Какой прибор работает на явлении электромагнитной индукции. Электромагнитная индукция и ее применение

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

А= U*I*t=I2 R*t=U2 /R *t

По закону сохранения энергии: работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

{A}=B*A*c= Вт*с=ДЖ; 1кВт*ч=3 600 000 ДЖ

Закон Джоуля-Ленца

При прохождении тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

A=Q=U*I*t=I2 *R*t=U2 /R*t

Выражение представляет собой закон Джоуля--Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.:

dQ=UIdt=I2 Rdt=U2 /R*dt.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Основные свойства магнитного поля: порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем; действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела; переменное магнитное поле порождает переменное электрическое поле. Правило буравчкиа: Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции

Правило левой руки позволяет определить силу Ампера, т.е. силу, с которой магнитное поле действует на проводник с током. Если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца направлены по току, то отогнутый на 90градусов большой палец покажет направление силы ампера.

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда. Сила Лоренца Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор F~ силы Лоренца находится следующим образом. 1.

Абсолютная величина силы Лоренца равна:

Здесь q -- абсолютная величина заряда, v -- скорость заряда, B -- индукция магнитного поля, б -- угол между векторами ~v и B~ .

Сила Лоренца перпендикулярна обоим векторам ~v и B~ . Иными словами, вектор F~ перпен- дикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля. Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая -- к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спирали стрелка гальванометра в цепи второй спирали отклонялась.

Опыты Фарадея.

Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:

1. возникновение индукционного тока при вдвигании и выдвигании магнита (катушки с током);

Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.

2. возникновение индукционного тока в одной катушке при изменении тока в другой катушке.

Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.

Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э.д.с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока Ф>0, а еинд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.

При уменьшении магнитного потока Ф<0, а еинд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл - оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой -- слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.

магнитный индукционный ток фарадей

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S - от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Худолей Андрей, Хныков Игорь

Практическое применение явления электромагнитной индукции.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электромагнитная индукция в современной технике Выполнили ученики 11 «А» класса МОУСОШ №2 города Суворова Хныков Игорь, Худолей Андрей

Явление электромагнитной индукции было открыто 29 августа 1831 г. Майклом Фарадеем. Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура.

Опыт Фарадея постоянный магнит вставляют в катушку, замкнутую на гальванометр, или вынимают из нее. При движении магнита в контуре возникает электрический ток В течение одного месяца Фарадей опытным путём открыл все существенные особенности явления электромагнитной индукции. В настоящее время опыты Фарадея может провести каждый.

Основные источники электромагнитного поля В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы, ретрансляторы). Электротранспорт. Радарные установки.

Линии электропередач Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м.

Электропроводка К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

Бытовые электроприборы Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

Персональные компьютеры Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля.

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю

Теле- и радиопередающие станции На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности. Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Спутниковая связь Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

Сотовая связь Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км.

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения аппарата).

Электротранспорт Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем).

Радарные установки Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

Металлодетекторы Технологически, принцип действия металлодетектора основан на явлении регистрации электромагнитного поля, которое создается вокруг любого металлического предмета при помещении его в электромагнитное поле. Это вторичное электромагнитное поле различается как по напряженности (силе поля), так и по прочим параметрам. Эти параметры зависят от размера предмета и его проводимости (у золота и серебра проводимость гораздо лучше, чем, например, у свинца) и естественно - от расстояния между антенной металлодетектора и самим предметом (глубины залегания).

Вышеприведенная технология обусловила состав металлодетектора: он состоит из четырех основных блоков: антенны (иногда излучающая и принимающая антенны различаются, а иногда - это одна и та же антенна), электронного обрабатывающего блока, блока вывода информации (визуальной - ЖК-дисплей или стрелочный индикатор и аудио - динамика или гнезда для наушников) и блока питания.

Металлодетекторы бывают: Поисковые Досмотровые Для строительных целей

Поисковые Данный металлодетектор предназначен для поиска всевозможных металлических предметов. Как правило - это самые большие по размеру, стоимости и естественно по выполняемым функциям модели. Это обусловлено тем, что иногда нужно находить предметы на глубине до нескольких метров в толще земли. Мощная антенна способна создавать большой уровень электромагнитного поля и с высокой чувствительностью обнаруживать даже малейшие токи на большой глубине. Например поисковый металлодетектор, обнаруживает металлическую монету на глубине в 2-3 метра в толще земли, которая может даже содержать железистые геологические соединения.

