных судах, которых насчитывается уже несколько сотен, ежегодно в океан вносят около 3,7-10 16 Бк с ионообменными смолами, около 18,5-10 13 Бк с жидкими отходами и 12,6-10 13 Бк вследствие утечек. Аварийные ситуации также вно­сят значительный вклад в радиоактивность океана. К настоящему времени сумма радиоактивности, привнесенной в океан человеком, не превышает 5,5-10 19 Бк, что еще невелико по сравнению с естественным уровнем (18,5-10 21 Бк). Однако концентрированноcть и неравномерность выпадений радионукли­дов создает серьезную опасность радиоактивного заражения воды и гидробионтов в отдельных районах океана.

2 Антропогенная экология океана новое научное направление в океанологии. В результате антропогенного воздействия в океане возникают дополнительные экологические факторы, способствующие негативной эволюции морских экосистем. Обнаружение этих факторов стимулировало развертывание широких фундаментальных исследований в Мировом океане и зарождение новых научных направлений. К их числу относится антропогенная экология океана. Это новое направление призвано изучать механизмы реагирования организмов на антропогенные воз­действия на уровне клетки, организма, популяции, биоценоза, экосистемы, а также исследовать особенности взаимодействий между живыми организмами и средой обитания в изменившихся условиях.

Объект изучения антропогенной экологии океана - изменение экологических характеристик океана, причем в первую очередь тех изменений, которые имеют значение для экологической оценки состояния биосферы в целом. В основе этих изысканий лежит комплексный анализ состояния морских экосистем с учетом географической зональности и степени антропогенного воздействия.

Антропогенная экология океана применяет для своих целей сле­дующие методы анализа: генетический (оценка канцерогенной и мутагенной опасности), цитологический (изучение клеточного строения морских организмов в нормальном и патологическом состоянии), микробиологический (изучение адаптации микроорга­низмов к токсичным загрязняющим веществам), экологический (познание закономерностей образования и развития популяций и биоценозов в конкретных условиях обитания с целью прогноза их состояния в меняющихся условиях среды), эколого-токсикологический (исследование отклика морских организмов на воздействие загрязнений и определение критических концентраций за­грязняющих веществ), химический (изучение всего комплекса природных и антропогенных химических веществ в морской среде).

Основная задача антропогенной экологии океана состоит в раз­работке научных основ определения критических уровней загряз­няющих веществ в морских экосистемах, оценки ассимиляционной емкости морских экосистем, нормирования антропогенных воздействий на Мировой океан, а также в создании математических моделей экологических процессов для прогноза экологических ситуаций в океане.

Знания о важнейших экологических явлениях в океане (таких, как продукционно-деструкционные процессы, прохождение биогеохимических циклов загрязняющих веществ и т. д.) ограничены недостатком информации. Этим затрудняется прогнозирование экологической ситуации в океане и осуществление природоохран­ных мероприятий. В настоящее время особую значимость приобретает осуществление экологического мониторинга океана, стратегия которого ориентирована на долговременные наблюдения в определенных районах океана с целью создания банка данных, освещающих глобальные перестройки океанических экосистем.

3 Концепция ассимиляционной емкости. По определению Ю. А. Израэля и А. В. Цыбань (1983, 1985), ассимиляционная емкость морской экосистемы А i по данному загрязняющему веществу i (или суммы загрязняющих веществ) и для m-й экосистемы - это максимальная динамическая вмести­мость такого количества загрязняющих веществ (в пересчете на всю зону или единицу объема морской экосистемы), которое может быть за единицу времени накоплено, разрушено, трансформировано (биологическими или химическими превращениями) и вы­ведено за счет процессов седиментации, диффузии или любого другого переноса за пределы объема экосистемы без нарушения ее нормального функционирования.

Суммарное удаление (А i) загрязняющего вещества из морской экосистемы можно записать в виде

где K i - коэффициент запаса, отражающий экологические условия протекания процесса загрязнения в различных зонах морской экосистемы; τ i - время пребывания загрязняющего вещества в морской экосистеме.

Это условие соблюдается при , где С 0 i - критическая концентрация за­грязняющего вещества в морской воде. Отсюда ассимиляционная емкость может быть оценена по формуле (1) при ;.

Все величины, входящие в правую часть уравнения (1) можно непосредственно измерить по данным, полученным в процессе долгопериодных комплексных исследований состояния морской экосистемы. При этом последовательность определения ассимиляционной емкости морской экосистемы к конкретным загрязняющим веществам включает три основных этапа: 1) расчет балансов массы и времени жизни загрязняющих веществ в экосистеме, 2) анализ биотического баланса в экосистеме и 3) оценка критических концентраций воздействия загрязняющих веществ (или экологических ПДК) на функционирование биоты.

Для решения вопросов экологического нормирования антропо­генных воздействий на морские экосистемы расчет ассимиляци­онной емкости наиболее репрезентативен, поскольку он учитывает ассимиляционной емкости предельно допустимая экологическая нагрузка (ПДЭН) водоема ЗВ рассчитывается достаточно просто. Так, при стационарном режиме загрязнения водоема ПДЭН будет равна ассимиляционной емкости.

4 Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря. На примере Балтийского моря были рассчитаны значения ассимиляционной емкости для ряда токсичных металлов (Zn, Сu, Pb, Cd, Hg) и органических веществ (ПХБ и БП) (Израэль, Цыбань, Вентцель, Шигаев, 1988).

Средние концентрации токсичных металлов в морской воде оказались на один-два порядка меньше их пороговых доз, а концентрации ПХБ и БП только на порядок меньше. Отсюда коэффициенты запаса для ПХБ и БП оказались меньше, чем для металлов. На первом этапе работы авторы расчета, используя материалы долгопериодных экологических исследований в Балтийском море и литературные источники, определили концентрации загрязняющих веществ в компонентах экосистемы, скорости биоседиментации, потоки веществ на границах экосистемы и активность микробного разрушения органических веществ. Все это позволило составить балансы и рассчитать время «жизни» рассматриваемых веществ в экосистеме. Время «жизни» металлов в экосистеме Балтики оказалось достаточно малым для свинца, кадмия и ртути, несколько большим для цинка и максимальным для меди. Время «жизни» ПХБ и бенз(а)пирена составляет 35 и 20 лет, что определяет необходимость введения системы генетического мониторинга Балтийского моря.

На втором этапе исследований было показано, что наиболее чувствительным к загрязняющим веществам и изменениям экологической обстановки элементом биоты являются планктонные микроводоросли, а следовательно, в качестве процесса - «мишени» следует выбрать процесс первичного продуцирования органического вещества. Поэтому здесь применяются пороговые дозы загрязняющих веществ, установленные для фитопланктона.

Оценки ассимиляционной емкости зон открытой части Балтий­ского моря показывают, что существующий сток цинка, кадмия и ртути соответственно в 2, 20 и 15 раз меньше минимальных значений ассимиляционной емкости экосистемы к этим металлам и не представляет прямой опасности первичному продуцированию. В то же время поступление меди и свинца уже превышает их ассимиляционную емкость, что требует введения специальных мер по ограничению стока. Современное поступление БП еще не достигло минимального значения ассимиляционной емкости, а ПХБ превышает ее. Последнее говорит о настоятельной необходимости дальнейшего снижения сбросов ПХБ в Балтийское море.

