Состав свойства и функции крови человека. Функции и состав крови. Форменные элементы в составе плазмы крови

Каковы функции крови в организме животного?

Какого цвета бывает кровь у животных и почему?

Транспортная (питательная), выделительная, терморегуляторная, гуморальная, защитная

Цвет крови животных зависит от металлов, которые входят в состав кровяных телец (эритроцитов), или веществ, растворённых в плазме. У всех позвоночных животных, а также у дождевого червя, пиявок, комнатной мухи и некоторых моллюсков в сложном соединении с гемоглобином крови находится окисное железо. Поэтому их кровь красная. В крови многих морских червей, вместо гемоглобина, содержится сходное вещество - хлорокруорин. В его составе найдено закисное железо, и поэтому цвет крови этих червей зелёный. А у скорпионов, пауков, речного рака, осьминогов и каракатиц кровь голубая. Вместо гемоглобина она содержит гемоцианин, с медью в качестве металла. Медь и придает их крови синеватый цвет.

Стр. 82-83

1. Из каких компонентов состоит внутренняя среда? Как они связаны между собой?

Внутреннюю среду организма составляют кровь, тканевая жидкость и лимфа. Кровь движется по системе замкнутых сосудов и непосредственно не контактирует с клетками ткани. Тканевая жидкость образуется из жидкой части крови. Она получила такое название потому, что находится среди тканей тела. Питательные вещества из крови попадают в тканевую жидкость и в клетки. Продукты распада перемещаются в обратном направлении. Лимфа. Избыток тканевой жидкости попадает в вены и лимфатические сосуды. В лимфатических капиллярах она изменяет свой состав и становится лимфой. Лимфа медленно движется по лимфатическим сосудам и в конце кон¬цов попадает снова в кровь. Предварительно лимфа проходит через особые образования - лимфатические узлы, где она фильтруется и обеззараживается, обогащается лимфатическими клетками.

2. Каков состав крови и каково ее значение для организма?

Кровь - это красная непрозрачная жидкость, состоящая из плазмы и форменных элементов. Различают красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). В организме человека кровь связывает каждый орган, каждую клетку тела между собой. Кровь разносит питательные вещества, полученные из пищи в органах пищеварения. Она доставляет к клеткам кислород из легких, а углекислый газ, вредные, отработанные вещества несет к тем органам, которые их обезвреживают или выводят из организма.

3. Назовите форменные элементы крови и их функции.

Тромбоциты - кровяные пластинки. Они участвуют в свертывании крови. Эритроциты - красные кровяные клетки. Окраска красных кровяных клеток, эритроцитов, зависит от содержащегося в них гемоглобина. Гемоглобин способен легко соединяться с кислородом и легко отдавать его. Красные кровяные клетки переносят кислород от легких ко всем органам. Лейкоциты - белые кровяные клеши. Лейкоциты чрезвычайно разнообразны и борются с микробами разными способами.

4. Кто открыл явление фагоцитоза? Как он осуществляется?

Способность определенных клеток лейкоцитов захватывать микробы и уничтожать их была открыта И.И. Мечниковым - великим русским ученым, лауреатом Нобелевской премии. Клетки лейкоцитов этого типа И.И. Мечников назвал фагоцитами, т. е. пожирателями, а сам процесс уничтожения микробов фагоцитами - фагоцитозом

5. Каковы функции лимфоцитов?

Лимфоцит имеет вид шарика, на его поверхности находятся многочисленные ворсинки, похожие на щупальца. С их помощью лимфоцит обследует поверхность других клеток, отыскивая чужеродные соединения - антигены. чаще всего они встречаются на поверхности фагоцитов, уничтоживших чужеродные тела. Если на поверхности клеток встречаются только «свои» молекулы, лимфоцит движется дальше, а если чужие - щупальца, как клешни рака, смыкаются. Затем лимфоцит посылает через кровь химические сигналы другим лимфоцитам, и те начинают вырабатывать по найденному образцу химические противоядия - антитела, состоящие из белка гамма-глобулина. Этот белок выбрасывается в кровь и оседает на различных клетках, например на эритроцитах. Антитела нередко выходят за пределы кровеносных сосудов и размещаются на поверхности клеток кожи, дыхательных путей, кишечника. Они являются своеобразными ловушками для чужеродных тел, например для микробов и вирусов. Антитела либо склеивают их, либо разрушают, либо растворяют, короче говоря, выводят из строя. При этом постоянство внутренней среды восстанавливается.

6. Как происходит свертывание крови?

Когда кровь из раны вытекает на поверхность кожи, кровяные пластинки склеиваются и разрушаются, а содержащиеся в них ферменты попадают в плазму крови. При наличии солей кальция и витамина К плазменный белок фибриноген образует нити фибрина. В них застревают эритроциты и другие клетки крови, и образуется тромб. Он то и не дает крови вытекать наружу

7. Чем эритроциты человека отличаются от эритроцитов лягушки?

1) У человеческих эритроцитов нет ядра, эритроциты лягушки ядерные.

2) Эритроциты человека имеют форму двояковогнутого диска, а эритроциты лягушки овальные.

3) Эритроциты человека в диаметре 7-8 мкм, эритроциты лягушки 15-20 мкм в длину и около10 мкм в ширину и толщину.

Кровь является внутренней средой организма , обеспе­чивающей условия для нормальной его жизнедеятельности. Она представляет собой жидкую ткань красного цвета с солоноватым вкусом и специфическим запахом.

Состав крови . Кровь состоит из жидкой части (плазмы) и взвешенных в ней форменных элементов. Количество кро­ви в организме животного составляет в среднем 5-8% от массы его тела. Одна часть общего количества крови цир­кулирует в организме, а другая находится в депо (селезен­ке, печени, коже), откуда она при необходимости поступа­ет в общий поток.

Плазма крови - почти прозрачная, слегка желто­ватая жидкость. Она состоит из белков, небелковых азо­тистых (мочевины, аминокислот и др.) и минеральных ве­ществ, глюкозы, жира (липидов), газов, гормонов, витами­нов, ферментов, защитных веществ (антител) и т. д.

Белок фибриноген способствует свертыванию крови, превращаясь в фибрин. Жидкость, оставшаяся после удале­ния фибрина из крови, называется сывороткой.

В плазме 90-92% воды . В составе крови на долю плаз­мы приходится 55-60% объема, а остальные 45-40% -на долю форменных элементов.

Форменные элементы крови представлены эри­троцитами (красными кровяными клетками), лейкоцита­ми (белыми кровяными клетками) и кровяными пластинка­ми (тромбоцитами).

Эритроциты составляют основную массу фор­менных элементов крови. В 1 мм3 крови крупного рогатого скота содержится 5-9 млн. эритроцитов. Основная функ­ция эритроцитов - перенос кислорода; выполняет эту функцию гемоглобин, входящий в состав эритроци­тов и содержащий железо.

Гемоглобин придает крови красный цвет, он легко соединяется с кислородом. Гемогло­бин в капиллярах легких насыщается кислородом, перено­сит его к тканям, в капиллярах которых и отдает кисло­род. Количество гемоглобина в крови характеризует уро­вень окислительных процессов в организме.

Лейкоциты - бесцветные кровяные тельца ; по раз­меру они крупнее эритроцитов, в 1 мм3 крови содержится 5-10 тыс. лейкоцитов. Главная их функция - защитная: они захватывают и переваривают микроорганизмы, попавшие в кровь.

Это явление, открытое русским ученым И. И. Меч­никовым, называется фагоцитозом. Кроме того, лейкоциты участвуют в обмене веществ (белков и жиров); вырабаты­вают вещества, стимулирующие образование новых клеток, что важно для заживления ран; освобождают организм от погибших клеток. Лейкоциты участвуют в создании у жи­вотных иммунитета (невосприимчивости) к инфекционным заболеваниям.

Тромбоциты (кровяные пластинки) способствуют свертыванию крови.