Досмотровые Используется спецслужбами, таможенниками и сотрудниками охраны самых различных организаций для поиска металлических предметов (оружия, драгоценных металлов, проводов взрывчатых устройств и т.д.) спрятанных на теле и в одежде человека. Эти металлодетекторы отличают компактность, удобство в обращении, наличие таких режимов, как беззвучная вибрация рукоятки (чтобы обыскиваемый человек не узнал, что сотрудник, производящий поиск что-то нашел). Дальность (глубина) обнаружения рублевой монеты в таких металлодетекторах доходит до 10-15 см.

Также широкое распространение получили арочные металлодетекторы, которые внешне напоминают арку и требуют прохождения человека через нее. Вдоль их вертикальных стен проложены сверхчувствительные антенны, которые обнаруживают металлические предметы на всех уровнях роста человека. Их обычно устанавливают перед местами культурно-массовых развлечений, в банках, учреждениях и т.д. Главная особенность арочных металлодетекторов - высокая чувствительность (настраиваемая) и большая скорость обработки потока людей.

Для строительных целей Данный класс металлодетекторов при помощи звуковой и световой сигнализации помогает строителям отыскать металлические трубы, элементы конструкций или привода, расположенные как в толще стен, так и за перегородками и фальш-панелями. Некоторые металлодетекторы для строительных целей часто объединяют в одном приборе с детекторами деревянных конструкция, детекторами напряжения на токоведущих проводах, детекторами протечек и т.д

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

В 1821 году М.Фарадей сделал запись в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Итак, Майкл Фарадей (1791-1867) - английский физик и химик.

Один из основателей количественной электрохимии. Впервые получил (1823) в жидком состоянии хлор, затем сероводород, диоксид углерода, аммиак и диоксид азота. Открыл (1825) бензол, изучил его физические и некоторые химические свойства. Ввел понятие диэлектрической проницаемости. Имя Фарадея вошло в систему электрических единиц в качестве единицы электрической емкости.

Многие из этих работ могли сами - по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

Когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле.

Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой - с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

электромагнитная индукция электрический ток поле

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе.

Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат. inductio - наведение) - явление порождения вихревого электрического поля переменным магнитным полем. Если внести в переменное магнитное поле замкнутый проводник, то в нем появится электрический ток. Появление этого тока называют индукцией тока, а сам ток - индукционным.

Явление электромагнитной индукции представляет собой феномен, который заключается в возникновении электродвижущей силы или напряжения в теле, находящемся в магнитном поле, которое постоянно изменяется. Электродвижущая сила в результате электромагнитной индукции также возникает, если тело движется в статическом и неоднородном магнитном поле или же вращается в магнитном поле так, что его линии, пересекающие замкнутый контур, изменяются.

Индуцированный электрический ток

Под понятием "индукция" подразумевается возникновение какого-либо процесса в результате воздействия другого процесса. Например, электрический ток может быть индуцирован, то есть может появиться в результате воздействия особым образом на проводник магнитного поля. Такой электрический ток называется индуцированным. Условия образования электрического тока в результате явления электромагнитной индукции рассматриваются далее в статье.

Понятие о магнитном поле

Прежде чем начать изучение явления электромагнитной индукции, необходимо разобраться, что представляет собой магнитное поле. Говоря простыми словами, под магнитным полем подразумевают область пространства, в которой магнитный материал проявляет свои магнитные эффекты и свойства. Эта область пространства может быть изображена с помощью линий, которые называются линиями магнитного поля. Количеством этих линий изображают физическую величину, которая называется магнитным потоком. Линии магнитного поля являются замкнутыми, они начинаются на северном полюсе магнита и заканчиваются на южном.

