Гравитационное линзирование. Самые потрясающие примеры гравитационных линз: Фото

Сегодня мы расскажем вам о слабом гравитационном линзировании. Поводом для этого послужила профессора Маттиаса Бартельманна из университета теоретической физики Гейдельберга, которую он написал специально для образовательного проекта Scholarpedia.

Сначала немного истории: идея о том, что массивные тела способны отклонять свет, восходит к Исааку Ньютону. В 1704 году он писал в своей книге «Оптика»: «...не оказывают ли влияния тела на свет на расстоянии и этим влиянием отклоняя его лучи; и не тем ли сильнее это влияние, чем меньше расстояние [между телом и лучом света]?» Долгое время сама постановка такого вопроса была противоречивой, потому что ньютоновская физика работает только с телами, обладающими массой, а дебаты по поводу природы света, свойств и наличия массы у его частиц шли еще добрых два столетия.

Тем не менее, в 1804 году немецкий астроном Иоганн фон Зольднер , предположив наличие массы у еще не открытых к тому времени фотонов, смог рассчитать угол, на который отклонится свет от далекого источника, если он «чиркнет» по поверхности Солнца и долетит до Земли - луч должен был отклоняться на 0,83 угловой секунды (это примерно размеры копеечной монеты с расстояния 4 километров).

Следующий большой шаг в изучении взаимодействия света и гравитации сделал Альберт Эйнштейн. Его работы по об ей теории относительности заменили классическую теорию тяготения Ньютона, где присутствуют силы, на геометрическую. В этом случае масса фотонов уже не важна - свет будет отклоняться просто потому, что само пространство вблизи массивного предмета искривлено. Еще не окончив работы по ОТО, Эйнштейн рассчитал угол отклонения луча света, проходящего вблизи Солнца и получил... в точности те же 0,83 угловой секунды, что и фон Зольднер за сто лет до него. Лишь пятью годами позже, завершив работы над ОТО, Эйнштейн понял, что нужно учитывать не только пространственную, но и временну ю компоненту кривизны нашего четырехмерного пространства-времени. Это удвоило расчетный угол отклонения.

Давайте попробуем получить этот же угол. Проходя мимо массивного тела, луч света отклоняется, потому что двигается прямо, но в искривленном пространстве. С точки зрения Эйнштейна, пространство и время равноправны, значит, меняется и время, за которое свет дойдет до нас. Следовательно, меняется скорость света.

Скорость света, проходящего в поле тяготения линзы, будет зависеть от гравитационного потенциала линзы и будет меньше скорости света в вакууме

Это не нарушает никаких законов - скорость света действительно может меняться, если свет идет сквозь какое-то вещество. То есть, по Эйнштейну, отклонение света массивным предметом равносильно его прохождению сквозь некую прозрачную среду. Погодите, это же напоминает коэффициент преломления линзы, который мы все изучали в школе!

Отношение двух скоростей света - это и есть знакомый нам со школы коэффициент преломления

Теперь, зная скорость света в линзе, можно получить что-то, что можно измерить на практике, - например, угол отклонения. Для этого нужно применить один из фундаментальных постулатов природы - принцип Ферма, согласно которому луч света двигается так, чтобы минимизировать оптическую длину пути. Записав его на языке математики, мы получим интеграл:


Угол отклонения будет равен интегралу от градиента гравитационного потенциала

Решать его не надо (да это и очень трудно), главное тут - увидеть двойку перед знаком интеграла. Это та самая двойка, которая появилась у Эйнштейна при учете пространственной и временно й компонент и которая увеличила угол отклонения в два раза.

Чтобы взять интеграл, применяют аппроксимацию (то есть упрощенное и приближенное вычисление). Для данного конкретного случая удобнее использовать приближение Борна, которое пришло из квантовой механики и было хорошо известно Эйнштейну:


Та самая аппроксимация Борна для упрощенного вычисления угла отклонения


Подставляя известные для Солнца значения в формулу выше и переводя радианы в угловые секунды, полчаем искомый ответ

Знаменитая экспедиция под руководством Эддингтона наблюдала за солнечным затмением 1919 года в Африке, и звезды, которые во время затмения были рядом с солнечным диском, отклонились на угол от 0,9 до 1,8 угловой секунды. Это было первое экспериментальное подтверждение общей теории относительности.

Тем не менее ни сам Эйнштейн, ни его коллеги не задумывались о практическом использовании этого факта. Действительно - Солнце слишком яркое, а отклонения заметны только у звезд вблизи его диска. Значит, наблюдать эффект можно только во время затмений, да и никаких новых данных ни про Солнце, ни про другие звезды это астрономам не дает. В 1936 году чешский инженер Руди Мандль посетил ученого в Принстоне и попросил его рассчитать угол отклонения звезды, свет от которой пройдет рядом с другой звездой (то есть любой звездой кроме Солнца). Эйнштейн сделал необходимые расчеты и даже опубликовал статью, но в ней заметил, что считает эти эффекты пренебрежимо малыми и не поддающимися наблюдению. Однако за идею ухватился астроном Фриц Цвикки , который к этому времени плотно занимался изучением галактик (то, что помимо Млечного Пути существуют другие галактики, стало известно за восемь лет до этого). Он первым понял, что в качестве линзы может выступать не только звезда, но и целая галактика и даже их скопление. Подобная гигантская масса (миллиарды и триллионы масс Солнца) отклоняют свет достаточно сильно, чтобы это можно было зарегистрировать, и в 1979 году, к сожалению, через пять лет после смерти Цвикки, была обнаружена первая гравитационная линза - массивная галактика, которая отклонила свет далекого квазара, проходящий сквозь нее. Сейчас же линзы, вопреки прогнозам Эйнштейна используют совсем не для проверки ОТО, а для огромного числа исследований самых крупных объектов Вселенной.