Скородумова О.А.

Введение.

Нашу планету вполне можно было бы назвать, Океанией, так как площадь, занимаемая водой, в 2,5 раза превышает территорию суши. Океанические воды покрывают почти 3/4 поверхности земного шара слоем толщиной около 4000 м, составляя 97 % гидросферы, тогда как воды суши содержат всего лишь 1 %, а в ледниках сковано только 2 %. Мировой океан, являясь совокупностью всех морей и океанов Земли, оказывает огромное влияние на жизнедеятельность планеты. Огромная масса вод океана формирует климат планеты, служит источником атмосферных осадков. Из него поступает более половины кислорода, и он же регулирует содержание углекислоты в атмосфере, так как способен поглощать ее избыток. На дне Мирового океана происходит накопление и преобразование огромной массы минеральных и органических веществ, поэтому геологические и геохимические процессы, протекающие в океанах и морях, оказывают очень сильное влияние на всю земную кору. Именно Океан стал колыбелью жизни на Земле; сейчас в нём обитает около четырёх пятых всех живых существ планеты.

Судя по фотографиям, сделанным из космоса, нашей планете больше подошло бы название “Океан”. Выше уже было сказано, что 70,8 % всей поверхности Земли покрыто водой. Как известно на Земле 3 основных океана - Тихий, Атлантический и Индийский, но антарктические и арктические воды тоже считаются океанами. Причём Тихий океан по своей площади превосходит все материки вместе взятые. Эти 5 океанов представляют собой не обособленные водные бассейны, а единый океанический массив с условными границами. Русский географ и океанограф Юрий Михайлович Шакальский назвал всю непрерывную оболочку Земли - Мировым океаном. Это современное определение. Но, кроме того, что когда-то все материки поднялись из воды, в ту географическую эпоху, когда все континенты уже, в основном, сложились и имели очертания, близкие к современным, Мировой океан овладел почти всей поверхностью Земли. Это был Вселенский потоп. Свидетельства о его подлинности не только геологические и библейские. До нас дошли письменные источники - шумерские таблички, расшифровки записей жрецов Древнего Египта. Вся поверхность Земли, за исключением некоторых горных вершин, была покрыта водой. В Европейской части нашего материка водяной покров достигал двух метров, а на территории современного Китая - около 70 - 80 см.

Ресурсы мирового океана.

В наше время, «эпоху глобальных проблем», Мировой океан играет всё большую роль в жизни человечества. Являясь огромной кладовой минеральных, энергетических, растительных и животных богатств, которые - при рациональном их потреблении и искусственном воспроизводстве - могут считаться практически неисчерпаемыми, Океан способен решить одни из самых остро стоящих задач: необходимость обеспечения быстро растущего населения продуктами питания и сырьём для развивающейся промышленности, опасность энергетического кризиса, недостаток пресной воды.

Основной ресурс Мирового океана – морская вода. Она содержит 75 химических элементов, среди которых такие важные как уран, калий, бром, магний. И хотя основной продукт морской воды всё ещё поваренная соль - 33 % от мировой добычи, но уже добываются магний и бром, давно запатентованы методы получения целого ряда металлов, среди них и необходимые промышленности медь и серебро, запасы которых неуклонно истощаются, когда как в океанских водах их содержится до полмиллиарда тонн. В связи с развитием ядерной энергетики существуют неплохие перспективы для добычи урана и дейтерия из вод Мирового океана, тем более что запасы урановых руд на земле уменьшаются, а в Океане его 10 миллиардов тонн, дейтерий вообще практически неисчерпаем - на каждые 5000 атомов обычного водорода приходится один атом тяжелого. Помимо выделения химических элементов морская вода может быть использована для получения необходимой человеку пресной воды. Сейчас имеется в наличии много промышленных методов опреснения: применяются химические реакции, при которых примеси удаляются из воды; солёную воду пропускают через специальные фильтры; наконец, производится обычное кипячение. Но опреснение не единственная возможность получения пригодной для питья воды. Существуют донные источники, которые всё чаще обнаруживаются на континентальном шельфе, то есть в областях материковой отмели, прилегающей к берегам суши и имеющее одинаковое с ней геологическое строение. Один из таких источников, расположенный у берегов Франции - в Нормандии, дает такое количество воды, что его называют подземной рекой.

Минеральные ресурсы Мирового океана представлены не только морской водой, но и тем, что «под водой». Недра океана, его дно богаты залежами полезных ископаемых. На континентальном шельфе находятся прибрежные россыпные месторождения – золото, платина; встречаются и драгоценные камни – рубины, алмазы, сапфиры, изумруды. Например, вблизи Намибии идут подводные разработки алмазного гравия уже с 1962 года. На шельфе и частично материковом склоне Океана расположены большие месторождения фосфоритов, которые можно использовать в качестве удобрений, причём запасов хватит на ближайшие несколько сот лет. Самый же интересный вид минерального сырья Мирового океана - это знаменитые железомарганцевые конкреции, которыми покрыты громадные по площади подводные равнины. Конкреции представляют собой своеобразный «коктейль» из металлов: туда входят медь, кобальт, никель, титан, ванадий, но, конечно же, больше всего железа и марганца. Места их расположения общеизвестны, но результаты промышленной разработки пока ещё очень скромны. Зато полным ходом идёт разведка и добыча океанской нефти и газа на прибрежном шельфе, доля морской добычи приближается к 1/3 мировой добычи этих энергоносителей. В особо крупных размерах идёт разработка месторождений в Персидском, Венесуэльском, Мексиканском заливе, в Северном море; нефтяные платформы протянулись у берегов Калифорнии, Индонезии, в Средиземном и Каспийском морях. Мексиканский залив к тому же знаменит открытым во время разведки нефти месторождением серы, которая вытапливается со дна с помощью перегретой воды. Другой, пока ещё нетронутой кладовой океана являются глубинные расщелины, где образуется новое дно. Так, например, горячие (более 60 градусов) и тяжелые рассолы Красноморской впадины содержат огромные запасы серебра, олова, меди, железа и других металлов. Всё более и более важное значение принимает добыча материалов на мелководье. Вокруг Японии, к примеру, отсасывают по трубам подводные железосодержащие пески, страна добывает из морских шахт около 20 % угля - над залежами породы сооружают искусственный остров и бурят ствол, вскрывающий угольные пласты.