Магнитное поле обладает способностью воздействовать на любые материалы, обладающие магнитными свойствами, например, на железные проводники электрического тока. Это поле характеризуется магнитной индукцией, которая обозначается B и измеряется в теслах (Тл). Магнитная индукция в 1 Тл - это очень сильное магнитное поле, которое действует с силой в 1 ньютон на точечный заряд в 1 кулон, который пролетает перпендикулярно линиям магнитного поля со скоростью 1 м/с, то есть 1 Тл = 1 Н*с/(м*Кл).

Кто открыл явление электромагнитной индукции?

Электромагнитная индукция, на принципе работы которой основаны многие современные приборы, была открыта в начале 30-х годов XIX века. Открытие индукции принято приписывать Майклу Фарадею (дата открытия - 29 августа 1831 года). Ученый основывался на результатах опытов датского физика и химика Ханса Эрстеда, который обнаружил, что проводник, по которому течет электрический ток, создает магнитное поле вокруг себя, то есть начинает проявлять магнитные свойства.

Фарадей, в свою очередь, открыл противоположное обнаруженному Эрстедом явление. Он заметил, что изменяющееся магнитное поле, которое можно создать, меняя параметры электрического тока в проводнике, приводит к возникновению разности потенциалов на концах какого-либо проводника тока. Если эти концы соединить, например, через электрическую лампу, то по такой цепи потечет электрический ток.

В итоге Фарадей открыл физический процесс, в результате которого в проводнике появляется электрический ток из-за изменения магнитного поля, в чем и заключается явление электромагнитной индукции. При этом для образования индуцированного тока не важно, что движется: магнитное поле или сам можно легко показать, если провести соответствующий опыт по явлению электромагнитной индукции. Так, расположив магнит внутри металлической спирали, начинаем перемещать его. Если соединить концы спирали через какой-либо индикатор электрического тока в цепь, то можно увидеть появление тока. Теперь следует оставить магнит в покое и перемещать спираль вверх и вниз относительно магнита. Индикатор также покажет существование тока в цепи.

Эксперимент Фарадея

Опыты Фарадея заключались в работе с проводником и постоянным магнитом. Майкл Фарадей впервые обнаружил, что при перемещении проводника внутри магнитного поля на его концах возникает разность потенциалов. Перемещающийся проводник начинает пересекать линии магнитного поля, что моделирует эффект изменения этого поля.

Ученый обнаружил, что положительный и отрицательный знаки возникающей разности потенциалов зависят от того, в каком направлении движется проводник. Например, если проводник поднимать в магнитном поле, то возникающая разность потенциалов будет иметь полярность +-, если же опускать этот проводник, то мы уже получим полярность -+. Эти изменения знака потенциалов, разность которых называется электродвижущей силой (ЭДС), приводят к возникновению в замкнутом контуре переменного тока, то есть такого тока, который постоянно изменяет свое направление на противоположное.

Особенности электромагнитной индукции, открытой Фарадеем

Зная, кто открыл явление электромагнитной индукции и почему возникает индуцированный ток, объясним некоторые особенности этого явления. Так, чем быстрее перемещать проводник в магнитном поле, тем будет больше значение силы индуцированного тока в контуре. Еще одна особенность явления заключается в следующем: чем больше магнитная индукция поля, то есть чем сильнее это поле, тем большую разность потенциалов она сможет создать при перемещении проводника в поле. Если же проводник находится в покое в магнитном поле, никакого ЭДС в нем не возникает, поскольку нет никакого изменения в пересекающих проводник линиях магнитной индукции.

Направление электрического тока и правило левой руки

Чтобы определить направление в проводнике электрического тока, созданного в результате явления электромагнитной индукции, можно воспользоваться так называемым правилом левой руки. Его можно сформулировать следующим образом: если левую руку поставить так, чтобы линии магнитной индукции, которые начинаются на северном полюсе магнита, входили в ладонь, а оттопыренный большой палец направить по направлению перемещения проводника в поле магнита, тогда оставшиеся четыре пальца левой руки укажут направление движения индуцированного тока в проводнике.

Существует еще один вариант этого правила, он заключается в следующем: если указательный палец левой руки направить вдоль линий магнитной индукции, а оттопыренный большой палец направить по направлению движения проводника, тогда повернутый на 90 градусов к ладони средний палец укажет направление появившегося тока в проводнике.