Различают сильное, слабое и микролинзирование. Отличие между ними заключается в расположении источника, наблюдателя и линзы, а также в массе и форме линзы.

Сильное гравитационное линзирование характерно для систем, где источник света находится близко к массивной и компактной линзе. В результате свет, расходящийся от источника по разные стороны от линзы, огибает ее, искривляется и доходит до нас в виде нескольких изображений одного и того же предмета. Если источник, линза и наблюдатель (то есть мы) находятся на одной оптической оси, то можно увидеть несколько изображений одновременно. Крест Эйнштейна - это классический пример сильного гравитационного линзирования. В более общем случае линза сильно искажает форму объекта, делая его похожим на арку.

Пример сильного линзирования далекой галактики (белый обьект) массивной более близкой к нам галактикой (бирюзовый объект)

Wikimedia Commons

Слабое гравитационное линзирование, о котором и пойдет в основном рассказ в нашем материале, не способно сформировать ни четкого изображения, ни даже яркой красивой арки - для этого линза слишком слаба. Однако изображение все равно деформируется, и это дает ученым в руки очень сильный инструмент: известных нам примеров сильного линзирования немного, а вот слабого, для которого достаточно, чтобы две крупные галактики или два скопления оказались на угловом расстоянии около одной секунды дуги, вполне хватает для статистического изучения галактик, скоплений, темной материи, реликтового излучения и всей истории Вселенной от Большого взрыва.

И, наконец, гравитационное микролинзирование - это временное увеличение яркости источника линзой, которая оказалась на оптической оси между ним и нами. Обычно эта линза недостаточно массивна, чтобы сформировать четкое изображение или даже арку. Однако она все равно фокусирует часть света, который иначе бы до нас не дошел, и это делает далекий объект ярче. Этот метод используют для поиска (а точнее говорить - случайного обнаружения) экзопланет.

Напомним, что в этом обзоре мы, следуя за статьей профессора Бартельманна, ограничимся обсуждением именного слабого линзирования. Очень важно, что слабое линзирование, в отличие от сильного, не может создавать ни арок, ни множественных изображений одного и того же источника. Не может даже сколько-нибудь значительно увеличивать яркость. Все, на что оно способно - немного изменить форму далекой галактики. На первый взгляд, это кажется мелочью - мало ли в космосе эффектов, которые искажают объекты? Пыль поглощает свет, расширение Вселенной сдвигает все длины волн, свет, доходя до Земли, рассеивается в атмосфере, а потом еще проходит сквозь неидеальную оптику телескопов - где уж тут заметить, что галактика стала чуть более вытянутой (учитывая, что мы и не знали, какой она была изначально)? Однако тут на помощь приходит статистика - если на небольшом участке неба у галактик есть предпочтительное направление вытянутости - значит, возможно, мы их видим через слабую линзу. Несмотря на то, что современные телескопы могут видеть порядка 40 галактик в квадрате со сторонами в одну угловую минуту (это размеры МКС, как мы ее видим с Земли), искажение, вносимое линзированием в форму галактики, настолько незначительно (не превышает нескольких процентов), что нам нужны очень большие и очень мощные телескопы. Такие, например, как четыре восьмиметровых телескопа комплекса VLT в Чили, или 3,6-метровый телескоп CFHT , расположенный на Гавайях. Это не просто очень большие телескопы - они к тому же могут получать изображение большого участка неба одним снимком, вплоть до одного квадратного градуса (в отличие, например, от очень мощного телескопа Хаббла, один кадр которого покрывает квадрат со стороной всего 2,5 угловой минуты). К настоящему времени опубликовано уже несколько обзоров площадью чуть более 10 процентов неба, которые дали достаточно данных для поиска слабо линзированных галактик.


Карта распределения материи, реконструированная после расчетов эффектов слабого гравилинзирования; белыми точками обозначены галактики или скопления галактик


Надо сказать, что у метода поиска гравитационных линз по ориентации галактик есть несколько допущений. Например, что галактики во Вселенной ориентированы произвольно, а это не обязательно так - с 1970-х годов астрофизики рассуждают о том, должны ли скопления иметь какую-то упорядоченную ориентацию или нет. Последние исследования показывают, что скорее всего нет - даже в ближайших и наиболее массивных скоплениях галактики ориентированы случайным образом, но окончательно этот вопрос не закрыт. Однако, иногда физика бывает и на стороне ученых - гравитационные линзы ахроматичны, то есть, в отличие от линз обыкновенных, они отклоняют свет всех цветов совершенно одинаково и нам не приходится гадать: галактика выглядит красной, потому что она на самом деле красная, или просто потому, что все остальные цвета пролетели мимо нашей планеты?


