Строение и функции центральной нервной системы. Центральная нервная система (ЦНС) Количество элементов центральной нервной системы

Центральная нервная система - это головной и спинной мозг, а периферическая - отходящие от них нервы и нервные узлы, расположенные за пределами черепа и позвоночника.

Спинной мозг расположен в позвоночном канале. Он имеет вид трубки длиной около 45 см и диаметром 1 см, отходящей от головного мозга, с полостью - центральным каналом,заполненным спинномозговой жидкостью.

На поперечном разрезе 48 видно, что спинной мозг состоит из белого (снаружи) и серого (внутри) вещества. Серое вещество состоит из тел нервных клеток и имеет на поперечном срезе форму бабочки, от расправленных «крыльев» которой отходят два передних и два задних рога. В передних рогах находятся мотонейроны, от которых отходят двигательные нервы. Задние рога включают нервные клетки, к которым подходят чувствительные волокна задних корешков. Соединяясь между собой, передние и задние корешки образуют 31 пару смешанных (двигательных и чувствительных) спинномозговых нервов. Каждая пара нервов иннервирует определенную группу мышц и соответствующий участок кожи.

Белое вещество образовано отростками нервных клеток (нервными волокнами), объединенными в проводящие пути. Среди них выделяют волокна, соединяющие участки спинного мозга на различных уровнях, двигательные нисходящие волокна, идущие из головного мозга в спинной мозг на соединение с клетками, дающими начало передним двигательным корешкам, и чувствительные восходящие волокна, которые частично являются продолжением волокон задних корешков, частично отростками клеток спинного мозга и восходят к головному мозгу.

Спинной мозг выполняет две важные функции: рефлекторную и проводящую. В сером веществе спинного мозга замыкаются рефлекторные пути многих двигательных реакций, например коленного рефлекса. Он проявляется в том, что при постукивании по сухожилию четырехглавой мышцы бедра у нижней границы надколенника происходит рефлекторное разгибание ноги в коленном суставе. Это объясняется тем, что при ударе по связке мышца натягивается, в ее нервных рецепторах возникает возбуждение, которое по центростремительным нейронам передается в серое вещество спинного мозга, переходит на центробежные нейроны и через их длинные отростки на мышцы-разгибатели. В коленном рефлексе участвуют два вида нейронов - центростремительные и центробежные. В большинстве рефлексов спинного мозга участвуют и вставочные нейроны. В спинной мозг вступают чувствительные нервы от рецепторов кожи, двигательного аппарата, кровеносных сосудов, пищеварительного тракта, выделительных и половых органов. Центростремительные нейроны посредством вставочных нейронов связываются с центробежными - двигательными нейронами, которые иннервируют все скелетные мышцы (за исключением мышц лица). В спинном мозге расположены и многие центры вегетативной иннервации внутренних органов.

Проводниковая функция. Центростремительные нервные импульсы по проводящим путям спинного мозга передают в головной мозг информацию об изменениях во внешней и внутренней среде организма. По нисходящим путям импульсы от головного мозга передаются к двигательным нейронам, которые вызывают или регулируют деятельность исполнительных органов.

Деятельность спинного мозга у млекопитающих и человека подчинена координирующим и активирующим влияниям вышележащих отделов центральной нервной системы. Поэтому рефлексы, присущие самому спинному мозгу, можно изучить в «чистом виде» только после отделения спинного мозга от головного, например у спинальной лягушки. Первым следствием перерезки или травмы спинного мозга является спинальный шок (удар, потрясение), который длится у лягушки 3-5 мин, у собаки - 7-10 суток. При травме или ранении, вызвавших нарушение связи спинного и головного мозга, спинальный шок у человека длится - 3-5 месяцев. В это время все спинальные рефлексы исчезают. Когда шок проходит, то простые спинномозговые рефлексы восстанавливаются, но пострадавший остается парализованным, превращается в инвалида.

Головной мозг СОСТОИТ из заднего, среднего и переднего мозга (49).