Явление самоиндукции

Ханс Кристиан Эрстед открыл существование магнитного поля вокруг проводника или катушки с током. Также ученый установил, что характеристики этого поля прямым образом связаны с силой тока и его направлением. Если ток в катушке или проводнике будет переменным, то он породит магнитное поле, которое не будет стационарным, то есть будет меняться. В свою очередь это переменное поле приведет к возникновению индуцированного тока (явление электромагнитной индукции). Движение тока индукции будет всегда противоположно циркулирующему по проводнику переменному току, то есть будет оказывать сопротивление при каждом изменении направления тока в проводнике или катушке. Этот процесс получил название самоиндукции. Создаваемая при этом разность электрических потенциалов называется ЭДС самоиндукции.

Отметим, что явление самоиндукции возникает не только при изменении направления тока, но и при любом его изменении, например, при увеличении за счет уменьшения сопротивления в цепи.

Для физического описания сопротивления, оказываемого любому изменению тока в цепи за счет самоиндукции, ввели понятие индуктивности, которая измеряется в генри (в честь американского физика Джозефа Генри). Один генри - это такая индуктивность, для которой при изменении тока за 1 секунду на 1 ампер возникает ЭДС в процессе самоиндукции, равная 1 вольт.

Переменный ток

Когда катушка индуктивности начинает вращаться в магнитном поле, то в результате явления электромагнитной индукции она создает индуцированный ток. Этот электрический ток является переменным, то есть он систематически изменяет свое направление.

Переменный ток является наиболее распространенным, чем постоянный. Так, многие приборы, которые работают от центральной электрической сети, используют именно этот тип тока. Переменный ток легче индуцировать и транспортировать, чем постоянный. Как правило, частота бытового переменного тока составляет 50-60 Гц, то есть за 1 секунду его направление изменяется 50-60 раз.

Геометрическим изображением переменного тока является синусоидальная кривая, которая описывает зависимость напряжения от времени. Полный период синусоидальной кривой для бытового тока приблизительно равен 20 миллисекундам. По тепловому эффекту переменный ток аналогичен току постоянному, напряжение которого составляет U max /√2, где U max - максимальное напряжение на синусоидальной кривой переменного тока.

Использование электромагнитной индукции в технике

Открытие явления электромагнитной индукции произвело настоящий бум в развитии техники. До этого открытия люди были способны производить электричество в ограниченных количествах только с помощью электрических батарей.

В настоящее время это физическое явление используется в электрических трансформаторах, в обогревателях, которые индуцированный ток переводят в тепло, а также в электрических двигателях и генераторах автомобилей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Не случайно, что первый и самый важный шаг в открытии этой новой стороны электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - одним из величайших ученых мира - Майклом Фарадеем (1791-1867 г.). Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Вскоре после открытия Эрстеда он записал в своем дневнике (1821 г.): "Превратить магнетизм в электричество". С этих пор Фарадей, не переставая, думал над данной проблемой. Говорят, он постоянно носил в жилетном кармане магнит, который должен был напоминать ему о поставленной задаче. Через десять лет, в 1831 г., в результате упорного труда и веры в успех задача была решена. Им было сделано открытие, лежащее в основе устройства всех генераторов электростанций мира, превращающих механическую энергию в энергию электрического тока. Другие источники: гальванические элементы, термо- и фотоэлементы дают ничтожную долю вырабатываемой энергии.

Электрический ток, рассуждал Фарадей, способен намагнитить железные предметы. Для этого достаточно положить железный брусок внутрь катушки. Не может ли магнит в свою очередь вызвать появление электрического тока или изменить его величину? Долгое время ничего обнаружить не удавалось.

ИСТОРИЯ ОТКРЫТИЯ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Высказывания синьоров Нобили и Антинори из журнала " Antologia "

«Господин Фарадей недавно открыл новый класс электродинамических явлений. Он представил об этом мемуар Лондонскому королевскому Обществу, но этот мемуар до сих пор еще не опубликован. Мы знаем о нем только заметку, сообщенную г. А шеттом Академии наук в Париже 26 декабря 1831 года , на основании письма, которое он получил от самого г. Фарадея.

