Реакция получения оксида серы 4 из серы. Оксид серы (IV) и сернистая кислота

Строение молекулы SO2

Строение молекулы SO2 аналогично строению молекулы озона. Атом серы находится в состоянии sp2-гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.

Строение соответствует следующим резонансным структурам:

В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.

Соединения серы +4 – проявляют окислительно-восстановительную двойственность, но с преобладанием восстановительных свойств.

1. Взаимодействие SO2 c кислородом

2S+4О2 + О 2 S+6О

2. При пропускании SO2 через сероводородную кислоту образуется сера.

S+4О2 + 2Н2S-2 → 3So + 2 Н2О

4 S+4 + 4 → So 1 - окислитель (восстановление)

S-2 - 2 → Sо 2 - восстановитель (окисление)

3. Сернистая кислота медленно окисляется кислородом воздуха в серную кислоту.

2H2S+4O3 + 2О → 2H2S+6O

4 S+4 - 2 → S+6 2 - восстановитель (окисление)

О + 4 → 2О-2 1 - окислитель (восстановление)

Получение:

1) оксида серы (IV) в промышленности:

горение серы:

обжиг пирита:

4FeS2 + 11O2 = 2Fe2O3

в лаборатории:

Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O

Сернистый газ , предупреждая брожение, облегчает осаждение загрязняющих веществ, обрывков тканей винограда с болезнетворной микрофлорой и позволяет проводить алкогольное брожение на чистых культурах дрожжей с целью увеличения выхода этилового спирта и улучшении состава других продуктов алкогольного брожения.

Роль сернистого газа таким образом не ограничивается антисептирующими действиями, оздоровляющими среду, но и распространяется на улучшение технологических условий брожения и хранения вина.

Эти условия при правильном использовании сернистого газа (ограничение дозировки и времени соприкосновения с воздухом) ведут к повышению качества вин и соков, их аромата, вкуса, а также прозрачности и цвета - свойств, связанных с устойчивостью вина и сока к помутнениям.

Сернистый газ - самый распространенный загрязнитель воздуха. Он выделяется всеми энергетическими установками при сжигании органического топлива. Сернистый газ может также выделяться предприятиями металлургической промышленности (источник -коксующиеся угли), а также рядом химических производств (например, производство серной кислоты). Он образуется при разложении содержащих серу аминокислот, входивших в состав белков древних растений, образовавших залежи угля, нефти, горючих сланцев.


Находит применение в промышленности для беления различных продуктов: сукна, шелка, бумажной массы, перьев, соломы, воска, щетины, конского волоса, пищевых продуктов, для дезинфекции фруктов и консервов и т. д. В качестве побочного продукта С. г. образуется и выделяется в воздух рабочих помещений в ряде производств: серной к-ты, целлюлезы, при обжиге руд, содержащих, сернистые металлы, в травилках на металлозаводах, при производстве стекла, ультрамарина и др., весьма часто С. г. содержится в воздухе котельных и зольных помещений, где он образуется при сжигании содержащих серу углей.

При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

SO2 + H2O ↔ H2SO3

Сернистая кислота диссоциирует ступенчато:

H2SO3 ↔ H+ + HSO3- (первая ступень, образуется гидросульфит – анион)

HSO3- ↔ H+ + SO32- (вторая ступень, образуется анион сульфит)

H2SO3 образует два ряда солей - средние (сульфиты) и кислые (гидросульфиты).

Качественной реакцией на соли сернистой кислоты является взаимодействие соли с сильной кислотой, при этом выделяется газ SO2 с резким запахом:

Na2SO3 + 2HCl → 2NaCl + SO2 + H2O 2H+ + SO32- → SO2 + H2O

Часть I

1. Сероводород.
1) Строение молекулы:

2) Физические свойства: бесцветный газ, с резким запахом тухлых яиц, тяжелее воздуха.

3) Химические свойства (закончите уравнения реакций и рассмотрите уравнения в свете ТЭД или с позиций окисления-восстановления).

4) Сероводород в природе: в виде соединений – сульфидов, в свободном виде – в вулканических газах.

2. Оксид серы (IV) – SO2
1) Получение в промышленности. Запишите уравнения реакций и рассмотрите их с позиций окисления-восстановления.

2) Получение в лаборатории. Запишите уравнение реакции и рассмотрите её в свете ТЭД:

3) Физические свойства: газ с резким удушливым запахом.

4) Химические свойства.