Функции крови . Кровь участвует в обмене веществ, до­ставляя к клеткам питательные вещества и кислород, отво­дит от клеток окись углерода; разносит тепло и, обладая постоянной температурой, является регулятором тепла; вы­полняет защитную роль (фагоцитоз, выработка иммуните­та, свертываемость и буферность).

На пораженных участ­ках кровеносных сосудов уже через несколько минут после выхода наружу крови благодаря ее свертываемости обра­зуется сгусток. Этот сгусток закупоривает пораженное место и предохраняет организм от потери крови.

Скорость свертывания крови изменяется под влиянием некоторых факторов: повышается у беременных животных; снижается при поедании испорченного сена (клевера, донника); при недостатке витамина К возможны множественные крово­излияния во внутренних органах из-за плохой свертывае­мости крови.

В организме имеются химические вещества (гепарин и др.), препятствующие свертыванию крови в кровеносных сосудах.

Буферность - это способность крови постоянно поддер­живать слабощелочную реакцию. При заболеваниях состав крови изменяется. Поэтому исследование крови позволяет установить скрыто протекающие в организме процессы.

Являясь переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким, кровь участвует в ды­хательных процессах.

Животные имеют различные группы крови . Группа кро­ви у одного и того же животного постоянна и не изменя­ется в течение всей его жизни. Знание групп крови необхо­димо для установления в спорных случаях происхождения животных; выведения животных, устойчивых к тем или иным заболеваниям; для переливания крови при некоторых заболеваниях.

Состав крови в организме животного относительно по­стоянен. Процессы кроветворения регулируются нервной системой и железами внутренней секреции.

1. Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве-ществ всех клеток тела. Красный цвет крови придает гемоглобин , содер-жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо-средственного контакта с внешней средой, их жизнедеятельность обеспе-чивается наличием внутренней среды (кровь, лимфа , тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма . Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом . Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров , базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг , лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

4) терморегуляторная - регуляция температуры тела путем охлаж-дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант гомеостаза: рН, осмотического давления, изоионии и т.д.;

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос-приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос-становительные (регенеративные) процессы в организме и ускоряют за-живление ран;

5) ферментативная - они содержат различные ферменты, необхо-димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора-дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле-ния генетическим аппаратом других клеток организма; путем таких меж-клеточных взаимодействий (креаторных связей) восстанавливается и под-держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле-мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа-метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги-гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо-цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со-бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве-ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при-сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина-ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо-цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме-жду кровью и тканевой жидкостью путем изменения проницаемости сте-нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра-нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П. Панченкова.

В норме СОЭ равна:

У мужчин - 1-10 мм/час;

У женщин - 2-15 мм/час;

Новорожденные — от 2 до 4 мм/ч;

Дети первого года жизни — от 3 до 10 мм/ч;

Дети возрастом 1-5 лет — от 5 до 11 мм/ч;

Дети 6-14 лет — от 4 до 12 мм/ч;

Старше 14 лет — для девочек — от 2 до 15 мм/ч, а для мальчиков — от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку-лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по-этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа-ния. Однако скорость оседания лейкоцитов в клинике во внимание не при-нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения.

Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста-новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением.

Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа.

Осуществляется в три фа-зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при-нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане-вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак-тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита-мина К и является проферментами, относящимися к глобулиновой фрак-ции белков плазмы. В активную форму - ферменты они переходят в про-цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци-ты, лейкоциты и тромбоциты. Прочность обра-зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве-ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер-тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей-коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги-рудин действует угнетающе на третью стадию процесса свертывания кро-ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще-ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре-вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обна-ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы-ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты.

Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю-тинин α, а также В и β называются одноименными. Склеивание эритроци-тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове-ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю-тинин.

Согласно классификации Я. Янского и К. Ландштейнера у людей име-ется 4 комбинации агглютиногенов и агглютининов, которые обозначают-ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино-ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со-держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По-этому людей с I группой крови называют универсальными донорами. Лю-дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе-реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь-ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те-рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю-тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя-желые осложнения. Поэтому людей с I группой крови, содержащих агглю-тинины анти-А и анти-В, сейчас называют опасными универсальными до-норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю-тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз-личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива-нии ее больным с I и III группами. Агглютиноген В тоже существует в не-скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К. Ландштейнер, выступая на церемонии вручения ему Но-белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит-роцитах человека обнаружено более 500 различных агглютиногенов. Толь-ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови.

Если же учитывать и все остальные агг-лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че-ловек имеет свою группу крови. Данные системы агглютиногенов отлича-ются от системы АВО тем, что не содержат в плазме естественных агглю-тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг-лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг-лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде-ляется неверно, и больным вводят несовместимую кровь.

Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос-тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег-коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на-зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О.

Особенностью резус-фактора является то, что у лю-дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра-батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро-ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен-трации антирезус-агглютининов может наступить смерть плода и выки-дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица-тельным женщинам назначают антирезус-гамма-глобулин, который ней-трализует резус-положительные антигены плода.

Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель . Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием "система крови ".

Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) - красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов. "Кровь - зеркало организма!"

Основные физиологические функции крови .

Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

1.Транспортные функции . Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

а) дыхательная , заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

б) питательная , заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

в) выделительная (экскреторная ), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

г) регуляторная , связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

а) фагоцитарная - лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

б) иммунная - кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

в) гемостатическая (гемостаз - остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым предотвращать смертельное кровотечение.

3. Гомеостатические функции . Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

а) поддержание рН ;

б) поддержание осмотического давления ;

в) поддержание температуры внутренней среды.

Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

Количество крови в организме. Объем циркулирующей крови (ОЦК) .

В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела (у мужчин 61,5+-8,6 мл/кг, у женщин - 58,9+-4,9 мл/кг массы тела).

Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости - уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

1. Состав плазмы крови .

Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания, географических особенностей места проживания, времени и сезона года.

Белки плазмы крови и их функции . Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

Альбумины . Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины - 0,22-0,55 г% (4-5%)

альфа2-глобулины - 0,41-0,71г% (7-8%)

бета-глобулины - 0,51-0,90 г% (9-10%)

гамма-глобулины - 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть - в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген . Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки .

При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным , или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

Натрий и калий . Количество натрия в плазме составляет 300-350 мг%, калия - 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

Кальций . Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия - при участии гормонов надпочечников.

Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

Физико-химические свойства крови

1.Реакция крови . Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это - обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз , в щелочную - алкалоз.

К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

В крови имеются четыре буферные системы - бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв , способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом . При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты - он называется газовым . При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз ). Он может увеличиваться, например, при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата - обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено - поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза ("Кисленького хочется!"). Схема этой ФС представлена на схеме.

2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин - 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения - медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

3. Осмотические свойства крови . Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 - 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз ), а в гипотонической - наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз ).

Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ - гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического .

В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением . Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

Функциональная система регуляции осмотического давления . Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы ). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).

4. Суспензионные свойства крови . Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.

5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта - 4,3; малая артерия - 3,4; артериолы - 1,8; капилляры - 1; венулы - 10; малые вены - 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тюменский государственный университет

Институт биологии

Состав и функции крови

Тюмень 2015

Введение

Кровь представляет собой жидкость красного цвета, слабо щелочной реакции, солоноватого вкуса с удельным весом 1,054-1,066. Общее количество крови у взрослого в среднем составляет около 5 л (равно по весу 1/13 веса тела). Совместно с тканевой жидкостью и лимфой она образует внутреннюю среду организма. Кровь выполняет многообразные функции. Главнейшие из них следующие:

Транспорт питательных веществ от пищеварительного тракта к тканям, местам резервных запасов от них (трофическая функция);

Транспорт конечных продуктов метаболизма из тканей к органам выделения (экскреторная функция);

Транспорт газов (кислорода и диоксида углерода из дыхательных органов к тканям и обратно; запасание кислорода (дыхательная функция);

Транспорт гормонов от желез внутренней секреции к органам (гуморальная регуляция);

Защитная функция - осуществляется за счет фагоцитарной активности лейкоцитов (клеточный иммунитет), выработки лимфоцитами антител, обезвреживающих генетически чужеродные вещества (гуморальный иммунитет);

Свертывание крови, препятствующее кровопотере;

Терморегуляторная функция - перераспределение тепла между органами, регуляция теплоотдачи через кожу;

Механическая функция - придание тургорного напряжения органам за счет прилива к ним крови; обеспечение ультрафильтрации в капиллярах капсул нефрона почек и др.;

Гомеостатическая функция - поддержание постоянства внутренней среды организма, пригодной для клеток в отношении ионного состава, концентрации водородных ионов и др.