Это сообщение побудило кавалера Антинори и меня самого тотчас же повторить основной опыт и изучить его с разнообразных точек зрения. Мы льстим себя надеждой, что результаты, к которым мы пришли, имеют известное значение, а потому мы спешим опубликовать их, не имея никаких предшествовавших материалов, кроме той заметки, которая послужила исходной точкой в наших исследованиях. »

"Мемуар г. Фарадея, - как говорит заметка, - делится на четыре части.

В первой, озаглавленной "Возбуждение гальванического электричества", мы находим следующий главный факт: гальванический ток, проходящий через металлический провод, производит другой ток в приближаемом проводе; второй ток по направлению противоположен первому и продолжается только одно мгновение. Если возбуждающий ток удалить, в проводе, находящемся под его влиянием, возникает ток, противоположный тому, который возникал в нем в первом случае, т.е. в том же направлении, как возбуждающий ток.

Вторая часть мемуара повествует об электрических токах, вызываемых магнитом. Приближая к магнитам катушки, г. Фарадей производил электрические токи; при удалении катушек возникали токи противоположного направления. Эти токи сильно действуют на гальванометр, проходят, хотя и слабо, через рассол и другие растворы. Отсюда следует, что этот ученый, пользуясь магнитом, возбуждал электрические токи, открытые г. Ампером.

Третья часть мемуара относится к основному электрическому состоянию, которое г. Фарадей называет электромоническое состояние.

В четвертой части говорится о столь же любопытном, как и необычном опыте, принадлежащем г. Араго; как известно, этот опыт состоит в том, что магнитная стрелка вращается под влиянием вращающегося металлического диска. Он установил, что при вращении металлического диска под влиянием магнита могут появляться электрические токи в количестве, достаточном для того, чтобы сделать из диска новую электрическую машину.

СОВРЕМЕННАЯ ТЕОРИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Электрические токи создают вокруг себя магнитное поле. А не может ли магнитное поле вызвать появление электрического поля? Фарадеем экспериментально было обнаружено, что при изменении магнитного потока, пронизывающего замкнутый контур, в нем возникает электрический ток. Это явление было названо электромагнитной индукцией. Ток, возникающий при явлении электромагнитной индукции называют индукционным. Строго говоря, при движении контура в магнитном поле генерируется не определенный ток, а определенная ЭДС. Более подробное изучение электромагнитной индукции показало, что ЭДС индукции, возникающая в каком-либо замкнутом контуре, равна скорости изменения магнитного потока через поверхность, ограниченную этим контуром, взятую с обратным знаком.

Электродвижущая сила в цепи - это результат действия сторонних сил, т.е. сил неэлектрического происхождения. При движении проводника в магнитном поле роль сторонних сил выполняет сила Лоренца, под действием которой происходит разделение зарядов, в результате чего на концах проводника появляется разность потенциалов. ЭДС индукции в проводнике характеризует работу по перемещению единичного положительного заряда вдоль проводника.

Явление электромагнитной индукции лежит в основе действия электрических генераторов. Если равномерно вращать проволочную рамку в однородном магнитном поле, то возникает индуцированный ток, периодически изменяющий свое направление. Даже одиночная рамка, вращающаяся в однородном магнитном поле, представляет собой генератор переменного тока.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции:

При перемещении постоянного магнита, его силовые линии пересекают витки катушки, при этом возникает индукционный ток, поэтому стрелка гальванометра отклоняется. Показания прибора зависят от скорости перемещения магнита и от числа витков катушки.

В этом опыте мы пропускаем через первую катушку ток, который создает магнитный поток и при движении второй катушки внутри первой, происходит пересечение магнитных линий, поэтому возникает индукционный ток.