От головного мозга отходят 12 пар черепно-мозговых нервов, из которых зрительные, слуховые и обонятельные являются чувствительными нервами, проводящими возбуждение от рецепторов соответствующих органов чувств в головной мозг. Остальные, за исключением чисто двигательных нервов, иннервирующих мышцы глаз, являются смешанными нервами.

Продолговатый мозг выполняет рефлекторную и проводниковую функции. Из продолговатого мозга и моста выходят восемь пар черепно-мозговых нервов (с V по XII пары). По чувствительным нервам продолговатый мозг получает импульсы от рецепторов кожи головы, слизистых оболочек рта, носа, глаз, гортани, трахеи, а также от рецепторов сердечнососудистой и пищеварительной систем, от органа слуха и вестибулярного аппарата. В продолговатом мозге находится дыхательный центр, обеспечивающий акт вдоха и выдоха. Центры продолговатого мозга, иннервирующие дыхательные мышцы, мышцы голосовых связок, языка и губ, играют важную роль в формировании речи. Через продолговатый мозг осуществляются рефлексы мигания ресниц, слезоотделения, чихания, кашля, глотания, отделения пищеварительных соков, регуляция работы сердца и просвета кровеносных сосудов. Продолговатый мозг принимает участие и в регуляции тонуса скелетных мышц. Через него осуществляется замыкание разнообразных нервных путей, соединяющих центры переднего мозга, мозжечка и промежуточного мозга со спинным. На работу продолговатого мозга влияют импульсы, поступающие от коры больших полушарий, мозжечка и подкорковых ядер.

Мозжечок расположен позади продолговатого мозга и имеет два полушария и среднюю часть. Он состоит из серого вещества, расположенного снаружи, и белого вещества - внутри. Многочисленными нервными путями мозжечок связан со всеми отделами центральной нервной системы. При нарушении функций мозжечка наблюдается падение тонуса мышц, неустойчивые движения, дрожание головы, туловища и конечностей, нарушение координации, плавности, движений, расстройства вегетативных функций - желудочно-кишечного тракта, сердечно-сосудистой системы и др.

Средний мозг играет важную роль в регуляции мышечного тонуса, в осуществлении установочных рефлексов, благодаря которым возможны стояние и ходьба, в проявлении ориентировочного рефлекса.

Промежуточный мозг состоит из зрительных бугров (таламус) и подбугровой области (гипоталамус). Зрительные бугры регулируют ритм корковой активности и участвуют в образовании условных рефлексов, эмоций и т. д. Подбугровая область связана со всеми отделами центральной нервной системы и с железами внутренней секреции. Она является регулятором обмена веществ и температуры тела, постоянства внутренней среды организма и функций пищеварительной, сердечно-сосудистой, мочеполовой систем, а также желез внутренней секреции.

Сетчатое образование или ретикулярная формация - это скопление нейронов, образующее с их отростками густую сеть, расположенное в глубоких структурах продолговатого, среднего и промежуточного мозга (ствола мозга). Все центростремительные нервные волокна дают в стволе мозга ответвления в сетчатое образование.

Ретикулярная формация оказывает активирующее воздействие на кору головного мозга, поддерживая состояние бодрствования и концентрируя внимание. Разрушение ретикулярной формации вызывает глубокий сон, а раздражение ее - пробуждение. Кора больших полушарий регулирует активность сетчатого образования.

Большие полушария головного мозга появились на сравнительно поздних ступенях эволюционного развития животного мира (см. раздел «Зоология»).