Иллюстрация эффектов слабого гравитационного линзирования. Слева показаны наиболее заметные последствия - появление вытянутости. В центре и справа - влияние параметров второго и третьего порядков - смещение центра источника и треугольная деформация

Matthias Bartelmann et al. 2016


А есть ли какое-нибудь практическое применение у этого сложного метода? Есть, и не одно - слабое гравитационное линзирование помогает нам в изучении распределения темной материи, а также крупномасштабной структуры Вселенной. Вытянутость галактик вдоль какой-то оси может достаточно точно предсказать массу линзы и ее концентрацию в пространстве. Сравнивая получившуюся теоретическую массу с массой видимых галактик, которую мы умеем достоверно определять по данным оптических и инфракрасных телескопов, можно измерить массу темной материи и ее распределение в той галактике или скоплении галактик, которое выступает в качестве линзы. Нам, например, уже известно, что гало (то есть облако) темной материи вокруг отдельных галактик почему-то более плоское, чем мы думали раньше. Еще одним применением линзирования может стать открытие новых скоплений галактик - до сих пор идут дебаты, может ли у нескольких галактик быть одно гало темной материи на всех, но похоже, что в некоторых случаях это действительно так. И тогда это гало будет служить линзой и укажет на то, что эти галактики не просто находятся рядом друг с другом, а входят в скопление, то есть гравитационно-связанную систему, в которой движение каждой из них определяется влиянием всех участников скопления.

Галактики - это очень хорошо, но можно ли заглянуть с помощью гравитационного линзирования еще дальше - в прошлое, когда галактик и звезд еще не было? Оказывается, можно. Реликтовое излучение - электромагнитное излучение, появившееся во Вселенной всего через 400 000 лет после Большого Взрыва - присутствует в каждом кубическом сантиметре пространства последние 13,6 миллиарда лет. Все это время оно распространяется в разные стороны и несет в себе «отпечаток» ранней Вселенной. Одним из ключевых направлений астрофизики последних десятилетий было изучение реликтового излучения с целью найти в нем неоднородности, которые могли бы объяснить, как из такой симметричной и анизотропной (в теории) изначальной Вселенной могла появиться такая неоднородная и неупорядоченная структура, где в одном месте скопление тысяч галактик, а в другом - пустота на многие кубические мегапарсеки.

Спутники РЕЛИКТ-1 , COBE , WMAP , Planck со все большей точностью измеряли однородность реликтового излучения. Сейчас мы видим его настолько подробно, что становится важным «очищать» его от различных шумов, вносимых источниками, не связанными с изначальным распределением вещества во Вселенной - например, из-за эффекта Сюняева-Зельдовича или того самого слабого гравитационного линзирования. Это тот случай, когда его регистрируют, чтобы потом максимально точно удалить из снимков реликтового излучения и продолжать считать - укладывается ли его распределение на небе в стандартную космологическую модель. Кроме того, даже самые точные снимки реликтового излучения не могут рассказать нам всего о Вселенной - это похоже на задачу, где у нас всего одно уравнение, в котором несколько неизвестных (например, плотность барионной материи и спектральная плотность темной материи). Слабое гравитационное линзирование, пускай оно и не дает сейчас таких точных результатов (а иногда и вообще плохо согласуется с данными прочих исследований - см. картинку ниже), но это то самое второе независимое уравнение, которое поможет определить вклад каждого неизвестного в общую формулу Вселенной.

Коэффициентами преломления

Невероятные возможности

Эволюция телескопов привела нас к созданию гигантов с диаметром 30 метров и фокусным расстоянием почти полкилометра (таким будет строящийся великан ТМТ). Но природа уже создала гигантские оптические системы, нам надо только грамотно их использовать. Невозможно построить телескоп размером с Солнечную систему, да и незачем, ведь он уже существует!

Еще в 1912 году гениальный Эйнштейн предсказал, что гравитация массивного тела будет искривлять световые лучи. В 1935 году чешский инженер Мандл в своем письме Эйнштейну высказал предположение, что близкие к нам звезды могут искажать свет более далеких звезд, создавая эффект гравитационной линзы . В своем ответе, опубликованном в журнале Science в 1936 году, Эйнштейн согласился с существованием такого явления, но выразил сомнение в возможности его использования.

Кольца Эйнштейна

В 1970 году группой астрономов в обсерватории Китт-Пик в Аризоне был обнаружен двойной квазар QSO 0957+561 A/B, компоненты которого были расположены очень близко и были похожи по характеристикам. При более подробном изучении оказалось, что это один и тот же объект, изображение которого раздвоено гравитационным линзированием далекой галактики. В 1987 году астрономом Жаклин Хьюит с помощью радиотелескопа было впервые зарегистрировано изображение далекого источника сигнала, гравитационным линзированием превращенное в так называемое кольцо Эйнштейна. На сегодняшний день открыто множество гравитационных линз, превращающих далекие объекты в кольца, двойные кольца и их фрагменты.