Многие природные процессы, происходящие в Мировом океане, - движение, температурный режим вод - являются неистощимыми энергетическими ресурсами. Например, суммарная мощность приливной энергии Океана оценивается от 1 до 6 миллиардов кВт ч. Это свойство приливов и отливов использовалось во Франции в средние века: в XII веке строились мельницы, колёса которых приводились в движение приливной волной. В наши дни во Франции существуют современные электростанции, использующие тот же принцип работы: вращение турбин при приливе происходит в одну сторону, а при отливе - в другую. Главное богатство Мирового океана - это его биологические ресурсы (рыба, зоол.- и фитопланктон и другие). Биомасса Океана насчитывает 150 тыс. видов животных и 10 тыс. водорослей, а её общий объём оценивается в 35 миллиардов тонн, чего вполне может хватить, чтобы прокормить 30 миллиардов! человек. Вылавливая ежегодно 85-90 миллионов тонн рыбы, на неё приходится 85 % от используемой морской продукции, моллюсков, водорослей, человечество обеспечивает около 20% своих потребностей в белках животного происхождения. Живой мир Океана - это огромные пищевые ресурсы, которые могут быть неистощимыми при правильном и бережном их использовании. Максимальный вылов рыбы не должен превышать 150-180 миллионов тонн в год: превзойти этот предел очень опасно, так как произойдут невосполнимые потери. Многие сорта рыб, китов, ластоногих вследствие неумеренной охоты почти исчезли из океанских вод, и неизвестно, восстановится ли когда-нибудь их поголовье. Но население Земли растёт бурными темпами, всё больше нуждаясь в морской продукции. Существует несколько путей поднятия её продуктивности. Первый - изымать из океана не только рыбу, но и зоопланктон, часть которого - антарктический криль - уже пошла в пищу. Можно без всякого ущерба для Океана вылавливать его в гораздо больших количествах, чем вся добываемая в настоящее время рыба. Второй путь - использование биологических ресурсов открытого Океана. Биологическая продуктивность Океана особенно велика в области подъёма глубинных вод. Один из таких апвеллингов, расположенный у побережья Перу, даёт 15 % мировой добычи рыбы, хотя площадь его составляет не более двух сотых процента от всей поверхности Мирового океана. Наконец, третий путь - культурное разведение живых организмов, в основном в прибрежных зонах. Все эти три способа успешно опробованы во многих странах мира, но локально, поэтому продолжается губительный по своим объёмам вылов рыбы. В конце ХХ века наиболее продуктивными акваториями считаются Норвежское, Берингово, Охотское, Японское моря.

Океан, будучи кладовой разнообразнейших ресурсов, также является бесплатной и удобной дорогой, которая связывает удаленные друг от друга континенты и острова. Морской транспорт обеспечивает почти 80% перевозок между странами, служа развивающемуся мировому производству и обмену. Мировой океан может служить переработчиком отходов. Благодаря химическому и физическому воздействию своих вод и биологическому влиянию живых организмов, он рассеивает и очищает основную часть поступающих в него отходов, сохраняя относительное равновесие экосистем Земли. В течение 3000 лет в результате круговорота воды в природе вся вода Мирового океана обновляется.

Загрязнение мирового океана.

Нефть и нефтепродукты

Нефть представляет собой вязкую маслянистую жидкость, имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов. Основные компоненты нефти - углеводороды (до 98%) - подразделяются на 4 класса:

а).Парафины (алкены). (до 90% от общего состава) - устойчивые вещества, молекулы которых выражены прямой и разветвленной цепью атомов углерода. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

б). Циклопарафины. (30 - 60% от общего состава) насыщенные циклические соединения с 5-6 атомами углерода в кольце. Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические соединения этой группы. Эти соединения очень устойчивы и плохо поддаются биоразложению.

в).Ароматические углеводороды. (20 - 40% от общего состава) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем циклопарафины. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол) , затем бициклические (нафталин) , полициклические (пирон).

г). Олефины (алкены). (до 10% от общего состава) - ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. К началу 80-ых годов в океан ежегодно поступало около 16 млн. т. нефти, что составляло 0, 23% мировой добычи. Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, - все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. В период за 1962-79 годы в результате аварий в морскую среду поступило около 2 млн. т. нефти. За последние 30 лет, начиная с 1964 года, пробурено около 2000 скважин в Мировом океане, из них только в Северном море 1000 и 350 промышленных скважин оборудовано. Из-за незначительных утечек ежегодно теряется 0,1 млн. т. нефти. Большие массы нефти поступают в моря по рекам, с бытовыми и ливневыми стоками. Объем загрязнений из этого источника составляет 2,0 млн. т. /год. Со стоками промышленности ежегодно попадает 0, 5 млн. т. нефти. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности.

Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 11-10% (280 нм), 60-70% (400нм). Пленка толщиной 30-40 мкм 0полностью полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую нефть в воде и обратную вода в нефти. Прямые эмульсии, составленные капельками нефти диаметром до 0,5 мкм, менее устойчивы и характерны для нефтей, содержащих поверхностно-активные вещества. При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно.

Пестициды

Пестициды составляют группу искусственно созданных веществ, используемых для борьбы с вредителями и болезнями растений. Пестициды делятся на следующие группы:

Инсектициды для борьбы с вредными насекомыми,

Фунгициды и бактерициды - для борьбы с бактериальными болезнями растений,

Гербициды против сорных растений.

Установлено, что пестициды уничтожая вредителей, наносят вред многим полезным организмам и подрывают здоровье биоценозов. В сельском хозяйстве давно уже стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологически чистым) методам борьбы с вредителями. В настоящее время более 5 млн. т. пестицидов поступает на мировой рынок. Около 1, 5 млн. т. этих веществ уже вошло в состав наземных и морских экосистем золовым и водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязняющих сточные воды. В водной среде чаще других встречаются представители инсектицидов, фунгицидов и гербицидов. Синтезированные инсектициды делятся на три основных группы: хлорорганические, фосфорорганические и карбонаты.

Хлорорганические инсектициды получают путем хлорирования ароматических и гетероциклических жидких углеводородов. К ним относятся ДДТ и его производные, в молекулах которых устойчивость алифатических и ароматических групп в совместном присутствии возрастает, всевозможные хлорированные производные хлородиена (элдрин). Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации. В водной среде часто встречаются полихлорбифенилы - производные ДДТ без алифатической части, насчитывающие 210 гомологов и изомеров. За последние 40 0лет использовано более 1, 2 млн. т. полихлорбифенилов в производстве пластмасс, красителей, трансформаторов, конденсаторов. Полихлорбифенилы (ПХБ) попадают в окружающую среду в результате сбросов промышленных сточных вод и сжигания твердых отходах на свалках. Последний источник поставляет ПБХ в атмосферу, откуда они с атмосферными осадками выпадают во все районах земного шара. Так в пробах снега, взятых в Антарктиде, содержание ПБХ составило 0, 03 - 1, 2 кг. /л.

Синтетические поверхностно-активные вещества

Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в состав синтетических моющих средств (СМС), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ, попадают в материковые воды и морскую среду. СМС содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингредиентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты натрия. В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионактивные, катионактивные, амфотерные и неионогенные. Последние не образуют ионов в воде. Наиболее распространенными среди СПАВ являются анионактивные вещества. На их долю приходится более 50% всех производимых в мире СПАВ. Присутствие, СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химических технологий, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования. В сельском хозяйстве, СПАВ, применяется в составе пестицидов.