При проведении опыта №2 было зафиксировано, в момент включения рубильника стрелка прибора отклонялась и показывала значение ЭДС затем стрелка возвращалась в первоначальное положение. При отключении рубильника стрелка опять отклонялась, но в другую сторону и показывала значение ЭДС, затем возвращалась в первоначальное положение. В момент включения рубильника величина тока увеличивается, но возникает какая то сила, которая мешает увеличению тока. Эта сила сама себя индуцирует, поэтому её назвали ЭДС самоиндукции. В момент отключения происходит то же самое, только направление ЭДС изменилось, поэтому стрелка прибора отклонилась в противоположную сторону.

Этот опыт показывает, что ЭДС электромагнитной индукции возникает при изменении величины и направлении тока. Это доказывает, что ЭДС индукции, которая сама себя создает - есть скорость изменения тока.

В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Это явление называется электромагнитной индукцией.

И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична.

Это может быть и изменение числа линий магнитной индукции, пронизывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве.

ПРАВИЛО ЛЕНЦА

Индукционный ток, возникший в проводнике, немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток своим магнитным полем обязательно отталкивает магнит (катушку). Для сближения магнита и катушки нужно совершить работу. При удалении магнита возникает притяжение. Это правило выполняется неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, и он сам собой устремился бы внутрь нее. При этом нарушился бы закон сохранения энергии. Ведь механическая энергия магнита увеличилась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Индуцированный в якоре генератора электрический ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает индукционный ток. Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия, индуцированного в теле тока с этим полем. Тела двигались бы как в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело -- неплохой проводник.

Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

Отталкивание или притяжение магнита катушкой зависит от направления индукционного тока в ней. Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока. В чем состоит различие двух опытов: приближение магнита к катушке и его удаление? В первом случае магнитный поток (или число линий магнитной индукции, пронизывающих витки катушки) увеличивается (рис а), а во втором случае -- уменьшается (рис. б). Причем в первом случае линии индукции В" магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Эти линии магнитной индукции на рисунке изображены штрихом.

Теперь мы подошли к главному: при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Ведь вектор индукции этого поля направлен против вектора индукции поля, изменение которого порождает электрический ток. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией, увеличивающее магнитный поток через витки катушки.

В этом состоит сущность общего правила определения направления индукционного тока, которое применимо во всех случаях. Это правило было установлено русским физиком Э.X. Ленцем (1804-1865).

Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток. Или, индукционный ток имеет такое направление, что препятствует причине его вызывающей.

В случае сверхпроводников компенсация изменения внешнего магнитного потока будет полной. Поток магнитной индукции через поверхность, ограниченную сверхпроводящим контуром, вообще не меняется со временем ни при каких условиях.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

электромагнитная индукция фарадей ленц

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Более точно это утверждение можно сформулировать, используя понятие магнитного потока.

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S . Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока. Если за малое время Дt магнитный поток меняется на ДФ , то скорость изменения магнитного потока равна.

Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Напомним, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначим ее буквой E i .

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Согласно закону электромагнитной индукции (ЭМИ) ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль к контуру образует правый винт с направлением обхода. Знак ЭДС, т. е. удельной работы, зависит от направления сторонних сил по отношению к направлению обхода контура.

Если эти направления совпадают, то E i > 0 и соответственно I i > 0. В противном случае ЭДС и сила тока отрицательны.

Пусть магнитная индукция внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Ф > 0 и > 0. Согласно правилу Ленца индукционный ток создает магнитный поток Ф " < 0. Линии индукции B " магнитного поля индукционного тока изображены на рисунке штрихом. Следовательно, индукционный ток I i направлен по часовой стрелке (против положительного направления обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак минус:

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Эту единицу называют вебером (Вб).

Так как ЭДС индукции E i выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В: 1 Вб = 1 В 1 с.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Расходомеры - счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Явление ЭМИ широко применяется и в трансформаторах. Рассмотрим это устройство подробнее.

ТРАНСФОРМАТОРЫ

Трансформатор (от лат. transformo -- преобразовывать) -- статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Изобретателем трансформатора является русский ученый П.Н. Яблочков (1847 - 1894 г.). В 1876 г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания изобретенных им электрических свечей. Трансформатор Яблочкова имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником, подобные применяемым в настоящее время, появились значительно позднее, в 1884г. С изобретением трансформатора возник технический интерес к переменному току, который до этого времени не применялся.