У взрослого человека большие полушария составляют 80% массы головного мозга. Кора толщиной от 1,5 до 3 мм покрывает поверхность мозга площадью от 1450 до 1700 см 2 ; в ней насчитывается от 12 до 18 млрд. нейронов, расположенных в шести слоях лежащих друг над другом нервных клеток разных категорий. Больше 2/3 поверхности коры скрыто в глубоких бороздах. Белое вещество, расположенное под корой, состоит из нервных волокон, соединяющих различные участки коры с другими отделами головного мозга и со спинным мозгом. В белом веществе правого и левого полушарий, соединенных между собой перемычкой из нервных волокон, находятся скопления серого вещества - подкорковые ядра, через которые происходит передача возбуждений в кору и из нее. Три главные борозды - центральная, боковая и теменно-затылочная - делят каждое полушарие на четыре доли: лобную, теменную, затылочную и височную. По особенностям клеточного состава и строения кору больших полушарий разделяют на ряд участков, называемых корковыми полями. Функции отдельных участков коры неодинаковы. Каждому рецепторному аппарату на периферии соответствует в коре область, которую И. П. Павлов назвал корковым ядром анализатора.

Зрительная зона расположена в затылочной доле коры, В нее поступают импульсы от сетчатки глаза, она осуществляет различение зрительных раздражений. При повреждении затылочной доли коры человек не различает окружающих предметов, теряет способность ориентироваться с помощью зрения. Глухота возникает при разрушении височной области, где расположена слуховая зона. На внутренней поверхности височной доли каждого полушария расположены вкусовая и обонятельная зоны. Ядерная зона двигательного анализатора расположена в переднецентральной и заднецентральной областях коры. Зона кожного анализатора занимает заднецентральную область. Наибольшую площадь занимает корковое представительство рецепторов кисти и большого пальца руки, голосового аппарата и лица, наименьшую - представительство туловища, бедра и голени.

Кора больших полушарий выполняет функцию высшего анализатора сигналов от всех рецепторов тела и синтеза ответных реакций в биологически целесообразный акт. Она является высшим органом координации рефлекторной деятельности и органом приобретения и накопления индивидуального жизненного опыта, образования временных связей - условных рефлексов.

ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

Центры нервной системы

Процессы торможения в ЦНС

Рефлекс и рефлекторная дуга. Виды рефлекса

Функции и отделы нервной системы

Организм представляет собой сложную высокоорганизованную систему, состоящую из функционально взаимосвязанных клеток, тканей, органов и их систем. Управление их функциями, а также их интеграцию (взаимосвязь) обеспечивает нервная система . НС осуществляет также связь организма с внешней средой, путем анализа и синтеза поступающей к ней разнообразной информации от рецепторов. Она обеспечивает движения и выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру. Кроме того, с функциями ЦНС связаны процессы, лежащие в основе психической деятельности человека (внимание, память эмоции, мышление и т.п.).

Таким образом, функции нервной системы :

Регулирует все процессы, протекающие в организме;

Осуществляет взаимосвязь (интеграцию) клеток, тканей, органов и систем;

Осуществляет анализ и синтез поступающей в организм информации;



Регулирует поведение;

Обеспечивает процессы, лежащие в основе психической деятельности человека.

Согласно морфологическому принципу центральную (головной и спинной мозг) и периферическую (парные спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и ганглии, лежащие во всех отделах тела человека).

По функциональному принципу нервная система подразделяется на соматическую и вегетативную . Соматическая нервная система обеспечивает иннервацию главным образом органов тела (сомы) - скелетные мышцы, кожу и др. Этот отдел нервной системы связывает организм с внешней средой при помощи органов чувств, обеспечивает движение. Вегетативная нервная система иннервирует внутренние органы, сосуды, железы, в том числе эндокринные, гладкую мускулатуру, регулирует обменные процессы во всех органах и тканях. Вегетативная нервная система включает симпатический , парасимпатический и метасимпатический отделы.

2. Структурно-функциональные элементы НС

Основной структурно-функциональной единицей НС является нейрон с его отростками. Их функции заключаются в восприятии информации с периферии или от других нейронов, ее переработке и передаче на соседние нейроны или исполнительные органы. В нейроне различают тело (сому ) и отростки (дендриты и аксон ). Дендриты - многочисленные сильно ветвящиеся протоплазматические выросты вблизи сомы, по которым возбуждение проводится к телу нейрона. Их начальные сегменты имеют больший диаметр и лишены шипиков (выростов цитоплазмы). Аксон - единственный осево - цилиндрический отросток нейрона, имеющий длину от нескольких мкм до 1 м, диаметр которого относительно постоянен на всем его протяжении. Конечные участки аксона делятся на терминальные веточки, по которым передается возбуждение от тела нейрона к другому нейрону или рабочему органу.