Гравитационная линза Солнца

Хотя все открытые на сегодняшний день гравитационные линзы во вселенной – галактики, звезды тоже могут сыграть такую роль. Ближайшая точка гравитационного фокуса нашей звезды (откуда вокруг Солнца можно увидеть кольцо Эйнштейна), расположена от него в 550 астрономических единицах (1 а. е. это среднее расстояние от Земли до Солнца). Концепция космического аппарата, который сможет добраться до гравиационного фокуса Солнца, была предложена еще в 1979 году Воном Эшлеманом из Стэнфордского университета, позже эта идея неоднократно рассматривалась многими известными учеными. В 190-х годах эта идея получила второе дыхание благодаря итальянскому астроному Клаудио Макконе, предложившему проект FOCAL (Fast Outgoing Cyclopean Astronomical Lens), цель которого – отправить космический аппарат к гравитационному фокусу Солнца.

Холодная реальность

Впрочем, на сегодняшний день отправка космического аппарата на такое большое расстояние – это теория. Для полета подобного аппарата в ближайшую точку гравитационного фокуса понадобится более 50 лет. Но для получения качественного изображения нужно забраться еще дальше, чтобы не получить помехи от солнечной короны. Но это только начало проблем, ведь возникнут большие трудности с наведением оптики. Для поворота такого телескопа даже на один градус, космический аппарат нужно переместить на 10 а. е., что составляет расстояние от Земли до Сатурна. В реальности подобную систему можно применять для наблюдения только одного, заранее выбранного объекта, например, экзопланеты.

Впрочем, размер изображения планеты величиной с Землю на расстоянии около десяти световых лет в фокальной плоскости составляет многие километры.

Один вместо тысяч

Возможности, которые открывает доступ к гравитационной линзе Солнца, очень велики. Подобный способ позволит получать детализированные изображения далеких звезд и галактик, для которых понадобились бы мощности тысяч обычных телескопов

Клаудио Макконе, руководитель направления космических научных исследований Международной академии астронавтики (IAA) и председатель постоянного комитета IAA по SETI (поиску внеземного разума): «Где бы в космосе ни были разумные существа вроде нас, они будут стремиться исследовать Вселенную. И они, и мы хотим пролить свет на самые дальние уголки космоса. Для этой цели мы строим все более мощные телескопы различных типов. Но по мере накопления знаний любая цивилизация начинает понимать, что природой дан ей великий дар: линза столь мощная, что никакая приемлемая технология не способна повторить ее или превзойти. Эта линза - звезда цивилизации, в нашем случае - Солнце. Гравитация любой звезды искривляет пространство, влияя на траекторию любой частицы или волны таким образом, что создает изображение объекта, как это делают знакомые нам обычные линзы».

Гравитация [От хрустальных сфер до кротовых нор] Петров Александр Николаевич

Гравитационные линзы

Гравитационные линзы

Почему попугаи за номером один, два и три…, похожи друг на друга до такой степени?

Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»

С понятием «гравитационная линза», которое мы ввели выше, связаны бурно развивающиеся в последнее время области исследований в астрофизике и космологии. Из российских ученых активными теоретиками-исследователями в этой области являются Михаил Сажин и Александр Захаров. Изложение этой части будет во многом соответствовать статье Захарова «Гравитационные линзы» на сайте pereplet.ru.

По-видимому первый, кто использовал термин «линза» для отклонения луча света гравитационным полем тела, был английский физик Оливер Лодж (1851–1949) в 1919 году. Однако он отметил, что «гравитационное поле действует как линза, но она не имеет фокусной длины». Петербургский физик Орест Хвольсон (1852–1934) в 1924 году опубликовал короткую заметку, в которой заметил, что в случае, когда рассматривается отклонение луча света далекой звезды звездой-линзой, возможно возникновение второго изображения фоновой звезды, но угол между двумя изображениями столь мал, что эти изображения нельзя разрешить с помощью наземного телескопа. В случае, когда наблюдатель, линза и источник находятся на одной прямой, возникает изображение типа кольца.

Аналогичные результаты опубликовал Эйнштейн в 1936 году, где также описывалось появление кольца в случае, если наблюдатель, линза и источник находятся на одной прямой. Эти результаты более известны, возможно потому, что журнала «Science», где опубликована статья Эйнштейна, более популярен по сравнению с потсдамским астрономическим журналом «Astronomische Nachrichten», где опубликована статья Хвольсона. Поэтому кольца гравитационной линзы называют обычно «кольцами Эйнштейна», значительно реже «кольцами Хвольсона-Эйнштейна». Эйнштейн также заметил, что «конечно нельзя надеяться на то, что удастся прямо наблюдать это явление». Нужно сказать, правда, что и Хвольсон, и Эйнштейн рассматривали случай, когда и источник, и гравитационная линза являются звездами.

Однако в 1937 году американский астроном швейцарского происхождения Фриц Цвикки (1898–1974) пришел к выводу, что эффект может быть наблюдаем в случае, если источником является далекая яркая галактика, а гравитационной линзой – более близкая галактика. В публикации он ссылается на идеи нашего соотечественника, представителя первой русской эмиграции инженера Владимира Зворыкина (1888–1982), создателя современного телевидения, и чешского инженера Руди Мандла. То же самое написал Эйнштейн в своей работе: «Некоторое время тому назад меня посетил Руди Мандл и попросил опубликовать результаты небольшого расчета, который я провел по его просьбе. Уступая его желанию, я решил опубликовать эту заметку». Так что, может и была борьба за приоритеты, но исследователи вели себя очень корректно в отношении чужих идей и результатов. А ссылка Цвикки демонстрирует широкое влияние на развитие мировой науки российской научной школы.