Соединения с канцерогенными свойствами

Канцерогенные вещества - это химически однородные соединения, проявляющие трансформирующую активность и способность вызывать канцерогенные, тератогенные (нарушение процессов эмбрионального развития) или мутагенные изменения в организмах. В зависимости от условий воздействия они могут приводить к ингибированию роста, ускорению старения, нарушению индивидуального развития и изменению генофонда организмов. К веществам, обладающим канцерогенными свойствами, относятся хлорированные алифатические углеводороды, винилхлорид, и особенно, полициклические ароматические углеводороды (ПАУ). Максимальное количество ПАУ в современных данных осадках Мирового океана (более 100 мкг/км массы сухого вещества) 0обнаружено в тектонически - активных зонах, подверженным глубинному термическому воздействию. Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различных материалов, древесины и топлива.

Тяжелые металлы

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк,) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий. Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород ежегодно выделяется 3, 5 тыс. т. ртути. В составе атмосферной пыли содержится около 121тыс. т. 0ртути, причем значительная часть - антропогенного происхождения. Около половины годового промышленного производства этого металла (910 тыс. т. /год) различными путями попадает в океан. В районах, загрязняемых промышленными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бактерии переводят хлориды в высокотоксичную метил-ртуть. Заражение морепродуктов неоднократно приводило к ртутному отравлению прибрежного населения. К 1977 году насчитывалось 2800 0жертв болезни Миномата, причиной которой послужили отходы предприятий по производству хлорвинила и ацетальдегида, на которых в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в залив Минамата. Свиний - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свиний активно рассеивается в окружающую среду в процессе хозяйственной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприятий, с выхлопными газами двигателей внутреннего сгорания. Миграционный поток свинца с континента в океан идет не только с речными стоками, но и через атмосферу.

С континентальной пылью океан получает (20-30)*10^3 т. свинца в год.

Сброс отходов в море с целью захоронения

Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлака, отходов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов. Объем захоронений составил около 10% от всей массы загрязняющих веществ, поступающих в Мировой океан. Основанием для дампинга в море служит возможность морской среды к переработке большого количества органических и неорганических веществ без особого ущерба воды. Однако эта способность не беспредельна. Поэтому дампинг рассматривается как вынужденная мера, временная дань общества несовершенству технологии. В шлаках промышленных производств присутствуют разнообразные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40% 0органических веществ; 0,56% азота; 0,44% фосфора; 0,155% цинка; 0, 085% свинца; 0,001% ртути; 0, 001% кадмия. Во время сброса прохождении материала сквозь столб воды, часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ чисто приводит к быстрому расходованию кислорода в воде и не едко к его полному исчезновению, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количества органических веществ создает в грунтах устойчивую восстановительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов. Воздействию сбрасываемых материалов в разной степени подвергаются организмы бентоса и др. В случае образования поверхностных пленок, содержащих нефтяные углеводороды и СПАВ, нарушается газообмен на границе воздух - вода. Загрязняющие вещества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышенная мутность приданной воды приводит к гибели от удушья малоподвижные формы бентоса. У выживших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко изменяется видовой состав данного сообщества. При организации системы контроля за выбросами отходов в море решающее значение имеет определение районов дампинга, определение динамики загрязнения морской воды и донных отложений. Для выявления возможных объемов сброса в море необходимо проводить расчеты всех загрязняющих веществ в составе материального сброса.

Тепловое загрязнение

Тепловое загрязнение поверхности водоемов и прибрежных морских акваторий возникает в результате сброса нагретых сточных вод электростанциями и некоторыми промышленными производствами. Сброс нагретых вод во многих случаях обуславливает повышение температуры воды в водоемах на 6-8 градусов Цельсия. Площадь пятен нагретых вод в прибрежных районах может достигать 30 кв. км. Более устойчивая температурная стратификация препятствует водообмену поверхностным и донным слоем. Растворимость кислорода уменьшается, а потребление его возрастает, поскольку с ростом температуры усиливается активность аэробных бактерий, разлагающих органическое вещество. Усиливается видовое разнообразие фитопланктона и всей флоры водорослей. На основании обобщения материала можно сделать вывод, что эффекты антропогенного воздействия на водную среду проявляются на индивидуальном и популяционно-биоценотическом уровнях, и длительное действие загрязняющих веществ приводит к упрощению экосистемы.

Охрана морей и океанов

Наиболее серьезной проблемой морей и океанов в нашем столетии является загрязнение нефтью, последствия которого губительны для всей жизни на Земле. Поэтому в 1954 году в Лондоне прошла международная конференция, ставившаяся целью выработать согласованные действия по охране морской среды от загрязнения нефтью. На ней была принята конвенция, определяющая обязанности государств в этой области. Позже в 1958 году в Женеве были приняты еще четыре документа: об открытом море, о территориальном море и прилежащей зоне, о континентальном шельфе, о рыболовстве и охране живых ресурсов моря. Эти конвенции юридически закрепили принципы и нормы морского права. Они обязывали каждую страну разработать и ввести в действие законы, запрещающие загрязнять морскую среду нефтью, радиоотходами и другими вредными веществами. Прошедшая в 1973 году в Лондоне конференция приняла документы по предотвращению загрязнения с судов. Согласно принятой конвенции, каждое судно должно иметь сертификат - свидетельство о том, что корпус, механизмы и прочая оснастка находятся в исправном положении и не наносят ущерб морю. Соответствие сертификатам проверяется инспекцией при заходе в порт.

Запрещен слив нефтесодержащих вод с танкеров, все сбросы с них должны выкачиваться только на береговые приемные пункты. Для очистки и обеззараживания судовых сточных вод, в том числе хозяйственно-бытовых, созданы электрохимические установки. Институт океанологии РАН разработал эмульсионный метод очистки морских танкеров, полностью исключающий попадание нефти в акваторию. Он заключатся в добавлении к промывной воде нескольких поверхностно-активных веществ (препарат МЛ), что позволяет осуществить на самом судне очистку без сброса загрязненной воды или остатков нефти, которую можно впоследствии регенерировать для дальнейшего использования. С каждого танкера удается отмыть до 300 т нефти.В целях предотвращения утечек нефти совершенствуются конструкции нефтеналивных судов. Многие современные танкеры имеют двойное дно. При повреждении одного из них нефть не выльется, ее задержит вторая оболочка.

Капитаны судов обязаны фиксировать в специальных журналах сведения обо всех грузовых операциях с нефтью и нефтепродуктами, отмечать место и время сдачи или слива с судна загрязненных сточных вод. Для систематической очистки акваторий от случайных разливов применяются плавучие нефтесборщики и боковые заграждения. Также в целях предотвращения растекания нефти используются физико- химические методы. Создан препарат пенопластовой группы, который при соприкосновении с нефтяным пятном полностью его обволакивает. После отжима пенопласт может использоваться вторично в качестве сорбента. Такие препараты очень удобны из-за простоты применения и невысокой стоимости, однако их массовое производство пока не налажено. Также существуют сорбирующие средства на основе растительных, минеральных и синтетических веществ. Некоторые из них могут собирать до 90% разлитой нефти. Главное требование, которое к ним предъявляется, - это непотопляемость.После сбора нефти сорбентами или механическими средствами на поверхности воды всегда остается тонкая пленка, которую можно удалить путем разбрызгивания разлагающих ее химических препаратов. Но при этом эти вещества должны быть биологически безопасны.