Объединение нейронов в нервную систему происходит с помощью межнейрональных синапсов.

Функции нейрона:

1. Восприятие информации (дендриты и тело нейрона).

2. Интеграция, хранение и воспроизведение информации (тело нейрона). Интегративная деятельность нейрона заключается во внутриклеточном преобразовании множества приходящих к нейрону гетерогенных возбуждений и формировании единой ответной реакции.

3. Синтез биологически активных веществ (тело нейрона и синаптические окончания).

4. Генерация электрических импульсов (аксонный холмик – основание аксона).

5. Аксонный транспорт и проведение возбуждения (аксон).

6. Передача возбуждений (синаптические окончания).

Существует несколько классификаций нейронов .

Согласно морфологической классификации нейроны различают по форме сомы. Выделяют нейроны зернистые, пирамидные, звездчатые нейроны и т.д. По числу отходящих от тела нейронов отростков выделяют униполярные нейроны (один отросток), псевдоуниполярные нейроны (Т- образно ветвящийся отросток), биполярные нейроны (два отростка), мультиполярные нейроны (один аксон и множество дендритов).

Функциональная классификация нейронов основана на характере выполняемой ими функции. Выделяют афферентные (чувствительные , рецепторные ) нейроны (псевдоуниполярные), эфферентные (мотонейроны , двигательные ) нейроны (мультиполярные) и ассоциативные (вставочные , интернейроны ) нейроны (в большинстве мультиполярные).

Биохимическая классификация нейронов осуществляется с учетом природы вырабатываемого медиатора . Исходя из этого выделяют холинергические (медиатор ацетилхолин), моноаминергические (адреналин, норадреналин, серотонин, дофамин), ГАМКергические (гамма-аминомасляная кислота), пептидергические (субстанция Р, энкефалины, эндорфины, другие нейропептиды) и др. На основании этой классификации выделяют четыре основные диффузные модулирующие системы:

1. Серотонинергическая система берет начало в ядрах шва и выделяет нейромедиатор серотонин. Серотонин является предшественником мелатонина, образующегося в эпифизе; может принимать участие в формировании эндогенных опиатов. Серотонин играет основную роль в регуляции настроения. С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой, суицидальном поведении. Избыток серотонина обычно вызывает панику. На механизмах блокирования обратного захвата серотонина из синаптической щели основаны антидепрессанты последнего поколения. Серотонинергические нейроны ядер шва занимают центральное место в контроле цикла сон-бодрствование, он инициирует фазу быстрого сна. Серотонинергическая система мозга участвует в регуляции сексуального поведения: повышение уровня серотонина в мозге сопровождается угнетением половой активности, а снижение его содержания ведет к ее повышению.

2. Норадренергическая система берет начало в голубом пятне моста и функционирует как "центр сигнала тревоги", который становится наиболее активным, когда появляются новые стимулы окружающей среды. Норадренергические нейроны широко распространены по всей ЦНС и обеспечивают увеличение общего уровня возбуждения, инициируют вегетативные проявления стрессорной реакции.

3. Дофаминергические нейроны широко распространены в ЦНС. Дофаминергические нейроны играют важную роль в мозговой системе удовлетворения потребностей (системе удовольствия). Эта система лежит в основе привыкания к наркотикам (включая кокаин, амфетамины, экстази, алкоголь, никотин и кокаин). В основе развития болезни Паркинсона лежит прогрессирующая дегенерация дофаминсодержащих пигментных нейронов черной субстанции и голубого пятна. Предполагается, что при шизофрении имеет место повышение активности дофаминовой системы мозга с увеличением выделения дофамина, агонисты дофамина типа амфетамина могут вызывать психозы, имеющие сходство с параноидной шизофренией. С обменом дофамина теснейшим образом связаны психомоторные процессы (исследовательское поведение, двигательные навыки).