Насколько плодотворным было замечание Зворыкина и, безусловно, последующий анализ Цвикки, стало ясно спустя более сорока лет. В 1979 году группа английских астрономов обнаружила первую гравитационную линзу при наблюдении двойного квазара QSO 0957+16 A, B: угловое расстояние между изображениями порядка 6? , а гравитационной линзой являлась галактика, рис. 7.4. Таким образом, предсказание Цвикки подтвердилось. На настоящий момент открыто более полусотни объектов, которые представляют результат гравитационного линзирования, и это число постоянно растет. Замечательный космолог, астрофизик, физик-теоретик Яков Зельдович (1914–1987), рис. 7.5, с его широчайшим научным кругозором, не мог не оценить важности этого открытия и обратил на него внимание одного из своих учеников – Михаила Сажина. Сейчас как теоретическое изучение этого явления, так и поиски новых наблюдательных подтверждений активно продолжаются.

Рис. 7.4. Первая гравитационная линза

Теперь расскажем о физике явления. Действительно, как было замечено Лоджем, гравитационные линзы не имеют «фокусного расстояния» в том смысле, как ее имеют оптические линзы. Поэтому их действие оказывается несколько непривычным. Они также «собирают» свет, при некоторых условиях это приводит к повышению яркости наблюдаемого объекта. Но более выдающимся их проявлением является «построение» двух , а иногда нескольких изображений этого объекта. Обратимся к схеме на рис. 7.6. На ней проиллюстрировано как действует точечная гравитационная линза. Собственно объект наблюдения (квазар) находится в точке S, линза в точке D, а наблюдатель в точке O .

Рис. 7.5. Яков Зельдович

Два луча (жирные линии) отклоняются линзой так, что наблюдатель видит два изображения квазара на небесной сфере: точки S 1 и S 2 .

В случае, если точечный источник находится точно на оси симметрии, изображение является кольцом, которое обсуждалось в работах Хвольсона и Эйнштейна. Однако наблюдать подобное кольцо в реальности в случае точечного источника невозможно, поскольку при самом малом изменении параметров кольцо исчезает и появляется два точечных изображения.

Чаще всего обнаружить гравитационные линзы можно по наблюдениям пар квазаров, которые имеют похожие спектры и временную переменность компонентов, отличающуюся лишь временным сдвигом, который может принимать значения для различных пар изображений от нескольких дней до нескольких лет!

Рис. 7.6. Геометрия точечной гравитационной линзы

В случае, когда источник не точечный, появление кольца в принципе возможно, хотя скорее будет два растянутых изображения в виде дуг. В реальных ситуациях или угловое расстояние между изображениями слишком мало, или линза имеет большую массу и большие размеры, так что ее нельзя рассматривать как материальную точку (как в первых наблюдаемых примерах гравитационных линз). Реальные эффекты гравитационного линзирования зависят от разных параметров, а число возможных изображений и сами изображения разнообразны.

Гравитационные линзы в настоящее время являются и важным инструментом астрономических исследований. С их помощью можно: 1) получить независимую от других методов исследований оценку параметров расширения Вселенной; 2) оценить массы гравитационных линз, большая часть которых испускает слишком мало электромагнитного излучения, чтобы их можно было обнаружить с помощью стандартных астрономических методов; 3) по наблюдаемому изменению формы удаленных фоновых галактик с помощью методов так называемого слабого гравитационного линзирования можно восстановить распределение поверхностной плотности удаленных скоплений галактик; 4) по характерному изменению наблюдаемой светимости фоновой звезды можно обнаружить невидимые объекты с массами порядка солнечной, то есть обнаружить так называемое микролинзирование. Это как раз то явление, которое Хвольсону и Эйнштейну казалось слишком недоступным для наблюдения.

Недавно, в 2007 году, было установлено, что одно из событий микролинзирования вызвано коричневым карликом – это почти невидимые объекты небольшой (по звездным меркам) массы. Таким образом, микролинзирование расширяет возможности исследования этих малодоступных для обнаружения и наблюдений, но очень интересных и важных тусклых звезд.

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 24 Черные дыры и гравитационные волны Основоположник теории внутреннего строения звезд выдающийся английский ученый А. С. Эддингтон был, как известно, крупнейшим знатоком общей теории относительности. Он впервые во время солнечного затмения в 1919 г. измерил

Из книги История лазера автора Бертолотти Марио

Гравитационные волны В 1919 г. Эйнштейн предсказал, что движущиеся массы производят гравитационные волны, распространяющиеся со скоростью света. К сожалению, амплитуда такого гравитационного излучения, испускаемого любым источником, созданным в лаборатории, слишком

Из книги Твиты о вселенной автора Чаун Маркус

140. Что такое гравитационные волны? Гравитационные волны являются гипотетическими волнами в структуре пространства-времени, движущимися со скоростью света, как рябь на поверхности пруда.Согласно общей теории относительности Эйнштейна, жесткое 4-мерное