Кровь, как жидкая ткань, обеспечивает постоянство внутренней среды организма. Биохимические показатели крови занимают особое место и очень важны как для оценки физиологического статуса организма, так и для своевременной диагностики патологических состояний. Кровь обеспечивает взаимосвязь обменных процессов, протекающих в различных органах и тканях, выполняет различные функции.

Относительное постоянство состава и свойств крови, является необходимым и обязательным условием жизнедеятельности всех тканей организма. У человека и теплокровных животных обмен веществ в клетках, между клетками и тканевой жидкостью, а также между тканями (тканевой жидкостью) и кровью происходит нормально при условии относительного постоянства внутренней среды организма (кровь, тканевая жидкость, лимфа).

При заболеваниях наблюдаются различные изменения обмена веществ в клетках и тканях и, связанные с этим изменения состава и свойств крови. По характеру этих изменений можно в известной мере судить о самой болезни.

Кровь состоит из плазмы (55-60%) и взвешенных в ней форменных элементов - эритроцитов (39-44%), лейкоцитов (1%) и тромбоцитов (0,1%). Благодаря наличию в крови белков и эритроцитов её вязкость в 4-6 раз выше вязкости воды. При стояние крови в пробирке или центрифугировании с малыми скоростями форменные элементы её осаждаются.

Самопроизвольное осаждение форменных элементов крови получило название реакции осаждения эритроцитов (РОЭ, теперь - СОЭ). Величина СОЭ (мм/час) для разных видов животных колеблется в широких пределах: если для собаки СОЭ практически совпадает с интервалом значений для человека (2-10 мм/час), то для свиньи и лошади не превышает 30 и 64 соответственно. Плазма крови, лишённая белка фибриногена, носит название сыворотки крови.

кровь плазма гемоглобин анемия

1. Химический состав крови

Что представляет собой состав крови человека? Кровь - одна из тканей организма, состоящая из плазмы (жидкой части) и клеточных элементов. Плазма это однородная прозрачная или слегка мутноватая жидкость, имеющая желтый оттенок, которая является межклеточным веществом тканей крови. Плазма состоит из воды, в которой растворены вещества (минеральные и органические), в том числе белки (альбумины, глобулины и фибриноген). Углеводы (глюкоза), жиры (липиды), гормоны, ферменты, витамины, отдельные составляющие солей (ионы) и некоторые продукты обмена веществ.

Вместе с плазмой организм выводит продукты обмена, различные яды и иммунные комплексы антиген-антитело (которые возникают при попадании чужеродных частиц в организм как защитная реакция для их удаления) и все ненужное, мешающее работать организму.

Состав крови: клетки крови

Клеточные элементы крови тоже неоднородны. Состоят они из:

эритроцитов (красные кровяные тельца);

лейкоцитов (белые кровяные тельца);

тромбоцитов (кровяные пластинки).

Эритроциты - красные кровяные тельца. Транспортируют кислород от легких ко всем человеческим органам. Именно эритроциты содержат железосодержащий белок - ярко-красный гемоглобин, который присоединяет в легких из вдыхаемого воздуха к себе кислород, после чего постепенно переносит его ко всем органам и тканям различных частей тела.

Лейкоциты - белые кровяные тельца. Отвечают за иммунитет, т.е. за способность человеческого организма противостоять различным вирусам и инфекциям. Существуют различные виды лейкоцитов. Одни из них направлены непосредственно на уничтожение проникших в организм бактерий или различных чужеродных клеток. Другие задействованы в выработке специальных молекул, так называемых антител, которые также необходимы для борьбы с различными инфекциями.

Тромбоциты - кровяные пластинки. Помогают организму остановить кровотечение, т. е. регулируют свертываемость крови. Например, если вы повредили кровеносный сосуд, то на месте повреждения со временем возникнет сгусток крови, после чего образуется корочка, соответственно, кровотечение прекратится. Без тромбоцитов (а вместе с ними целого ряда вещество, которые содержатся в плазме крови) сгустки не будут образовываться, поэтому любая ранка или носовое кровотечение, например, могут привести к большой потере крови.

Состав крови: норма

Как мы уже писали выше, существуют красные кровяные тельца и белые кровяные тельца. Так вот в норме эритроцитов (красных кровяных телец) у мужчин должно быть 4-5*1012/л, у женщин 3.9-4.7*1012/л. Лейкоцитов (белых кровяных телец) - 4-9*109/л крови. Кроме этого, в 1 мкл крови находится 180-320*109/л кровяных пластинок (тромбоцитов). В норме объем клеток составляет 35-45% от общего объема крови.

Химический состав крови человека

Кровь омывает каждую клеточку человеческого тела и каждый орган, поэтому реагирует на любые изменения в организме или образе жизни. Факторы, влияющие на состав крови довольно разнообразны. Поэтому врачу, чтобы правильно прочитать результаты анализов необходимо знать и о вредных привычках и о физической активности человека и даже о рационе питания. Даже окружающая среда и та влияет на состав крови. Так же на показатели крови влияет все, что касается обмена веществ. Для примера, можно рассмотреть, как обычный прием пищи изменяет показатели крови:

Прием пищи перед анализом крови повысить концентрацию жиров.

Голодание в течении 2 дней повысит в крови билирубин.

Голодание более 4 дней снизит количество мочевины и жирных кислот.

Жирная пища повысит уровень калия и триглицеридов.

Чрезмерный прием в пищу мяса повысит уровень уратов.

Кофе повысить уровень глюкозы, жирных кислот, лейкоцитов и эритроцитов.

Кровь курильщиков существенно отличается от крови людей ведущих здоровый образ жизни. Однако если вы ведете активный образ жизни, перед сдачей анализа крови нужно уменьшить интенсивность тренировок. Особенно это касается сдачи анализов на гормоны. Влияют на химический состав крови и различные медикаментозные препараты, поэтому, если вы что-то принимали, обязательно сообщите об этом вашему врачу.

2. Плазма крови

Плазма крови -- жидкая часть крови, в которой во взвешенном состоянии находятся форменные элементы (клетки крови). Плазма представляет собой вязкую белковую жидкость слегка желтоватого цвета. В состав плазмы входит 90-94% воды и 7-10% органических и неорганических веществ. Плазма крови взаимодействует с тканевой жидкостью организма: из плазмы в ткани переходят все вещества, необходимые для жизнедеятельности, а обратно - продукты обмена.

Плазма крови составляет 55-60 % от общего объема крови. Она содержит 90-94% воды и 7-10% сухого вещества, в котором 6-8% приходится на долю белковых веществ, а 1,5-4% -- на другие органические и минеральные соединения. Вода служит источником воды для клеток и тканей организма, поддерживает кровяное давление и объем крови. В норме концентрации одних растворенных веществ в плазме крови все время остаются постоянными, а содержание других может колебаться в определенных пределах в зависимости от скорости их поступления в кровь или удаления из нее.

Состав плазмы

В состав плазмы входят:

органические вещества -- белки крови: альбумины, глобулины и фибриноген

глюкоза, жир и жироподобные вещества, аминокислоты, различные продукты обмена (мочевина, мочевая кислота и др.), а также ферменты и гормоны

неорганические вещества (соли натрия, калия, кальция и др.) составляют около 0,9-1,0% плазмы крови. При этом концентрация различных солей в плазме примерно постоянна

минеральные вещества, особенно ионы натрия и хлора. Они играют основную роль в поддержании относительного постоянства осмотического давления крови.