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

У равнение идеального трансформатора

Идеальный трансформатор -- трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия, равна преобразованной энергии:

Где P1 -- мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 -- мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношение напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет

Данное правило справедливо также и для вторичной цепи:

Обозначение на схемах

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 -- первичная обмотка (обычно слева), 2,3 -- вторичные обмотки. Число полуокружностей в каком-то грубом приближении символизирует число витков обмотки (больше витков -- больше полуокружностей, но без строгой пропорциональности).

ПРИМЕНЕНИЕ ТРАНСФОРМАТОРОВ

Трансформаторы широко используются в промышленности и быту для различных целей:

1. Для передачи и распределения электрической энергии.

Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.

Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В

2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными.

3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.

4. Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.

5. Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. Трансформаторы, применяемые для этих целей, называются измерительными.

ЗАКЛЮЧЕНИЕ

Явление электромагнитной индукции и его частные случаи широко применяются в электротехнике. Для преобразования механической энергии в энергию электрического тока используются синхронные генераторы . Для повышения или понижения напряжения переменного тока применяются трансформаторы. Использование трансформаторов позволяет экономично передавать электроэнергию от электрических станций к узлам потребления.

СПИСОК ЛИТЕРАТУРЫ :

1. Курс физики, Учебное пособие для вузов. Т.И. Трофимова, 2007.

2. Основы теории цепей, Г.И. Атабеков, Лань, СПб,-М.,-Краснодар, 2006.

3. Электрические машины, Л.М. Пиотровский, Л., «Энергия», 1972.

4. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.:Энергоиздат 2004.

5. Конструирование трансформаторов. А.В. Сапожников. М.: Госэнергоиздат. 1959.

6. Расчёт трансформаторов. Учебное пособие для вузов. П.М. Тихомиров. М.: Энергия, 1976.

7. Физика -учебное пособие для техникумов, автор В.Ф. Дмитриева, издание Москва "Высшая школа" 2004.

Размещено на Allbest.ru

Подобные документы

    Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция , добавлен 10.10.2011

    История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат , добавлен 15.11.2009

    Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.

    презентация , добавлен 24.09.2013

    Электромагнитная индукция - явление порождения вихревого электрического поля переменным магнитным полем. История открытия Майклом Фарадеем данного явления. Индукционный генератор переменного тока. Формула для определения электродвижущей силы индукции.

    реферат , добавлен 13.12.2011

    Электромагнитная индукция. Закон Ленца, электродвижущая сила. Методы измерения магнитной индукции и магнитного напряжения. Вихревые токи (токи Фуко). Вращение рамки в магнитном поле. Самоиндукция, ток при замыкании и размыкании цепи. Взаимная индукция.

    курсовая работа , добавлен 25.11.2013

    Электрические машины как такие, в которых преобразование энергии происходит в результате явления электромагнитной индукции, история и основные этапы разработки, достижения в этой области. Создание электродвигателя с возможностью практического применения.

    реферат , добавлен 21.06.2012

    Характеристика вихрового электрического поля. Аналитическое объяснение опытных фактов. Законы электромагнитной индукции и Ома. Явления вращения плоскости поляризации света в магнитном поле. Способы получения индукционного тока. Применение правила Ленца.

    презентация , добавлен 19.05.2014

    Детство и юность Майкла Фарадея. Начало работы в Королевском институте. Первые самостоятельные исследования М. Фарадея. Закон электромагнитной индукции, электролиз. Болезнь Фарадея, последние экспериментальные работы. Значение открытий М. Фарадея.

    реферат , добавлен 07.06.2012

    Краткий очерк жизни, личностного и творческого становления великого английского физика Майкла Фарадея. Исследования Фарадея в области электромагнетизма и открытие им явления электромагнитной индукции, формулировка закона. Эксперименты с электричеством.

    реферат , добавлен 23.04.2009

    Период школьного обучения Майкла Фарадея, его первые самостоятельные исследования (опыты по выплавке сталей, содержащих никель). Создание английским физиком первой модели электродвигателя, открытие электромагнитной индукции и законов электролиза.