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Глава 10 Гравитационные волны А синуса график волна за волной На ось ординат набегает. Студенческая песня Электромагнитные волны Развивая рассказ о создании новой теории гравитации ОТО, мы все время возвращались к идеям Ньютона и результатам его теории. Сейчас,

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Магнитные, электрические и гравитационные поля Силовые линии магнитных полей играют большую роль во Вселенной и очень важны для понимания «Интерстеллар», поэтому стоит поговорить о них, прежде чем углубиться в научные аспекты фильма.Наверное, на уроках физики вам

Из книги автора

7. Гравитационные пращи Управлять космическим кораблем вблизи Гаргантюа нелегко – из-за очень больших скоростей. Чтобы не погибнуть, планета, звезда или космический корабль должны противопоставить огромной гравитации Гаргантюа центробежную силу сравнимой величины.

Из книги автора

Гравитационные маневры NASA в Солнечной системе Давайте вернемся из мира вероятностей (то есть всего, что допускают законы физики) к реальным, без изысков, гравитационным пращам в уютных пределах нашей Солнечной системы (по состоянию на 2014 год).Возможно, вы слышали

Из книги автора

Гравитационные пращи у двойной черной дыры Третий способ – это моя собственная сумасбродная – крайне сумасбродная! – вариация одной из идей Дайсона .Представьте, что вы решили за несколько лет облететь изрядную часть Вселенной, совершив не просто

Из книги автора

16. Обнаружение червоточины: гравитационные волны Как люди в «Интерстеллар» могли обнаружить червоточину? У меня как физика есть любимая версия, о которой я сейчас поведаю, выйдя за рамки непосредственных событий «Интерстеллар». Разумеется, эта лишь мои догадки,

Из книги автора

Гравитационные волны и детекторы волн А теперь, прежде чем продолжить разговор об «Интерстеллар», я позволю себе удовольствие рассказать еще немного о гравитационных волнах.На рис. 16.6 – художественное изображение тендекс-линий двух черных дыр, которые вращаются

Из книги автора

Гравитационные волны от Большого взрыва В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был

Из книги автора

24. Гравитационные аномалии Гравитационная аномалия – это нечто такое, что связано с гравитацией и не укладывается в наши представления о Вселенной или не соответствует нашему пониманию законов физики, управляющих Вселенной: например падения книг

Из книги автора

Гравитационные аномалии в «Интерстеллар» В отличие от гравитационных аномалий, о которых я рассказал только что, в «Интерстеллар» гравитационные аномалии наблюдаются на Земле.Физики, начиная с самого Исаака Ньютона, усиленно искали аномалии на Земле. Находок было

Из книги автора

Глава 7. Гравитационные пращи О гравитационных пращах на более сложном уровне, чем в этой книге, см. статью в «Википедии» en.wikipedia.org/wiki/Gravity_assist, однако не верьте тому, что там говорится о пращах вокруг черных дыр: утверждение (по состоянию на 4 июля 2014 года): «Если

Из книги автора

Глава 16. Обнаружение червоточины: гравитационные волны Свежая информация о проекте ЛИГО и поиске гравитационных волн – на сайте научного коллектива ЛИГО ligo.org (в особенности см. разделы News и Magazine) и на сайте лаборатории ЛИГО ligo.caltech.edu; также см. фильм Кая Стаатса

Из книги автора

Глава 24. Гравитационные аномалии Подробную историю об открытии аномальной прецессии Меркурия и о поисках планеты Вулкан можно узнать из трактата историка науки Н. Т. Роузвера «Перигелий Меркурия. От Леверье до Эйнштейна» [Роузвер 1985], а также из более простого

Направление распространения электромагнитного излучения, подобно тому, как искривляет световой луч обычная линза .

Как правило, гравитационные линзы, способные существенно исказить изображение фонового объекта, представляют собой достаточно большие сосредоточения массы: галактики и скопления галактик. Более компактные объекты, например, звёзды, тоже отклоняют лучи света, однако на столь малые углы, что зафиксировать такое отклонение не представляется возможным. В этом случае можно лишь заметить кратковременное увеличение яркости объекта-линзы в тот момент, когда линза пройдёт между Землёй и фоновым объектом. Если объект-линза яркий, то заметить такое изменение нереально. Если же объект-линза не яркий или же не виден совсем, то такая кратковременная вспышка вполне может наблюдаться. События такого типа называются микролинзированием . Интерес здесь связан не с самим процессом линзирования, а с тем, что он позволяет обнаружить массивные и не видимые никаким иным способом плотности материи.

Ещё одним направлением исследований микролинзирования стала идея использования каустик для получения информации как о самом объекте-линзе, так и о том источнике, чей свет она фокусирует. Подавляющее большинство событий микролинзирования вполне вписывается в предположение, что оба тела сферической формы. Однако в 2-3 % всех случаев наблюдается сложная кривая яркости, с дополнительными короткими пиками, которая свидетельствует о формировании каустик в линзированных изображениях . Такая ситуация может иметь место, если линза имеет неправильную форму, например, если линза состоит из двух или более тёмных массивных тел. Наблюдение таких событий безусловно интересно для изучения природы тёмных компактных объектов. Примером успешного определения параметров двойной линзы с помощью изучения каустик может служить случай микролинзирования OGLE-2002-BLG-069 . Кроме того, имеются предложения по использованию каустического микролинзирования для выяснения геометрической формы источника, либо для изучения профиля яркости протяжённого фонового объекта, и в частности для изучения атмосфер звёзд-гигантов.