Белки крови: альбумин

Одни из основных компонентов плазмы крови -- разного типа белки, образующиеся главным образом в печени. Белки плазмы вместе с остальными компонентами крови поддерживают постоянство концентрации водородных ионов на слабощелочном уровне (рН 7,39), что жизненно важно для протекания большинства биохимических процессов в организме.

По форме и величине молекул белки крови разделяют на альбумины и глобулины. Наиболее распространенный белок плазмы крови -- альбумин (более 50% всех белков, 40-50 г/л). Они выступают как транспортные белки для некоторых гормонов, свободных жирных кислот, билирубина, различных ионов и лекарственных препаратов, поддерживают постоянство коллоидно-осмотического постоянства крови, участвуют в ряде обменных процессов в организме. Синтез альбумина происходит в печени.

Содержание альбуминов в крови служит дополнительным диагностическим признаком при ряде заболеваний. При низкой концентрации альбумина в крови нарушается равновесие между плазмой крови и межклеточной жидкостью. Последняя перестает поступать в кровь, и возникает отек. Концентрация альбумина может снижаться как при уменьшении его синтеза (например, при нарушении всасывания аминокислот), так и при увеличении потерь альбумина (например, через изъязвленную слизистую оболочку желудочно-кишечного тракта). В старческом и пожилом возрасте содержание альбумина снижается. Измерение концентрации альбумина в плазме используется в качестве теста функции печени, поскольку для ее хронических заболеваний характерны низкие концентрации альбумина, обусловленные снижением его синтеза и увеличением объема распределения в результате задержки жидкости в организме.

Низкое содержание альбумина (гипоальбуминемия) у новорожденных увеличивает риск развития желтухи, поскольку альбумин связывает свободный билирубин крови. Альбумин также связывает многие лекарственные препараты, поступающие в кровяное русло, поэтому при снижении его концентрации возрастает риск отравления несвязанным веществом. Анальбуминемия -- редкое наследственное заболевание, при котором концентрация альбумина в плазме очень мала (250 мг/л или меньше). Лица с данными нарушениями подвержены эпизодическому появлению умеренных отеков без каких-либо иных клинических симптомов. Высокая концентрация альбумина в крови (гиперальбуминемия) может быть вызвана либо избыточным вливанием альбумина, либо дегидратацией (обезвоживанием) организма.

Иммуноглобулины

Большинство прочих белков плазмы крови относится к глобулинам. Среди них различают: a-глобулины, связывающие тироксин и билирубин; b-глобулины, связывающие железо, холестерол и витамины A, D и K; g-глобулины, связывающие гистамин и играющие важную роль в иммунологических реакциях организма, поэтому их иначе называют иммуноглобулинами или антителами. Известны 5 основных классов иммуноглобулинов, наиболее часто встречающиеся из них IgG, IgA, IgM. Уменьшение и увеличение концентрации иммуноглобулинов в плазме крови может иметь как физиологический, так и патологический характер. Известны различные наследственные и приобретенные нарушения синтеза иммуноглобулинов. Снижение их количества часто она возникает при злокачественных заболеваниях крови, таких как хронический лимфатический лейкоз, множественная миелома, болезнь Ходжкина; может быть следствием применения цитостатических препаратов или при значительных потерях белка (нефротический синдром). При полном отсутствие иммуноглобулинов, например, при Спиде, могут развиваться рецидивирующие бактериальные инфекции.

Повышенные концентрации иммуноглобулинов наблюдаются при острых и хронических инфекционных, а также аутоиммунных заболеваниях, например, при ревматизме, системной красной волчанке и т. д. Весомую помощь в постановке диагноза многих инфекционных заболеваний оказывает выявление иммуноглобулинов к специфическим антигенам (иммунодиагностика).

Другие белки плазмы крови

Помимо альбуминов и иммуноглобулинов, плазма крови содержит ряд других белков: компоненты комплемента, различные транспортные белки, например тироксинсвязывающий глобулин, глобулин, связывающий половые гормоны, трансферрин и др. Концентрации некоторых белков повышаются при острой воспалительной реакции. Среди них известны антитрипсины (ингибиторы протеаз), С-реактивный белок и гаптоглобин (гликопептид, связывающий свободный гемоглобин). Измерение концентрации С-реактивного белка помогает следить за течением заболеваний, характеризующихся эпизодами острого воспаления и ремиссии, например, ревматоидным артритом. Наследственная недостаточность a1-антитрипсина может вызвать гепатит у новорожденных. Снижение концентрации гаптоглобина в плазме свидетельствует об усилении внутрисосудистого гемолиза, а также отмечается при хронических заболеваниях печени, тяжелом сепсисе и метастатической болезни.

К глобулинам относятся белки плазмы, участвующие в свертывании крови, такие как протромбин и фибриноген, и определение их концентрации важно при обследовании больных с кровотечениями.

Колебания концентрации белков в плазме определяется скоростью их синтеза и удаления и объемом их распределения в организме, например, при изменении положения тела (в течение 30 мин после перехода из лежачего положения в вертикальное концентрация белков в плазме возрастает на 10-20%) или после наложения жгута для венопункции (концентрация белка может увеличиться в течение нескольких минут). В обоих случаях увеличение концентрации белков вызвано усилением диффузии жидкости из сосудов в межклеточное пространство, и уменьшением объема их распределения (эффект дегидратации). Быстрое снижение концентрации белков, напротив, чаще всего является следствием увеличения объема плазмы, например, при увеличении проницаемости капилляров у пациентов с генерализованным воспалением.

Другие вещества плазмы крови

В плазме крови содержатся цитокины -- низкомолекулярные пептиды (менее 80 кД), участвующие в процессах воспаления и иммунного ответа. Определение их концентрации в крови используется для ранней диагностики сепсиса и реакций отторжения пересаженных органов.

Кроме того, в плазме крови содержатся питательные вещества (углеводы, жиры), витамины, гормоны, ферменты, участвующие в метаболических процессах. В плазму крови поступают продукты жизнедеятельности организма, подлежащие удалению, например мочевина, мочевая кислота, креатинин, билирубин и др.. С током крови они переносятся в почки. Концентрация продуктов жизнедеятельности в крови имеет свои допустимые границы. Повышение концентрации мочевой кислоты может наблюдаться при подагре, применении мочегонных препаратов, в результате снижения функции почек и др., снижение -- при остром гепатите, лечении аллопуринолом и др. Повышение концентрации мочевины в плазме крови наблюдается при почечной недостаточности, остром и хроническом нефрите, при шоке и т. д, снижение -- при печеночной недостаточности, нефротическом синдроме и т. д.

В плазме крови содержатся и минеральные вещества -- соли натрия, калия, кальция, магния, хлора, фосфора, йода, цинка и др., концентрация которых близка к концентрации солей в морской воде, где миллионы лет назад впервые появились первые многоклеточные существа. Минеральные вещества плазмы совместно участвуют в регуляции осмотического давления, рН крови, в ряде других процессов. Например, ионы кальция влияют на коллоидное состояние клеточного содержимого, участвуют в процессе свертывания крови, в регуляции мышечного сокращения и чувствительности нервных клеток. Большинство солей в плазме крови связано с белками или другими органическими соединениями.

3. Форменные элементы крови

Кровяные клетки

Тромбоциты (от тромб и греч. kytos -- вместилище, здесь -- клетка), клетки крови позвоночных животных, содержащие ядро (кроме млекопитающих). Участвуют в свертывании крови. Тромбоциты млекопитающих и человека, называемые кровяными пластинками, представляют собой округлые или овальные уплощенные фрагменты клеток диаметром 3-4 мкм, окруженные мембраной и обычно лишенные ядра. Они содержат в большом количестве митохондрии, элементы комплекса Гольджи, рибосомы, а также гранулы различной формы и величины, содержащие гликоген, ферменты (фибронектин, фибриноген), тромбоцитарный фактор роста и др. Тромбоциты образуются из крупных клеток костного мозга, называемых мегакариоцитами. Две трети тромбоцитов циркулирует в крови, остальные депонируются в селезенке. В 1 мкл крови человека содержится 200-400 тыс. тромбоцитов.