В Японии создана и апробирована уникальная технология, с помощью которой можно в короткие сроки ликвидировать гигантское пятно. Корпорация «Кансай сагге» выпустила реактив ASWW, основной компонент которого - специально обработанная рисовая шелуха. Распыленный по поверхности, препарат в течение получаса всасывает в себя выброс и превращается в густую массу, которую можно стащить простой сетью.Оригинальный способ очистки продемонстрирован американскими учеными в Атлантическом океане. Под нефтяную пленку на определенную глубину опускается керамическая пластинка. К ней подсоединяется акустическая пластинка. Под действием вибрации сначала скапливается толстым слоем над местом, где установлена пластинка, а затем смешивается с водой и начинает фонтанировать. Электрический ток, подведенный к пластинке, поджигает фонтан, и нефть полностью сгорает.

Для удаления с поверхности прибрежных вод пятен масел американские ученые создали модификацию полипропилена, притягивающего жировые частицы. На катере-катамаране между корпусами поместили своеобразную штору из этого материала, концы которой свисают в воду. Как только катер попадает на пятно, нефть прочно прилипает к «шторе». Остается лишь пропустить полимер через валики специального устройства, которое отжимает нефть в приготовленную емкость.С 1993 года был запрещен сброс жидких радиоактивных отходов (ЖРО), но число их неуклонно растет. Поэтому в целях защиты окружающей среды в 90-е годы стали разрабатываться проекты очистки ЖРО. В 1996 году представители японских, американских и российских фирм подписали контракт на создание установки по переработке ЖРО, скопившихся на Дальнем Востоке России. На реализацию проекта правительство Японии выделило 25,2 млн. долларов.Однако, несмотря на некоторые успехи в поиске эффективных средств, ликвидирующих загрязнения, о решении проблемы говорить рано. Только внедрением новых методик очисток акваторий невозможно обеспечить чистоту морей и океанов. Центральная задача, которую необходимо решать всем странам сообща, - предотвращение загрязнения.

Заключение

Последствия, к которым ведёт расточительное, небрежное отношение человечества к Океану, ужасающи. Уничтожение планктона, рыб и других обитателей океанских вод - далеко не всё. Ущерб может быть гораздо большим. Ведь у Мирового океана имеются общепланетарные функции: он является мощным регулятором влагооборота и теплового режима Земли, а также циркуляции её атмосферы. Загрязнения способны вызвать весьма существенные изменения всех этих характеристик, жизненно важных для режима климата и погоды на всей планете. Симптомы таких изменений наблюдаются уже сегодня. Повторяются жестокие засухи и наводнения, появляются разрушительные ураганы, сильнейшие морозы приходят даже в тропики, где их отроду не бывало. Разумеется, пока нельзя даже приблизительно оценить зависимость подобного ущерба от степени загрязненности. Мирового океана, однако, взаимосвязь, несомненно, существует. Как бы там ни было, охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество.

Список литературы

1. «Мировой океан», В.Н. Степанов, «Знание», М. 1994 г.

2. Учебник по географии. Ю.Н.Гладкий, С.Б.Лавров.

3. «Экология окружающей среды и человека», Ю.В.Новиков. 1998 г.

4. «Ра» Тур Хейердал, «Мысль», 1972 г.

5. Степановских, «Охрана окружающей среды».

Поскольку три четверти населения Земли проживают в прибрежной зоне, неудивительно, что Мировой океан страдает от последствий деятельности человека и масштабного загрязнения. Зона прилива исчезает вследствие возведения заводов, портовых сооружений, туристических комплексов. Акватория постоянно загрязняется бытовыми и промышленными сточными водами, пестицидами, углеводородами. Тяжелые металлы обнаружены в организме глубоководных (3 км) рыб и арктических пингвинов. Ежегодно в океан реками приносится около 10 млрд тонн отходов, источники заиливаются, океаны цветут. Каждая такая экологическая проблема требует решения.

Экологические катастрофы

Загрязнение водоемов проявляется в снижении их экологического значения и биосферных функций под действием вредных веществ. Оно ведет к изменению органолептических (прозрачность, окраска, вкус, запах) и физических свойств.

В воде в больших количествах присутствуют:

  • нитраты;
  • сульфаты;
  • хлориды;
  • тяжелые металлы;
  • радиоактивные элементы;
  • болезнетворные бактерии и др.

Кроме того, существенно сокращается растворенный в воде кислород. Только нефтепродуктов ежегодно попадает в океан более 15 млн тонн, поскольку постоянно происходят катастрофы с участием нефтеналивных танкеров и буровых установок.

Огромное количество туристических лайнеров сбрасывают все отходы в моря и океаны. Настоящей экологической катастрофой являются радиоактивные отходы и тяжелые металлы, попадающие в акваторию в результате и захоронения химических и взрывчатых веществ в контейнерах.

Крушения крупных танкеров

Транспортировка углеводородов может закончиться крушением судна и разливом нефти на огромной водной поверхности. Ежегодно ее поступление в океан составляет более 10 % от мировой добычи. К этому нужно прибавить и утечки при добыче из скважин (10 млн тонн), и продукты переработки, поступающие с ливневыми стоками (8 млн тонн).

Огромный ущерб нанесли катастрофы танкеров:

  • В 1967 году американское судно «Торри Каньон» у побережья Англии – 120 тыс. тонн. Нефть горела три дня.
  • 1968–1977 гг. – 760 крупных танкеров с массовым выбросом нефтепродуктов в океан.
  • В 1978 году американский танкер «Амоно Кодис» у побережья Франции – 220 тыс. тонн. Нефть покрыла территорию в 3,5 тысячи кв. км. водной поверхности и 180 км прибрежной линии.
  • В 1989 году судно «Валдис» у берегов Аляски – 40 тыс. тонн. Нефтяное пятно имело площадь 80 кв. км.
  • В 1990 году во время войны в Кувейте защитники Ирака открыли нефтяные терминалы и опорожнили несколько нефтяных танкеров, чтобы воспрепятствовать высадке американского десанта. Более 1,5 млн тонн нефти покрыло тысячу кв. км Персидского залива и 600 км побережья. В ответ американцы разбомбили еще несколько хранилищ.
  • 1997 год – крушение российского судна «Находка» на маршруте Китай–Камчатка – 19 тысяч тонн.
  • 1998 год – либерийский танкер «Паллас» сел на мель у европейского побережья – 20 тонн.
  • 2002 год – Испания, Бискайский залив. Танкер «Престиж» – 90 тысяч тонн. Стоимость ликвидации последствий составила свыше 2,5 млн евро. После этого Франция и Испания ввели запрет на вход в их воды нефтеналивным судам без двойного корпуса.
  • 2007 год – шторм в Керченском проливе. 4 судна затонули, 6 сели на мель, 2 танкера были повреждены. Ущерб составил 6,5 млрд рублей.