Теория

Уравнение гравитационного линзирования

Гравитационную линзу можно рассматривать как обычную линзу, но только с коэффициентом преломления, зависящим от положения. Тогда общее уравнение для всех моделей можно записать следующим образом :

где η - координата источника, ξ - расстояние от центра линзы до точки преломления (прицельный параметр) в плоскости линзы, D s , D d - расстояния от наблюдателя до источника и линзы соответственно, D ds - расстояние между линзой и источником, α - угол отклонения, вычисляемый по формуле:

где Σ - поверхностная плотность, вдоль которой "скользит" луч. Если обозначить характерную длину в плоскости линзы за ξ 0 , а соответствующую ей величину в плоскости источника за η 0 =ξ 0 D s /D l и ввести соответствующие безразмерные векторы x=ξ/ξ 0 и y=η/η 0 , то уравнение линзы можно записать в следующем виде:

Тогда, если ввести функцию, называемой потенциалом Ферма , можно записать уравнение следующим образом :

Временную задержку между изображениями также принято записывать через потенциал Ферма :

Иногда удобно выбрать масштаб ξ 0 =D l , тогда x и y это угловое положение изображения и источника соответственно.

См. также

  • SDSSJ0946+1006 - система с двойными кольцами Эйнштейна.

Ссылки

Литература

  • Захаров А.Ф. Гравитационные линзы и микролинзы. - М .: Янус-К, 1997. - ISBN 5-88929-037-1
  • ЧЕРЕПАЩУК А. М. Гравитационное микролинзирование и проблема скрытой массы.

Категории:

  • Астрофизика
  • Релятивистские и гравитационные явления
  • Астрономические явления
  • Астрономические объекты, открытые методом гравитационного микролинзирования

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная линза" в других словарях:

    Космич. тело с большой массой, гравитац. поле к рого искривляет (фокусирует) излучение более далёкого объекта, находящегося на одном луче зрения с гравитирующей массой. Г. л. создаёт неск. изображений объекта, в нек рых из к рых происходит… … Естествознание. Энциклопедический словарь

    Гравитационная линза - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды; отклонение света гравитационным полем предсказано А.Эйнштейном (1915), расчет вида… … Мир Лема - словарь и путеводитель

    Гравитационное линзирование света нейтронной звездой (модель) Гравитационная линза массивное тело (планета, звезда) или система тел (галактика, скопление галактик), искривляющая своим гравитационным полем направление распространения излучения,… … Википедия - Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия

    Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия

    Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия аудиокнига


Направление распространения электромагнитного излучения, подобно тому, как обычная линза изменяет направление светового луча.

Как правило, гравитационные линзы, способные существенно исказить изображение фонового объекта, представляют собой достаточно большие сосредоточения массы: галактики и скопления галактик. Более компактные объекты, например звёзды , тоже отклоняют лучи света, однако на столь малые углы, что зафиксировать такое отклонение в большинстве случаев не представляется возможным. В этом случае можно обычно лишь заметить кратковременное увеличение яркости объекта-линзы в тот момент, когда линза пройдёт между Землёй и фоновым объектом. Если объект-линза яркий, то заметить такое изменение практически невозможно. Если же объект-линза не яркий или же не виден совсем, то такая кратковременная вспышка вполне может наблюдаться. События такого типа называются микролинзированием . Интерес здесь связан не с самим процессом линзирования, а с тем, что он позволяет обнаружить массивные и не видимые никаким иным способом скопления материи.

Ещё одним направлением исследований микролинзирования стала идея использования каустик для получения информации как о самом объекте-линзе, так и о том источнике, чей свет она фокусирует. Подавляющее большинство событий микролинзирования вполне вписывается в предположение, что оба тела сферической формы. Однако в 2-3 % всех случаев наблюдается сложная кривая яркости, с дополнительными короткими пиками, которая свидетельствует о формировании каустик в линзированных изображениях . Такая ситуация может иметь место, если линза имеет неправильную форму, например, если она состоит из двух или более тёмных массивных тел. Наблюдение таких событий безусловно интересно для изучения природы тёмных компактных объектов. Примером успешного определения параметров двойной линзы с помощью изучения каустик может служить случай микролинзирования OGLE-2002-BLG-069 . Кроме того, имеются предложения по использованию каустического микролинзирования для выяснения геометрической формы источника, либо для изучения профиля яркости протяжённого фонового объекта, и в частности для изучения атмосфер звёзд-гигантов.