При повреждении сосуда тромбоциты активируются, становятся шаровидными и приобретают способность к адгезии -- прилипанию к стенке сосуда, и к агрегации -- слипанию друг с другом. Образующийся тромб восстанавливает целостность стенок сосуда. Повышение числа тромбоцитов может сопровождать хронические воспалительные процессы (ревматоидный артрит, туберкулез, колит, энтерит и т. д.), а также острые инфекции, геморрагии, гемолиз, анемии. Снижение числа тромбоцитов отмечается при лейкозе, апластической анемии, при алкоголизме и т. д. Нарушение функции тромбоцитов может быть обусловлено генетическими либо внешними факторами. Генетические дефекты лежат в основе болезни Виллебранда и ряда других редких синдромов. Продолжительность жизни тромбоцитов человека -- 8 дней.

Эритроциты (красные кровяные клетки; от греч. erythros -- красный и kytos -- вместилище, здесь -- клетка) -- высокоспецифичные клетки крови животных и человека, содержащие гемоглобин.

Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина -- 2,2 мкм, а объем -- около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов -- переносу кислорода от органов дыхания к клеткам организма.

Функции эритроцитов

Эритроциты переносят кислород от легких к тканям и двуокись углерода от тканей к органам дыхания. Сухое вещество эритроцита человека содержит около 95% гемоглобина и 5% других веществ -- белков и липидов. У человека и у млекопитающих животных эритроциты лишены ядра и имеют форму двояковогнутых дисков. Специфическая форма эритроцитов обусловливает более высокое отношение поверхности к объему, что увеличивает возможности газообмена. У акул, лягушек и птиц эритроциты овальной или округлой формы, содержат ядра. Средний диаметр эритроцитов человека 7-8 мкм, что приблизительно равно диаметру кровеносных капилляров. Эритроцит способен «складываться» при прохождении по капиллярам, просвет которых меньше диаметра эритроцита.

Эритроциты

В капиллярах легочных альвеол, где концентрация кислорода высока, гемоглобин соединяется с кислородом, а в метаболически активных тканях, где низкая концентрация кислорода, кислород освобождается и диффундирует из эритроцита в окружающие клетки. Процент насыщения крови кислородом зависит от парциального давления кислорода в атмосфере. Сродство двухвалентного железа, входящего в состав гемоглобина, к окиси углерода (СО) в несколько сотен раз больше его сродства к кислороду, поэтому в присутствии даже очень малого количества окиси углерода гемоглобин в первую очередь связывается именно с CO. После вдыхания окиси углерода у человека быстро наступает коллапс и он может погибнуть от удушья. С помощью гемоглобина осуществляется и перенос углекислоты. В ее транспорте участвует и содержащийся в эритроцитах фермент карбоангидраза.

Гемоглобин

Эритроциты человека, как и всех млекопитающих, имеют форму двояковогнутого диска и содержат гемоглобин.

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.

По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.

В крови здоровых мужчин содержится в среднем 14,5 г% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (130-160 г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.

Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.

В норме гемоглобин содержится в виде 2-х физиологических соединений.

Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин -- НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным -- Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.

Гемоглобин появляется уже у некоторых кольчатых червей. С его помощью осуществляется газообмен у рыб, амфибий, рептилий, птиц, млекопитающих и человека. В крови некоторых моллюсков, ракообразных и др. кислород переносится белковой молекулой -- гемоцианином, содержащим не железо, а медь. У некоторых кольчатых червей перенос кислорода осуществляется с помощью гемэритрина или хлорокруорина.

Образование, разрушение и патология эритроцитов

Процесс образования эритроцитов (эритропоэз) происходит в красном костном мозге. Незрелые эритроциты (ретикулоциты), поступающие в кровоток из костного мозга, содержат клеточные органеллы -- рибосомы, митохондрии и аппарат Гольджи. Ретикулоциты составляют около 1% всех циркулирующих эритроцитов. Их окончательная дифференцировка происходит в течение 24-48 часов после выхода в кровоток. Скорость распада эритроцитов и замещение их новыми зависит от многих условий, в частности, от содержания кислорода в атмосфере. Низкое содержание кислорода в крови стимулирует костный мозг к образованию большего числа эритроцитов, чем разрушается в печени. При высоком содержании кислорода наблюдается противоположная картина.

В крови у мужчин содержится в среднем 5х1012/л эритроцитов (6 000 000 в 1 мкл), у женщин -- около 4,5х1012/л (4500000 в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют земной шар по экватору.

Более высокое содержание эритроцитов у мужчин связано с влиянием мужских половых гормонов -- андрогенов, стимулирующих образование эритроцитов. Количество эритроцитов варьирует в зависимости от возраста и состояния здоровья. Повышение числа эритроцитов чаще всего связано с кислородным голоданием тканей или с легочными заболеваниями, врожденными пороками сердца, может возникать при курении, нарушении эритропоэза из-за опухоли или кисты. Понижение количества эритроцитов является непосредственным указанием на анемию (малокровие). В запущенных случаях при ряде анемий отмечается неоднородность эритроцитов по величине и форме, в частности, при железодефицитной анемии у беременных.

Иногда в гем включается атом трехвалентного железа вместо двухвалентного, и образуется метгемоглобин, который так прочно связывает кислород, что не способен отдавать его тканям, в результате чего возникает кислородное голодание. Образование метгемоглобина в эритроцитах может быть наследственным или приобретенным -- в результате воздействия на эритроциты сильных окислителей, таких как нитраты, некоторые лекарственные препараты -- сульфаниламиды, местные анестетики (лидокаин).

Продолжительность жизни эритроцитов у взрослых людей составляет около 3 месяцев, после чего они разрушаются в печени или селезенке. Каждую секунду в организме человека разрушается от 2 до 10 млн. эритроцитов. Старение эритроцитов сопровождается изменением их формы. В периферической крови здоровых людей количество эритроцитов правильной формы (дискоцитов) составляет 85% от общего их числа.

Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.

Гемолиз может происходить как вследствие внутренних дефектов клеток (например, при наследственном сфероцитозе), так и под влиянием неблагоприятных факторов микроокружения (например, токсинов неорганической или органической природы). При гемолизе содержимое эритроцита выходит в плазму крови. Обширный гемолиз приводит к снижению общего количества циркулирующих в крови эритроцитов (гемолитическая анемия).

В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.

При старении эритроцита его белковые компоненты расщепляются на составляющие их аминокислоты, а железо, входившее в состав гема, удерживается печенью и может в дальнейшем использоваться повторно при образовании новых эритроцитов. Остальная часть гема расщепляется с образованием желчных пигментов билирубина и биливердина. Оба пигмента в конце концов выводятся с желчью в кишечник.

Скорость оседания эритроцитов (СОЭ)

Если в пробирку с кровью добавить антисвертывающие вещества, то можно изучить важнейший ее показатель -- скорость оседания эритроцитов. Для исследования СОЭ кровь смешивают с раствором лимоннокислого натрия и набирают в стеклянную трубочку с миллиметровыми делениями. Через час отсчитывают высоту верхнего прозрачного слоя.

Оседание эритроцитов в норме у мужчин равна 1-10 мм в час, у женщин -- 2-5 мм в час. Увеличение скорости оседания больше указанных величин является признаком патологии.

Величина СОЭ зависит от свойств плазмы, в первую очередь, от содержания в ней крупномолекулярных белков -- глобулинов и особенно фибриногена. Концентрация последних возрастает при всех воспалительных процессах, поэтому у таких больных СОЭ обычно превышает норму.