Ни один год не проходит на планете без катастрофы. Нефтяная пленка способна полностью поглощать инфракрасные лучи, вызывая гибель морских и прибрежных обитателей, что ведет к глобальным экологическим изменениям.

Другим опаснейшим загрязнителем акватории являются сточные воды. Большие прибрежные города, не справляющиеся с потоком канализационных отходов, стараются отвести канализационные трубы подальше в море. Из материковых мегаполисов сточные воды попадают в реки.

Нагретые отработанные воды, сбрасываемые электростанциями и производствами, – фактор теплового загрязнения водоемов, способный существенно повышать температуру на поверхности.

Он препятствует обмену придонных и поверхностных водных слоев, что уменьшает поступление кислорода, повышает температуру и, как следствие, активность аэробных бактерий. Появляются новые виды водорослей и фитопланктона, что приводит к цветению воды и нарушению биологического равновесия океана.

Увеличение массы фитопланктона грозит утратой видового генофонда и снижением способности к саморегулированию экосистем. Скопления мелких водорослей на поверхности морей и океанов достигают таких размеров, что пятна и полосы из них хорошо видны из космоса. Фитопланктон служит индикатором неутешительного экологического состояния и динамики водных масс.

Его жизнедеятельность приводит к образованию пены, химическому изменению состава и загрязнению воды, а массовое размножение меняет цвет моря.

Оно приобретает красные, коричневые, желтые, молочно-белые и другие оттенки. Для изменения цвета нужно, чтобы популяция достигла миллиона на один литр.

Цветущий планктон способствует массовой гибели рыб и других морских животных, поскольку активно потребляет растворенный кислород и выделяет токсичные вещества. Взрывное размножение подобных водорослей вызывают «красные приливы» (Азия, США) и охватывает большие территории.

Несвойственные для озера Байкал водоросли (спирогира) аномально разрослись в результате обширного сброса химических веществ через очистные сооружения. Их выбросило на береговую линию (20 км), и масса составила 1 500 тонн. Теперь местные жители называют Байкал черным, поскольку водоросли имеют черный цвет и, погибая, издают чудовищное зловоние.

Загрязнение пластмассовыми отходами

Пластиковые отходы – еще один фактор загрязнения океана. Они образуют на поверхности целые острова и угрожают жизни морских обитателей.

Пластмасса не растворяется и не разлагается, может существовать веками. Животные и птицы принимают ее за что-то съестное и заглатывают стаканчики и полиэтилен, который не могут переварить, и погибают.

Под действием солнечных лучей пластик измельчается до размеров планктона и, таким образом, уже участвует в пищевых цепочках. Моллюски прикрепляются к бутылкам и веревкам, опуская их на дно в большом количестве.

Символом загрязнения океана можно считать мусорные острова. Самый большой мусорный остров находится в Тихом океане – он достигает площади в 1 760 000 кв. км и 10 м в глубину. Подавляющая часть мусора имеет береговое происхождение (80%), остальное – отходы с кораблей и рыболовные сети (20%).

Металлы и химикаты

Источники загрязнения акватории многочисленны и разнообразны – от неразлагающихся моющих средств до ртути, свинца, кадмия. Вместе со сточными водами в Мировой океан попадают пестициды, инсектициды, бактерициды и фунгициды. Эти вещества широко используются в сельском хозяйстве для борьбы с болезнями, вредителями растений и при уничтожении сорняков. Более 12 млн тонн этих средств уже находится в экосистемах Земли.

Губительно влияет на океан синтетическое поверхностно-активное вещество, входящее в состав моющих средств. Оно содержит детергенты, которые понижают поверхностное натяжение воды. Кроме того, моющие средства состоят из вредных для обитателей экосистем веществ, таких как:

  • силикат натрия;
  • полифосфат натрия;
  • кальцинированная сода;
  • отбеливатель;
  • ароматизирующие вещества и др.

Наибольшую опасность для океанического биоценоза несут ртуть, кадмий и свинец.

Их ионы аккумулируются в представителях морских пищевых цепочек и вызывают их мутации, болезни и гибель. Люди тоже принадлежат к части пищевых цепей и, употребляя в пищу такие «дары моря», подвергаются большому риску.

Самой известной является болезнь Минамата (Япония), вызывающая расстройство зрения, речи, параличи.

Причиной ее возникновения стали отходы предприятий, производящих хлорвинил (в процессе используется ртутный катализатор). Плохо очищенные промышленные воды поступали в течение долгого времени в залив Минамата.

Ртутные соединения оседали в организмах моллюсков и рыб, которых местное население широко использовало в своем рационе. В результате более 70 человек погибло, несколько сотен людей приковано к постели.

Угроза, которую несет человечеству экологический кризис, обширна и многомерна:

  • снижение вылова рыбы;
  • употребление в пищу мутированных животных;
  • утрата уникальных мест для отдыха;
  • общее отравление биосферы;
  • исчезновение людей.

При контакте с загрязненной водой (стирка, купание, рыбная ловля) есть риск проникновения через кожу или слизистые всевозможных бактерий, вызывающих тяжелые заболевания. В условиях экологической катастрофы велика вероятность таких известных заболеваний, как:

  • дизентерия;
  • холера;
  • брюшной тиф и др.

А также велика вероятность появления новых болезней в результате мутаций из-за радиоактивных и химических соединений.

Мировым сообществом уже начали приниматься меры для искусственного возобновления биологических ресурсов океанов, создаются морские заповедники и насыпные острова. Но все это устранение последствий, а не причин. Пока существует выброс нефти, сточных вод, металлов, химикатов и мусора в океан, опасность гибели цивилизации будет только нарастать.

Воздействие на экосистемы

В результате бездумной деятельности человека прежде всего страдают экологические системы.

  1. Нарушается их устойчивость.
  2. Прогрессирует эвтрофикация.
  3. Появляются цветные приливы.
  4. Накапливаются токсины в биомассе.
  5. Снижается биологическая продуктивность.
  6. Возникают канцерогенез и мутации в океане.
  7. Происходит микробиологическое загрязнение прибрежных зон.

В океан постоянно поступают загрязняющие токсичные вещества, и даже способность некоторых организмов (двустворчатые моллюски и придонные микроорганизмы) к аккумуляции и выводу токсинов (пестициды и тяжелые металлы) не сможет противостоять такому их количеству. Поэтому важно определить допустимое антропогенное давление на гидрологические экосистемы, изучить их ассимиляционные возможности по накоплению и последующему удалению вредных веществ.

Кучу пластика, плавающего на волнах океана можно было бы направить на изготовление пластиковой тары для пищевых продуктов.

Мониторинг проблем загрязнения мирового океана

Сегодня можно констатировать наличие загрязняющего вещества не только в прибрежных зонах и судоходных районах, но и в открытом океане включая Арктику и Антарктику. Гидросфера – это мощный регулятор водоворота, циркуляции воздушных потоков и температурного режима планеты. Ее загрязнение способно изменить эти характеристики и повлиять не только на флору и фауну, но и на климатические условия.