3. Оксид серы (VI)- SO3.
1) Получение синтезом из оксида серы (IV):

2) Физические свойства: жидкость, тяжелее воды, в смеси с серной кислотой – олеум.

3) Химические свойства. Проявляет типичные свойства кислотных оксидов:

Часть II

1. Охарактеризуйте реакцию синтеза оксида серы (VI) по всем классификационным признакам.

а) каталитическая
б) обратимая
в) ОВР
г) соединения
д) экзотермическая
е) горения

2. Охарактеризуйте реакцию взаимодействия оксида серы (IV) с водой по всем классификационным признакам.

а) обратимая
б) соединения
в) не ОВР
г) экзотермическая
д) некаталитическая

3. Объясните, почему сероводород проявляет сильные восстановительные свойства.

4. Объясните, почему оксид серы (IV) может проявлять как окислительные, так и восстановительные свойства:

Подтвердите этот тезис уравнениями соответствующих реакций.

5. Сера вулканического происхождения образуется в результате взаимодействия сернистого газа и сероводорода. Запишите уравнения реакции и рассмотрите с позиций окисления-восстановления.


6. Запишите уравнения реакций переходов, расшифровав неизвестные формулы:


7. Напишите синквейн на тему «Сернистый газ».
1) Сернистый газ
2) Удушливый и резкий
3) Кислотный оксид, ОВР
4) Используется для получения SO3
5) Серная кислота H2SO4

8. Используя дополнительные источники информации, в том числе и Интернет, подготовьте сообщение о токсичности сероводорода (обратите внимание на его характерный запах!) и первой помощи при отравлении этим газом. Запишите план сообщения в особой тетради.

Сероводород
Бесцветный газ с запахом тухлых яиц. Обнаруживается в воздухе по запаху даже в малых концентрациях. В природе встречается в воде минеральных источников, морей, вулканических газах. Образуется при разложении белков без доступа кислорода. Может выделяться в воздух в ряде производств химической, текстильной промышленности, при добыче и переработке нефти, из канализации.
Сероводород - сильный яд, вызывающий острые и хронические отравления. Оказывает местное раздражающее и общетоксическое действие. При концентрации 1,2 мг/л отравление развивается молниеносно, смерть наступает вследствие острого угнетения процессов тканевого дыхания. При прекращении воздействия даже при тяжелых формах отравления пострадавший может быть возвращен к жизни.
При концентрации 0,02-0,2 мг/л наблюдается головная боль, головокружение, стеснение в груди, тошнота, рвота, понос, потеря сознания, судороги, поражение слизистой оболочки глаз, конъюнктивит, светобоязнь. Опасность отравления увеличивается в связи с потерей обоняния. Постепенно нарастает сердечная слабость и нарушение дыхания, коматозное состояние.
Первая помощь - удаление пострадавшего из загрязненной атмосферы, вдыхание кислорода, искусственное дыхание; средства, возбуждающие дыхательный центр, согревание тела. Рекомендуются также глюкоза, витамины, препараты железа.
Профилактика - достаточная вентиляция, герметизация некоторых производственных операций. При спуске рабочих в колодцы и емкости, содержащие сероводород, они должны обязательно пользоваться противогазами и спасательными поясами на тросах. Обязательна газоспасательная служба в шахтах, в местах добычи и на предприятиях по переработке нефти.

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Оксид серы (IV) применяется также для получения различных солей сернистой кислоты. Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Поскольку серная кислота двухосновна, она образует два ряда солей: средние - сульфаты, например Na2SO4, и кислые - гидросульфаты, например NaHSO4.

Растворяется также в этаноле и се́рной кислоте. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. Образование белого осадка BaSO4(нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Сернистая кислота существует только в растворе. Триоксид серы проявляется кислотные свойства. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты. Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства.

Вопрос: Какие химические свойства кислот вы знаете? Используется также в качестве консерванта (пищевая добавка Е220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. 4. Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами.

Таким образом, SО2, сернистая кислота и ее соли могут про­являть как окислительные, так и восстановительные свойства. Сероводород идет на производство серы, сульфитов, тиосульфатов и серной кислоты, в лабораторной практике – для осаждения сульфидов. Применяется в производстве фосфорной, соляной, борной, плавиковой и др. кислот.

Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту. Химические свойства серной кислоты в значительной степени зависят от её концентрации. Медный купорос CuSO4 5Н2O используют в сельском хозяйстве для борьбы с вредителями и болезнями растений.