В клинике по скорости оседания эритроцитов (СОЭ) судят о состоянии организма человека. В норме СОЭ у мужчин 1-10 мм/час, у женщин 2-15 мм/час. Повышение СОЭ -- высокочувствительный, но неспецифический тест на активно протекающий воспалительный процесс. При пониженном количестве эритроцитов в крови СОЭ возрастает. Снижение СОЭ наблюдается при различных эритроцитозах.

Лейкоциты (белые кровяные клетки -- бесцветные клетки крови человека и животных. Все типы лейкоцитов (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) шаровидной формы, имеют ядро и способны к активному амебоидному движению. Лейкоциты играют важную роль в защите организма от болезней -- вырабатывают антитела и поглощают бактерий. В 1 мкл крови в норме содержится 4-9 тыс. лейкоцитов. Количество лейкоцитов в крови здорового человека подвержено колебаниям: оно повышается к концу дня, при физической нагрузке, эмоциональном напряжении, приеме белковой пищи, резкой смене температуры окружающей среды.

Существуют две основные группы лейкоцитов -- гранулоциты (зернистые лейкоциты) и агранулоциты (незернистые лейкоциты). Гранулоциты подразделяются на нейтрофилы, эозинофилы и базофилы. Все гранулоциты имеют разделенное на лопасти ядро и зернистую цитоплазму. Агранулоциты разделяются на два основных типа: моноциты и лимфоциты.

Нейтрофилы

Нейтрофилы составляют 40-75% всех лейкоцитов. Диаметр нейтрофила 12 мкм, ядро содержит от двух до пяти долек, соединенных между собой тонкими нитями. В зависимости от степени дифференцировки различают палочкоядерные (незрелые формы с подковообразными ядрами) и сегментоядерные (зрелые) нейтрофилы. У женщин один из сегментов ядра содержит вырост в форме барабанной палочки -- так называемое тельце Барра. Цитоплазма заполнена множеством мелких гранул. Нейтрофилы содержат митохондрии и большое количество гликогена. Продолжительность жизни нейтрофилов -- около 8 суток. Основная функция нейтрофилов -- обнаружение, захват (фагоцитоз) и переваривание с помощью гидролитических ферментов болезнетворных бактерий, обломков тканей и другого подлежащего удалению материала, специфическое распознавание которого осуществляется при помощи рецепторов. После осуществления фагоцитоза нейтрофилы погибают, и их остатки составляют основной компонент гноя. Фагоцитарная активность, наиболее выраженная в возрасте 18-20 лет, с возрастом уменьшается. Активность нейтрофилов стимулируется многими биологически активными соединениями -- тромбоцитарными факторами, метаболитами арахидоновой кислоты и др. Многие из этих веществ являются хемоаттрактантами, по градиенту концентрации которых нейтрофилы мигрируют в очаг инфекции (см. Таксисы). Изменяя свою форму, они могут протискиваться между клетками эндотелия и покидать пределы кровеносного сосуда. Освобождение токсичного для тканей содержимого гранул нейтрофилов в местах их массивной гибели может приводить к образованию обширных локальных повреждений (см. Воспаление).

Эозинофилы

Базофилы

Базофилы составляют 0-1% популяции лейкоцитов. Размер 10-12 мкм. Чаще имеют трехдольное S-образное ядро, содержат все виды органелл, свободные рибосомы и гликоген. Цитоплазматические гранулы окрашиваются в синий цвет основными красителями (метиленовым синим и др.), с чем связано название данных лейкоцитов. В состав цитоплазматических гранул входят пероксидаза, гистамин, медиаторы воспаления и др. вещества, выброс которых в месте активации вызывает развитие аллергических реакций немедленного типа: аллергический ринит, некоторых формы астмы, анафилактический шок. Как и другие лейкоциты, базофилы могут покидать кровоток, но их способность к амебоидному движению ограничена. Продолжительность жизни неизвестна.

Моноциты

Моноциты составляют 2-9% от общего числа лейкоцитов. Это самые крупные лейкоциты (диаметр около 15 мкм). Моноциты имеют крупное бобовидное ядро, расположенное эксцентрично, в цитоплазме присутствуют типичные органеллы, фагоцитарные вакуоли, многочисленные лизосомы. Различные вещества, образующиеся в очагах воспаления и разрушения тканей, являются агентами хемотаксиса и активации моноцитов. Активированные моноциты выделяют ряд биологически активных веществ -- интерлейкин-1, эндогенные пирогены, простагландины и др. Покидая кровоток, моноциты превращаются в макрофагов, активно поглощают бактерий и др. крупные частицы.

Лимфоциты

Лимфоциты составляют 20-45% общего числа лейкоцитов. Они округлой формы, содержат крупное ядро и небольшое количество цитоплазмы. В цитоплазме немного лизосом, митохондрий, минимум эндоплазматической сети, достаточно много свободных рибосом. Выделяют 2 морфологически сходные, но функционально различающиеся группы лимфоцитов: Т-лимфоциты (80%), образующиеся в тимусе (вилочковой железе), и В-лимфоциты (10%), образующиеся в лимфоидной ткани. Клетки лимфоцитов образуют короткие отростки (микроворсинки), более многочисленные у В-лимфоцитов. Лимфоциты играют центральную роль во всех иммунных реакциях организма (образование антител, уничтожение опухолевых клеток и т. д.). Большинство лимфоцитов крови находится в функционально и метаболически неактивном состоянии. В ответ на специфические сигналы, лимфоциты выходят из сосудов в соединительную ткань. Главная функция лимфоцитов состоит в узнавании и уничтожении клеток-мишеней (чаще всего вирусов при вирусной инфекции). Продолжительность жизни лимфоцитов варьирует от нескольких дней до десяти и более лет.

Анемия -- это уменьшение эритроцитарной массы. Поскольку объем крови обычно поддерживается на постоянном уровне, степень анемии можно определить либо на основании объема эритроцитов, выраженного в процентах по отношению к общему объему крови (гематокрит [ГК]), либо на основании содержания гемоглобина в крови. В норме эти показатели различны у мужчин и женщин, поскольку андрогены повышают как секрецию эритропоэтина, так и количество костномозговых клеток-предшественников. При диагностике анемии необходимо также учитывать, что на большой высоте над уровнем моря, где напряжение кислорода ниже обычного, величины показателей красной крови возрастают.

У женщин об анемии свидетельствует содержание гемоглобина в крови (НЬ) меньшее, чем 120 г/л и гематокрит (Ht) ниже 36 %. У мужчин возникновение анемии констатируют при НЬ < 140 г/л и Ht < 42 %. НЬ не всегда отражает число циркулирующих эритроцитов. После острой кровопотери НЬ может оставаться в нормальных пределах при дефиците циркулирующих эритроцитов, обусловленном снижением объема циркулирующей крови (ОЦК). При беременности НЬ снижен вследствие увеличения объема плазмы крови при нормальном числе эритроцитов, циркулирующих с кровью.

Клинические признаки гемической гипоксии, связанной с падением кислородной емкости крови вследствие снижения числа циркулирующих эритроцитов, возникают при НЬ меньшем, чем 70 г/л. О тяжелой анемии говорят бледность кожных покровов и тахикардия как механизм поддержания через рост минутного объема кровообращения адекватного транспорта кислорода с кровью, несмотря на ее низкую кислородную емкость.

Содержание ретикулоцитов в крови отражает интенсивность образования эритроцитов, то есть является критерием реакции костного мозга на анемию. Содержание ретикулоцитов обычно измеряют в процентах от общего числа эритроцитов, которое содержит единица объема крови. Ретикулоцитарный индекс (РИ) - показатель соответствия реакции усиления образования новых эритроцитов костным мозгом тяжести анемии:

РИ = 0,5 х (содержание ретикулоцитов х Ht больного/нормальный Ht).