Наблюдения

Описание

Существует три класса гравитационных линз :

  1. Сильное гравитационное линзирование, вызывающее легко различимые искажения, такие как эйнштейновское кольцо, дуги и размноженные изображения.
  2. Слабое гравитационное линзирование, вызывающее лишь малые искажения в изображении объекта, который находится позади линзы (далее - объект фона). Эти искажения могут быть зафиксированы только после статистического анализа большого количества объектов фона, что позволяет найти небольшое согласованное искажение их изображений. Линзирование проявляется в небольшом растяжении изображения перпендикулярно направлению к центру линзы. Изучая форму и ориентацию большого количества отдалённых галактик фона, мы получаем возможность измерить линзирующее поле в любой области. Эти данные, в свою очередь, могут быть использованы, чтобы восстановить распределение масс в данной области пространства; в частности, этим методом можно исследовать распределение тёмной материи . Поскольку галактики сами по себе обладают эллиптической формой и искажения от слабого линзирования малы, для использования этого метода необходимо наблюдение большого числа галактик фона. Такого рода обзоры должны тщательно учитывать многие источники систематической погрешности : собственную форму галактик, пространственную функцию отклика светочувствительной матрицы, атмосферные искажения и т. д. Результаты этих исследований важны для оценки космологических параметров, для лучшего понимания и развития модели Лямбда-CDM , а также для того, чтобы обеспечить проверку непротиворечивости с другими космологическими наблюдениями.
  3. Микролинзирование не вызывает никакого наблюдаемого искажения формы, но количество света, принимаемое наблюдателем от объекта фона, временно увеличивается. Линзирующим объектом могут быть звёзды Млечного Пути их планеты, а источником света - звёзды отдалённых галактик или квазары , находящиеся на ещё более далёком расстоянии. В отличие от первых двух случаев, изменение наблюдаемой картины при микролинзировании происходит за характерное время от секунд до сотен дней. Микролинзирование позволяет оценить количество слабосветящихся объектов с массами порядка звёздных (например, белых карликов) в Галактике, которые могут вносить некоторый вклад в барионную компоненту тёмной материи. Кроме того, микролинзирование является одним из методов поиска экзопланет .

Гравитационное линзирование действует одинаково на все виды электромагнитного излучения , не только на видимый свет. Помимо вышеописанных обзоров галактик, слабое линзирование может изучаться по его влиянию на космическое микроволновое фоновое излучение . Сильное линзирование наблюдалось в радио- и рентгеновском диапазонах.

В случае сильного гравитационного линзирования, если наблюдается несколько изображений объекта фона, то свет от источника, идущий разными путями, будет приходить к наблюдателю в разное время; измерение этой задержки (например, от фонового квазара с переменной яркостью) позволяет оценить распределение масс вдоль луча зрения.

Поиск гравитационных линз

В прошлом большинство гравитационных линз было найдено случайно. Поиск гравитационных линз в северном полушарии (Cosmic Lens All Sky Survey, CLASS), который проводили при помощи сверхбольшой антенной решётки в Нью-Мексико, позволил обнаружить 22 новые линзирующие системы. Это открыло совершенно новые пути исследования от поиска очень далёких объектов до определения величин космологических параметров для лучшего понимания вселенной. [ ]

Подобное исследование с южного полушария позволило бы нам сделать большой шаг к завершению исследований с северного полушария, а также к выявлению новых объектов для изучения. Если такое исследование будет проведено при помощи хорошо откалиброванных и хорошо настроенных инструментов и данных, то можно ожидать результата, подобным тому, что было получено в ходе исследования с северного полушария. Примером подходящих данных являются данные, полученные с помощью австралийского телескопа AT20G на базе радиоинтерферометра АТКА. Так как данные были получены с помощью прибора, измеряющего точные данные, похожего на тот, что использовали в северном полушарии, стоит ожидать хороших результатов исследования. AT20G работает на частоте до 20 ГГц в радио полях электромагнитного спектра. Так как используется высокая частота, шансы найти гравитационные линзы вырастает, ведь повышается количество малых базовых объектов (например, квазаров). Это важно, так как проще обнаружить линзу на примере более простых объектов. Этот поиск включает в себя использование интерференционных методов определения примеров и наблюдение за ними в более высоком разрешении. Полное описание проекта сейчас готовится к публикации. [ ]

В 2009 г. в статье в Science Daily [где? ] группа учёных, возглавляемая космологом [кем? ] из Национальной лаборатории им. Лоуренса в Беркли , шагнула вперёд в использовании гравитационного линзирования для изучения более старых и меньших по размеру объектов, чем было возможно изучить ранее. Учёные утверждают, что слабое гравитационное линзирование улучшает качество измерений отдалённых галактик. [ ]

Теория

Гравитационную линзу можно рассматривать как обычную линзу, но только с коэффициентом преломления, зависящим от положения. Тогда общее уравнение для всех моделей можно записать следующим образом :

η = D s D d ξ − D d s α ^ (ξ) {\displaystyle \eta ={\frac {D_{s}}{D_{d}}}\xi -D_{ds}{\hat {\alpha }}(\xi)}

где η - координата источника, ξ - расстояние от центра линзы до точки преломления (прицельный параметр) в плоскости линзы, D s , D d - расстояния от наблюдателя до источника и линзы соответственно, D ds - расстояние между линзой и источником, α - угол отклонения, вычисляемый по формуле:

α = 4 G c ∫ R 2 (ξ i − ξ ′) Σ (ξ) | ξ i − ξ ′ | 2 , {\displaystyle \alpha ={\frac {4G}{c}}\int _{R^{2}}{\frac {(\xi _{i}-\xi ")\Sigma (\xi)}{|\xi _{i}-\xi "|^{2}}},}