На современном этапе развития при возрастающем негативном воздействии человечества на гидросферу и утрате защитных свойств экосистемами становится очевидным следующее:

  • осознание реальности и тенденций;
  • экологизация мышления;
  • необходимость новых подходов к природопользованию.

Об охране океана сегодня речь уже не идет – сейчас его нужно незамедлительно очищать, и это является глобальной проблемой цивилизации.

Загрязнение морей и океанов

Человек в своей экономической деятельности издавна тянулся к прибрежным районам океанов и морей. И как результат - заселение морских побережий. В настоящее время в прибрежных зонах находится 60 % всех крупных городов с населением свыше миллиона человек. В некогда глухом районе Земли - на берегах Персидского залива - в последние годы появилось 150 промышленных комплексов, в том числе 60 нефтеперерабатывающих заводов, а также сталелитейные, цементные, химические предприятия. Степень урбанизации возрастает там ежегодно на 6-10 %, а численность населения - на 0,5 млн. человек.

По данным статистики, число людей, проживающих на морских побережьях в городах с миллионным населением, к началу XXI в. увеличится вдвое. Предполагается, что и тогда 90 % всех бытовых сточных вод и большой объем стоков промышленных, как и сейчас, без предварительной очистки будут сбрасываться в Мировой океан.

На берегах Средиземного моря расположены страны с населением 250 млн. человек. Ежегодно промышленные предприятия приморских городов выбрасывают в море тысячи тонн различных неочищенных отходов, сюда же сливается неочищенная канализационная вода. Огромные массы ядовитых веществ выносят в море крупные реки.

Миллионы туристов устремляются к Средиземному морю, надеясь «найти там солнце, песчаные пляжи и бирюзовую воду». Солнца там, действительно, много, но вместе с ним на пляже и в воде легко можно приобрести гепатит и грибковые заболевания.

Неудивительно, что, по рекомендации государственных органов здравоохранения Испании, губернатор туристского центра Аликанте запретил использовать для купания 20 пляжей и бухт. Близ Марселя, где туристы имели обыкновение после осмотра замка Ив купаться в море, ученые обнаружили только в 100 мл морской воды около 900 тыс. кишечных палочек, ведущих свое происхождение от фекалий. Это - наивысшая концентрация таких бактерий в Средиземном море.

В Италии карабинеры и пожарные следят за тем, чтобы никто не купался на закрытых властями пляжах. В особенности это касается Неаполя, где в 1973 г. в результате потребления в пищу зараженных моллюсков разразилась эпидемия холеры, в результате которой погибли 22 человека. Даже загорать там разрешено лишь на почтительном расстоянии от берега.

Более 100 из 120 крупных приморских городов Средиземноморья спускают свои канализационные воды неочищенными. Но и тогда, когда от воды не пахнет и в ней не видно грязи, есть причины для тревоги. Голубая средиземноморская вода во многих местах прозрачна до самого дна, но жизни в ней нет: ядовитые промышленные отходы отравили ее.

Естественному процессу обновления воды в Средиземном море препятствует рост содержания нефти, которая сокращает поверхностное испарение. В 1979 г. в 1 м 2 поверхности Средиземного моря содержалось 108 мг нефти. Это значительно выше, чем в таком районе интенсивного судоходства, как Северная Атлантика, где на 1 м 2 поверхности приходится 17,5 мг нефти.

С появлением супертанкеров связаны не только бесспорные достижения научно-технической мысли. Они стали одними из самых злостных виновников загрязнения окружающей среды. В погоне за баснословными прибылями, которые сулит эксплуатация крупных нефтеналивных судов, владельцы танкеров-гигантов пренебрегают элементарными нормами и правилами техники безопасности. В результате преступной небрежности судовладельческих компаний супертанкеры часто терпят кораблекрушения. За последние годы последствия таких катастроф ощутили на себе жители многих районов мира. Однако эффективные меры для предотвращения подобных бедствий пока так и не приняты.

Ежегодно в Средиземное море попадает 3 % нефти из потерпевших катастрофу танкеров. Однако в 10 раз больше нефти сбрасывается в море при их промывке. В бухте итальянского порта Триест, район которого когда-то славился рыбой и панцирными, нефть уничтожила всю флору и фауну.

Еще большую опасность для обитателей морей представляют промышленные отходы, прежде всего ртуть и другие тяжелые металлы. Эти отходы надолго остаются в воде или концентрируются в тканях животных. Отметим, что 85 % всех нечистот попадают в Средиземное море с континентов, причем большая их часть - из удаленных от моря промышленных центров и городов, прежде всего таких индустриальных стран, как Испания, Франция, Италия. Подавляющее количество загрязняющих веществ приносят в Средиземное море реки Рона, По и Эбро.

Почти все промышленные предприятия на испанском побережье Средиземного моря работают с плохо функционирующими очистными сооружениями или совсем без них. На Адриатическом побережье море отравляют 35 тыс. итальянских промышленных предприятий. Лишь одна лагуна Венеции, размеры которой составляют 500 км 2 , принимает неочищенный сброс от 76 заводов.

Сильно загрязнено Мраморное море. Ежегодно танкеры вместе с балластными водами сбрасывают в него более 4 млн. т нефти. Отходы промышленных предприятий, горы мусора на некогда великолепных пляжах, слив канализационных вод привели к тому, что редкий смельчак рискнет здесь искупаться.

Внутреннее Японское море издавна играет большую роль в жизни народа Страны восходящего солнца. Оно не только служит важным источником питания значительной части населения, но и является основной транспортной артерией, связывающей расположенные на его берегах крупные промышленные центры, которые обеспечивают почти 30 % национального дохода страны. Девять префектур этого региона дают ежегодно 52,4 млн. т стали, 1,8 млн. т этилена, более 4,5 млн. т бумаги. Ежедневно перерабатывается около 1870 тыс. баррелей нефти.

Но процветание имеет и оборотную сторону. Бесконтрольное хозяйничанье монополий, стремящихся к получению прибылей любой ценой, привело к сильному загрязнению в этом районе окружающей среды. Недооценка последствий нарушения экологических процессов привела в 50-х годах к человеческим жертвам. В результате ртутного отравления погибло несколько десятков человек в Минамате, рыбацком поселке в южной части острова Кюсю. К 1970 г. заражение окружающей среды приобрело в Японии трагические масштабы, поставив под угрозу жизнь человека.

В принятой в конце 1972 г. Международной конвенции по предотвращению загрязнений морей сбросами отходов указаны, в частности, наиболее вредные продукты химического загрязнения. Это, как уже отмечалось, нефть и нефтепродукты, хлорорганические пестициды, некоторые тяжелые металлы (ртуть, кадмий, свинец).