РИ, превышающий уровень в 2-3 %, свидетельствует об адекватной реакции интенсификации эритропоэза в ответ на анемию. Меньшая величина говорит об угнетении образования эритроцитов костным мозгом как о причине анемии. Определение величины среднего эритроцитарного объема используется для того, чтобы отнести анемию у больного к одной из трех совокупностей: а) микроцитарные; б) нормоцитарные; в) макроцитарные. Нормоцитарную анемию характеризует нормальный объем эритроцитов, при микроцитарной анемии он снижен, а при макроцитарной повышен.

Нормальный диапазон колебаний среднего эритроцитарного объема составляет 80-98 мкм3. Анемия при определенном и индивидуальном для каждого пациента уровне концентрации гемоглобина в крови через снижение ее кислородной емкости вызывает гемическую гипоксию. Гемическая гипоксия служит стимулом ряда защитных реакций, направленных на оптимизацию и рост системного транспорта кислорода (схема 1). Если компенсаторные реакции в ответ на анемию оказываются несостоятельными, то посредством нейрогуморальной адренергической стимуляции сосудов сопротивления и прекапиллярных сфинктеров происходит перераспределение минутного объема кровообращения (МОК), направленное на поддержание нормального уровня доставки кислорода в мозг, к сердцу и легким. При этом в частности падает объемная скорость кровотока в почках.

Сахарный диабет в первую очередь характеризуют гипергликемия, то есть патологически высокое содержание глюкозы в крови, и другие нарушения обмена веществ, связанные с патологически низкими секрецией инсулина, концентрацией нормального гормона в циркулирующей крови или представляющие собой следствие недостаточности или отсутствия нормальной реакции клеток-мишеней на действие гормона-инсулина. Как патологическое состояние всего организма сахарный диабет в основном составляют расстройства обмена веществ, в том числе и вторичные относительно гипергликемии, патологические изменения микрососудов (причины ретино- и нефропатии), ускоренный атеросклероз артерий, а также нейропатия на уровне периферических соматических нервов, симпатических и парасимпатических нервных проводников и ганглиев.

Выделяют два типа сахарного диабета. От сахарного диабета I типа страдают 10 % больных сахарным диабетом как первого, так и второго типа. Сахарный диабет первого типа называют инсулинзависимым не только потому, что больным для устранения гипергликемии необходимо парентеральное введение экзогенного инсулина. Такая необходимость может возникнуть и при лечении больных с неинсулинзависимым сахарным диабетом. Дело в том, что без периодического введения инсулина больным сахарным диабетом I типа у них развивается диабетический кетоацидоз.

Если инсулинзависимый сахарный диабет возникает в результате почти полного отсутствия секреции инсулина, то причина неинсулинзависимого сахарного диабета - это частично сниженная секреция инсулина и (или) резистентность по отношению к инсулину, то есть отсутствие нормальной системной реакции на высвобождение гормона инсулинпродуцирующими клетками островков Лангерганса поджелудочной железы.

Длительное и экстремальное по силе действие неотвратимых раздражителей в качестве стимулов стресса (послеоперационный период в условиях неэффективной анальгезии, состояние вследствие тяжелых ранений и травм, персистирующий отрицательный психоэмоциональный стресс, вызванный безработицей и нищетой, и др.) обуславливает длительную и патогенную активацию симпатического отдела автономной нервной системы и нейроэндокринной катаболической системы. Эти сдвиги регуляции через нейрогенное снижение секреции инсулина и устойчивое преобладание на системном уровне эффектов катаболических гормонов антагонистов инсулина может трансформировать сахарный диабет II типа в инсулинзависимый, что служит показанием к парентеральному введению инсулина.

Гипотиреоз - патологическое состояние вследствие низкого уровня секреции гормонов щитовидной железы и связанной с ним недостаточности нормального действия гормонов на клетки, ткани, органы и организм в целом.

Так как проявления гипотиреоза аналогичны многим признакам других болезней, то при обследовании больных гипотиреоз нередко остается незамеченным.

Первичный гипотиреоз возникает в результате заболеваний самой щитовидной железы. Первичный гипотиреоз может быть осложнением лечения больных с тиреотоксикозом радиоактивным йодом, операций на щитовидной железе, влияния на щитовидную железу ионизирующих излучений (лучевая терапия при лимфогранулематозе в области шеи), а также у части больных представляет собой побочный эффект йод-содержащих препаратов.

В ряде развитых стран наиболее частой причиной гипотиреоза является хронический аутоиммунный лимфоцитарный тиреоидит (болезнь Хашимото), который у женщин возникает чаще, чем у мужчин. При болезни Хашимото равномерное увеличение щитовидной железы едва заметно, а с кровью больных циркулируют аутоантитела к аутоантигенам тиреоглобулина и микросомной фракции железы.

Болезнь Хашимото как причина первичного гипотиреоза нередко развивается одновременно с аутоиммунным поражением коры надпочечников, обуславливающим недостаточность секреции и эффектов ее гормонов (аутоиммунный полигландулярный синдром).

Вторичный гипотиреоз - это следствие нарушения секреции тиреотропного гормона (ТТГ) аденогипофизом. Чаще всего у больных недостаточность секреции ТТГ, вызывающая гипотиреоз, развивается вследствие хирургических вмешательств на гипофизе или является результатом возникновения его опухолей. Вторичный гипотиреоз часто сочетается с недостаточной секрецией других гормонов аденогипофиза, адренокортикотропного и прочих.

Определить вид гипотиреоза (первичный или вторичный) позволяет исследование содержания в сыворотке крови ТТГ и тироксина (Т4). Низкая концентрация Т4 при росте содержания в сыворотке ТТГ свидетельствует о том, что в соответствии принципом регуляции по обратной отрицательной связи снижение образования и высвобождения Т4 служит стимулом для роста секреции ТТГ аденогипофизом. В этом случае гипотиреоз определяют как первичный. Когда при гипотиреозе снижена концентрация в сыворотке ТТГ, или в том случае, если, несмотря на гипотиреоз, концентрация ТТГ находится в диапазоне среднестатистической нормы, снижение функции щитовидной железы является вторичным гипотиреозом.

При неявном субклиническом гипотиреозе, то есть при минимальных клинических проявлениях или отсутствии симптомов недостаточности функции щитовидной железы, концентрация Т4 может находиться в пределах нормальных колебаний. При этом уровень содержания ТТГ в сыворотке повышен, что предположительно можно связать с реакцией роста секреции ТТГ аденогипофизом в ответ на неадекватное потребностям организма действие гормонов щитовидной железы. У таких больных в патогенетическом отношении может быть оправданным назначение препаратов щитовидной железы для воссстановления на системном уровне нормальной интенсивности действия тиреоидных гормонов (заместительная терапия).

Более редкие причины гипотиреоза - это генетически детерминированная гипоплазия щитовидной железы (врожденный атиреоз), наследственные нарушения синтеза ее гормонов, связанные с отсутствием нормальной экспрессии генов определенных ферментов или ее недостаточностью, врожденная или приобретенная пониженная чувствительность клеток и тканей к действию гормонов, а также низкое поступление йода как субстрата синтеза гормонов щитовидной железы из внешней среды во внутреннюю.

Гипотиреоз можно считать патологическим состоянием, обусловленным дефицитом в циркулирующей крови и всем организме свободных гормонов щитовидной железы. Известно, что гормоны щитовидной железы трийодтиронин (Тз) и тироксин связываются с ядерными рецепторами клеток-мишеней. Сродство тиреоидных гормонов к ядерным рецепторам высоко. При этом сродство к Тз в десять раз превышает сродство к Т4.

Основное воздействие гормонов щитовидной железы на обмен веществ - это увеличение потребления кислорода и улавливания клетками свободной энергии в результате усиления биологического окисления. Поэтому потребление кислорода в условиях относительного покоя у больных с гипотиреозом находится на патологически низком уровне. Данный эффект гипотиреоза наблюдается во всех клетках, тканях и органах, кроме головного мозга, клеток системы мононуклеарных фагоцитов и гонад.