Соединения серы со степенью окисления +1

3. Напишите уравнения реакций, характеризующих свойства разбавленной серной кислоты как электролита. Пластическая сера темного цвета и способна растягиваться, как резина. Процесс окисления одного оксида в другой является обратимым. Тепловые эффекты химических реакций. Периодическое изменение свойств оксидов, гидроксидов, водородных соединений химических элементов. Физические и химические свойства водорода.

Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы.

Разнообразие форм триоксида серы связано со способностью молекул SO3 полимеризоваться благодаря образованию донорно-акцепторных связей. Полимерные структуры SO3 легко переходят друг в друга, и твердый SO3 обычно состоит из смеси различных форм, относительное содержание которых зависит от условий получения серного ангидрида.

Железный купорос FеSО4 7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями. Глауберова соль» (мирабилит) Nа2SO4 10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные.

Эти реакции лучше проводить с разбавленной серной кислотой. Для серной кислоты характерны ионообменные реакции. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Задание: Составьте уравнение диссоциации сернистой кислоты.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Тиосульфат натрия содержит два атома серы в различных степенях окисления и проявляет восстановительные свойства.

SO2 обесцвечивает органические красителя и применяется для отбеливания шелка, шерсти и соломы. Концентрированная серная кислота служит для очистки нефтепродуктов от сернистых и непредельных органических соединений. Благодаря высокой гигроскопичности применяется для осушки газов, для концентрирования азотной кислоты.

Сероводород и сульфиды. При растворении сероводорода в воде образуется слабая сероводородная кислота, соли которой называют сульфидами. Соли сернистой кислоты, как двухосновной, могут быть средними - сульфитами, например сульфит натрия Na2SO3, и кислыми - гидросульфитами, например гидросульфит натрия NaHSO3.

Применяется он также и в качестве растворителя в лабораториях. Учитель: Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы (IV) и воду, поэтому существует только в водных растворах. В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой. Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Оксид серы(IV) обладает кислотными свойствами, которые проявляются в реакциях с веществами, проявляющими основные свойства. Кислотные свойства проявляются при взаимодействии с водой. При этом образуется раствор сернистой кислоты:

Степень окисления серы в сернистом газе (+4) обусловливает восстановительные и окислительные свойства сернистого газа:

вос-тель: S+4 – 2e => S+6

ок-тель: S+4 + 4e => S0

Восстановительные свойства проявляются в реакциях с сильными окислителями: кислородом, галогенами, азотной кислотой, перманганатом калия и другими. Например:

2SO2 + O2 = 2SO3

S+4 – 2e => S+6 2

O20 + 4e => 2O-2 1

С сильными восстановителями газ проявляет окислительные свойств. Например, если смешать сернистый газ и сероводород, то они взаимодействуют при обычных условиях:

2H2S + SO2 = 3S + 2H2O

S-2 – 2e => S0 2

S+4 + 4e => S0 1

Сернистая кислота существует только в растворе. Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. При добавлении к сернистой кислоте щёлочи образуются соли. Сернистая кислота даёт два ряда солей: средние – сульфиты и кислые – гидросульфиты.

Оксид серы(VI)

Триоксид серы проявляется кислотные свойства. Он бурно реагирует с водой, при этом выделяется большое количество теплоты. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты.

SO3 + H2O = H2SO4

Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства. Например, он окисляет галогениды, неметаллы с низкой электроотрицательностью:

2SO3 + C = 2SO2 + CO2

S+6 + 2e => S+4 2

C0 – 4e => C+4 2

Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные. Так же активно она взаимодействует с органическими веществами.

Кислотно-основные реакции

Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Эти реакции лучше проводить с разбавленной серной кислотой. Поскольку серная кислота является двухосновной, то она может образовывать как средние соли (сульфаты), так и кислые (гидросульфаты).

Ионообменные реакции

Для серной кислоты характерны ионообменные реакции. При этом она взаимодействует с растворами солей, образуя осадок, слабую кислоту либо выделяя газ. Эти реакции осуществляются с большей скоростью, если брать 45%-ную или ещё более разбавленную серную кислоту. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Окислительно-восстановительные реакции

Наиболее ярко серная кислота проявляет свои свойства в окислительно-восстановительных реакциях, так как в её составе сера имеет высшую степень окисления +6. Окислительные свойства серной кислоты можно обнаружить в реакции, например, с медью.

В молекуле серной кислоты два элемента-окислителя: атом серы с С.О. +6 и ионы водорода H+. Медь не может быть окислена водородом в степени окисления +1, но сера может. Это является причиной окисления серной кислотой такого неактивного металла, как медь.