Количество поступающей за год в Мировой океан нефти, по различным источникам, составляет 5-10 млн. т. По данным ООН, в 1967 г. объем мировой добычи нефти составлял 1,85 млрд. т, в 1970 г. - 2,2 млрд. т. В 1979 г, мировая добыча нефти и газового конденсата составила 3,2 млрд. т. Несомненно, с ростом добычи нефти будет увеличиваться загрязнение Мирового океана. Можно предположить, что размеры загрязнения будут возрастать в связи со стремительным развертыванием добычи нефти на континентальном шельфе. В 1970 г. на таких промыслах добывалась 1/6 часть общего объема нефти, в дальнейшем добыча нефти в этих районах непрерывно увеличивалась.

В 1979 г. Карибский бассейн стал ареной крупнейшей экологической катастрофы в истории нефтеразведки. В результате аварии на расположенной в Мексиканском заливе буровой установке, принадлежащей мексиканской государственной компании «Пемекс», в море в течение нескольких месяцев вытекала нефть. «Черный прибой» неотвратимо надвинулся на северо-восток, покрыв свыше 200 км пляжей американского штата Техас слоем нефти.

В 1978 г. побережье Бретани (Франция), в четвертый раз за последние десять лет, стало ареной морской катастрофы - на прибрежных рифах разбился гигантский супертанкер «Амоко Кадис». 230 тыс. т сырой нефти, находившейся в его танках, разлилось гигантским пятном на 200 км вдоль побережья одного из живописнейших районов Франции. На многие месяцы и даже годы оказались погубленными рыбные и моллюсковые промыслы на десятках километров Бретонского побережья; морской фауне в этом районе был нанесен неисчислимый ущерб.

Нефть, разлитая в море, растекается на поверхности воды, образуя тонкую пленку, которая прерывает обмен воды с газами атмосферы и тем самым нарушает жизнь морского планктона, создающего кислород и первичную продукцию органического вещества в океане.

Нефтяное загрязнение морей пагубно отражается на живых организмах. Нефтепродукты подвергаются естественному окислению весьма медленно, и поэтому их количество увеличивается из года в год. В условиях Арктических морей нефть может сохраняться до 50 лет. На полное окисление 1 л нефти при средних климатических условиях требуется запас кислорода, растворенного в 400 тыс. л морской воды. Потери такого количества кислорода пагубно отражаются на жизни многих морских организмов.

Нефтепродукты загрязняют не только поверхность воды, но и распространяются по всей толще, оседают вместе с илом на дно и способны к вторичному загрязнению воды. Легкие фракции нефти находятся в виде пленки на поверхности и в виде водного раствора в толще воды, а утяжеленные фракции оседают на дно моря. Таким образом, нефть представляет опасность для живых организмов, обитающих на поверхности, в толще воды и на дне.

Установлено, что содержание в воде нефтепродуктов свыше 16 мг/л вызывает гибель рыб, нарушает нормальное развитие икры. Замечено, что случаи катастрофического разлива нефти в море приводят к уничтожению множества морских птиц. Нефть проникает в оперение и изменяет структуру пера, ухудшая плавучесть и теплоизолирующие свойства. Когда птицы начинают чиститься клювом, нефть и мазут проникают внутрь организма. Это приводит к полному отравлению организма. Кроме того, в районе разлива нефти уничтожаются кормовые ресурсы. Это заставляет оставшихся в живых птиц покидать район загрязнения нефтью. Разлившаяся нефть представляет опасность и для крупных морских животных - китов, тюленей и дельфинов. Нефтяная пленка пристает к поверхности тела животных. У тюленей мех теряет теплоизолирущие свойства и вызывает воспаление глаз, которое кончается слепотой.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Из книги Занимательно о фитогеографии автора Ивченко Сергей Иванович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Леса моря. Жизнь и смерть на континентальном шельфе автора Куллини Джон

Глава 4 Химическое загрязнение окружающей среды и его последствия Организм любого индивидуума в период своего формирования подвергается прямому или косвенному воздействию всех химических субстанций, которые он употребляет в своей повседневной деятельности. Они

Из книги По следам минувшего автора Яковлева Ирина Николаевна

Почему политики должны нести ответственность за медикаментозное загрязнение Самые крупные лаборатории международного масштаба изготавливают не только медикаменты, но в том числе и продукцию для аграрного сектора. Другими словами, жертвами химического загрязнения

Из книги Вода и жизнь на Земле автора Новиков Юрий Владимирович

Спутница океанов Мы уже говорили о культе пальмы у древних народов: шумеров, финикийцев, египтян… И теперь высоко чтят эти растения. Кубинская королевская пальма украшает герб Кубы, пальмовые ветви на флаге Народной Республики Конго, на гербах Венесуэлы и Доминиканской

Из книги Жизнь моря автора Богоров Венианим Григорьевич

Что такое «световое загрязнение» атмосферы и кому оно мешает? Свет от наземных источников – серьезная помеха для астрономических наблюдений. Издавна обсерватории строили вдали от городов. Когда-то и Гринвич, и Пулково, и даже Воробьевы горы были темными уголками, а

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Какой из океанов наибольший по площади и какой наименьший? Самым большим из океанов является Тихий – его площадь равна 178,68 миллиона квадратных километров. Тихий океан занимает почти треть всей поверхности земного шара. На огромном пространстве Тихого океана могла бы

Из книги автора

В каком из российских морей самые большие приливы? Рекордсменом по высоте приливов для всех морей России (и, кстати, Тихого океана) является Пенжинская губа, расположенная в северо-восточной части залива Шелихова Охотского моря. Разница между приливом и отливом здесь

Из книги автора

Как велика протяженность береговой линии российских морей? Протяженность береговой линии российских морей составляет 60 985 километров (более чем в 1,5 раза превосходит длину окружности земного экватора). При этом длина российского побережья морей Северного Ледовитого

Из книги автора

VI. Загрязнение моря нефтью: преодоление последствий В водах Южной Калифорнии, на участке приблизительно от Пойнт-Консепшен до Пойнт-Фермин, площадью около 2600 квадратных километров, то в одном, то в другом месте морского дна тихо сочится нефть. Это истечение, вероятно,

Из книги автора

НАСТОЯЩИЕ ХОЗЯЕВА ТРИАСОВЫХ МОРЕЙ Но настоящими хозяевами триасовых морей становятся ящеры. Ящеры, которых великая засуха пригнала к воде. Ящеры, которым вновь пришлось стать рыбами, чтобы не погибнуть на суше. Их ноги снова попытались превратиться в плавники. Но

Из книги автора

Загрязнение воды и здоровье Вода может оказывать на здоровье людей не только положительное, но и отрицательное влияние. Прежде всего это связано с качеством употребляемой воды: ее органолептическими свойствами, определяемыми цветом, вкусом и запахом, а также химическим

Из книги автора

Богатства советских морей «Море - наше поле», - говорят рыбаки. Если годовой улов рыбы, добываемый в Советском Союзе, поставить в бочках вдоль Сибирской железнодорожной магистрали, то лента из бочек, уложенных в два ряда, протянется от Калининграда до

Из книги автора

10.8. Загрязнение почв Загрязнение почв пестицидами в Приморье пока изучено недостаточно. Контролирующих организаций, определяющих их содержание в почве, нет. Анализ немногочисленных данных позволяет предположить, что загрязнение пестицидами вызвано безграмотным их