Таким образом, эволюция отчасти сохранила не зависящими от возможного гипотиреоза энергетический обмен на супрасегментарном уровне системной регуляции, в ключевом звене системы иммунитета, а также обеспечение свободной энергией репродуктивной функции. Тем не менее, дефицит массы в эффекторах системы эндокринной регуляции обмена веществ (дефицит гормонов щитовидной железы) приводит к дефициту свободной энергии (гипоэргозу) на системном уровне. Мы считаем это одним из проявлений действия общей закономерности развития болезни и патологического процесса вследствие дизрегуляции, - через дефицит массы и энергии в системах регуляции к дефициту массы и энергии на уровне всего организма.

Системный гипоэргоз и падение возбудимости нервных центров вследствие гипотиреоза проявляет себя такими характерными симптомами недостаточной функции щитовидной железы как повышенная утомляемость, сонливость, а также замедление речи и падение когнитивных функций. Нарушения внутрицентральных отношений вследствие гипотиреоза - это результат замедленного умственного развития больных с гипотиреозом, а также падения интенсивности неспецифической афферентации, обусловленного системным гипоэргозом.

Большая часть свободной энергии, утилизируемой клеткой, используется для работы Na+/ К+-АТФазного насоса. Гормоны щитовидной железы повышают эффективность работы этого насоса, увеличивая количество составляющих его элементов. Так как практически все клетки обладают таким насосом и реагируют на тиреоидные гормоны, то к системным эффектам тиреоидных гормонов относится повышение эффективности работы данного механизма активного трансмембранного переноса ионов. Это происходит посредством роста улавливания клетками свободной энергии и через увеличение числа единиц Nа+/К+-АТФазного насоса.

Гормоны щитовидной железы усиливают чувствительность адренорецепторов сердца, сосудов и других эффекторов функций. При этом в сравнении с другими регуляторными влияниями адренергическая стимуляция возрастает в наибольшей степени, так как одновременно гормоны подавляют активность фермента моноаминооксидазы, разрушающей симпатический медиатор норадреналин. Гипотиреоз, снижая интенсивность адренергической стимуляции эффекторов системы кровообращения, приводит к снижению минутного объема кровообращения (МОК) и брадикардии в условиях относительного покоя. Другая причина низких величин минутного объема кровообращения - это сниженный уровень потребления кислорода как детерминанты МОК. Снижение адренергической стимуляции потовых желез проявляет себя характерной сухостью колеи.

Гипотиреоидная (миксематозная) кома - редкое осложнение гипотиреоза, которое в основном складывается из следующих дисфункций и нарушений гомеостазиса:

¦ Гиповентиляция как результат падения образования углекислого газа, которую усугубляет центральное гипопноэ из-за гипоэргоза нейронов дыхательного центра. Поэтому гиповентиляция при миксематозной коме может быть причиной артериальной гипоксемии.

¦ Артериальная гипотензия как следствие снижения МОК и гипоэргоза нейронов сосудодвигательного центра, а также падения чувствительности адренорецепторов сердца и сосудистой стенки.

¦ Гипотермия в результате падения интенсивности биологического окисления на системном уровне.

Запор как характерный симптом гипотиреоза вероятно обусловлен системным гипоэргозом и может быть результатом расстройств внутрицентральных отношений вследствие падения функции щитовидной железы.

Гормоны щитовидной железы, как и кортикостероиды, индуцируют белковый синтез, активируя механизм транскрипции генов. Это основной механизм, посредством действия которого влияние Тз на клетки усиливает общий синтез белка и обеспечивает положительный азотистый баланс. Поэтому гипотиреоз нередко вызывает отрицательный азотистый баланс.

Тиреоидные гормоны и глюкокортикоиды, повышают уровень транскрипции гена гормона роста человека (соматотропина). Поэтому развитие гипотиреоза в детском возрасте может быть причиной задержки роста тела. Тиреоидные гормоны стимулируют синтез белка на системном уровне не только через усиление экспрессии гена соматотропина. Они усиливают синтез белка, модулируя функционирование других элементов генетического материала клеток и повышая проницаемость плазматической мембраны для аминокислот. В этой связи гипотиреоз можно считать патологическим состоянием, которое характеризует угнетение белкового синтеза как причина задержки умственного развития и роста тела детей с гипотиреозом. Связанная с гипотиреозом невозможность быстрой интенсификации белкового синтеза в иммунокомпетентных клетках может служить причиной дизрегуляции специфического иммунного ответа и приобретенного иммунодефицита вследствие дисфункций как Т-, так и В-клеток.

Одним из эффектов тиреоидных гормонов на метаболизм является усиление липолиза и окисления жирных кислот с падением уровня их содержания в циркулирующей крови. Низкая интенсивность липолиза у больных с гипотиреозом приводит к аккумуляции жира в организме, что обуславливает патологическое возрастание массы тела. Рост массы тела чаще выражен умеренно, что связано с анорексией (результат падения возбудимости нервной системы и трат свободной энергии организмом) и низким уровнем белкового синтеза у больных с гипотиреозом.

Гормоны щитовидной железы - важные эффекторы систем регуляции развития по ходу онтогенеза. Поэтому гипотиреоз у плодов или новорожденных приводит к кретинизму (фр. cretin, тупица), то есть сочетанию множественных дефектов развития и необратимой задержки нормального становления ментальных и когнитивных функций. Для большинства больных с кретинизмом вследствие гипотиреоза характерна микседема.

Патологическое состояние организма вследствие патогенно избыточной секреции гормонов щитовидной железы называют гипертиреозом. Под тиреотоксикозом понимают гипертиреоз крайней степени тяжести.

...

Подобные документы

    Объём крови живого организма. Плазма и взвешенные в ней форменные элементы. Основные белки плазмы. Эритроциты, тромбоциты и лейкоциты. Основной фильтр крови. Дыхательная, питательная, экскреторная, терморегулирующая, гомеостатическая функции крови.

    презентация , добавлен 25.06.2015

    Место крови в системе внутренней среды организма. Количество и функции крови. Гемокоагуляция: определение, факторы свёртывания, стадии. Группы крови и резус–фактор. Форменные элементы крови: эритроциты, лейкоциты, тромбоциты, их количество в норме.

    презентация , добавлен 13.09.2015

    Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.

    презентация , добавлен 08.01.2014

    Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.

    презентация , добавлен 19.04.2016

    Анализ внутренней структуры крови, а также ее главные элементы: плазма и клеточные элементы (эритроциты, лейкоциты, тромбоциты). Функциональные особенности каждого типа клеточных элементов крови, продолжительность их жизни и значение в организме.

    презентация , добавлен 20.11.2014

    Состав плазмы крови, сравнение с составом цитоплазмы. Физиологические регуляторы эритропоэза, виды гемолиза. Функции эритроцитов и эндокринные влияния на эритропоэз. Белки в плазме крови человека. Определение электролитного состава плазмы крови.

    реферат , добавлен 05.06.2010

    Функции крови: транспортная, защитная, регуляторная и модуляторная. Основные константы крови человека. Определение скорости оседания и осмотической резистентности эритроцитов. Роль составляющих плазмы. Функциональная система поддержания рН крови.

    презентация , добавлен 15.02.2014

    Кровь. Функции крови. Компоненты крови. Свертывание крови. Группы крови. Переливание крови. Болезни крови. Анемии. Полицитемия. Аномалии тромбоцитов. Лейкопения. Лейкоз. Аномалии плазмы.

    реферат , добавлен 20.04.2006

    Физико-химические свойства крови, ее форменные элементы: эритроциты, ретикулоциты, гемоглобин. Лейкоциты или белые кровяные тельца. Тромбоцитарные и плазменные факторы свертывания. Противосвертывающая система крови. Группы крови человека по системе АВ0.

    презентация , добавлен 05.03.2015

    Составные элементы крови: плазма и взвешенные в ней клетки (эритроциты, тромбоциты и лейкоциты). Виды и медикаментозное лечение малокровия. Нарушения свертываемости крови и внутренние кровотечения. Синдромы иммунодефицита - лейкопения и агранулоцитоз.