4. Холинергические нейроны широко распространены в центральной нервной системе, особенно в базальных ядрах и стволе мозга. Холинергические нейроны участвуют в механизмах избирательного внимания к конкретной задаче и важны для обучения и памяти. Холинергические нейроны участвуют в патогенезе болезни Альцгеймера.

Одной из составных частей ЦНС является нейроглия (глиальные клетки). Она составляет почти 90 % клеток НС и состоит из двух видов: макроглии, представленной астроцитами, олигодендроцитами и эпендимоцитами, и микроглии. Астроциты – крупные звездчатые клетки выполняют опорную и трофическую (питательную) функции. Астроциты обеспечивают постоянство ионного состава среды. Олигодендроциты формируют миелиновую оболочку аксонов ЦНС. Олигодендроциты за пределами ЦНС называют Шванновскими клетками , они принимают участие в регенерации аксона. Эпендимоциты выстилают желудочки головного мозга и спинномозговой канал (это полости, заполненные мозговой жидкостью, которую секретируют эпедимоциты). Клетки микроглии могут превращаться в подвижные формы, мигрировать по ЦНС к месту повреждений нервной ткани и фагоцитировать продукты распада. В отличие от нейронов, клетки глии не генерируют потенциал действия, но могут влиять на процессы возбуждения.

По гистологическому принципу в структурах НС можно выделить белое и серое вещество . Серое вещество – это кора головного мозга и мозжечка, различные ядра головного и спинного мозга, периферические (т.е. расположенные за пределами ЦНС) ганглии . Серое вещество образовано скоплениями тел нейронов и их дендритами. Отсюда следует, что оно отвечает за рефлекторные функции : восприятия и обработки поступающих сигналов, а также формирования ответа. Остальные структуры нервной системы образованы белым веществом. Белое вещество образовано миелинизированными аксонами (отсюда цвет и название), функция которых – проведение нервных импульсов.

3. Особенности распространения возбуждения в ЦНС

Возбуждение в ЦНС не только передается от одной нервной клетки к другой, но и характеризуется рядом особенностей. Это конвергенция и дивергенция нервных путей, явления иррадиации, пространственного и временного облегчения и окклюзии.

Дивергенция пути – это контактирование одного нейрона с множеством нейронов более высоких порядков.

Так, у позвоночных существует разделение аксона чувствительного нейрона, входящего в спинной мозг, на множество веточек (коллатералей), которые направляются к разным сегментам спинного мозга и в различные отделы головного мозга. Дивергенция сигнала наблюдается и у выходных нервных клеток. Так, у человека один мотонейрон возбуждает десятки мышечных волокон (в глазных мышцах) и даже их тысячи (в мышцах конечностей).

Многочисленные синаптические контакты одного аксона нервной клетки с большим числом дендритов нескольких нейронов являются структурной основой явления иррадиации возбуждения (расширение сферы действия сигнала). Иррадиация бывает направленной , когда возбуждением охватывается определенная группа нейронов, и диффузной . Пример последней – повышение возбудимости одного рецепторного участка (например, правой лапки лягушки) при раздражении другого (болевого воздействия на левую лапку).

Конвергенция – это схождение многих нервных путей к одним и тем же нейронам. Наиболее распространенной в ЦНС является мультисенсорная конвергенция , которая характеризуется взаимодействием на отдельных нейронах нескольких афферентных возбуждений различной сенсорной модальности (зрительной, слуховой, тактильной, температурной и т.д.).

Конвергенция многих нервных путей к одному нейрону делает этот нейрон интегратором соответствующих сигналов. Если речь идет о мотонейроне , т.е. конечном звене нервного пути к мускулатуре, говорят об общем конечном пути. Наличие конвергенции множества путей, т.е. нервных цепочек, на одной группе мотонейронов лежит в основе феноменов пространственного облегчения и окклюзии.

Пространственное и временное облегчение – это превышение эффекта одновременного действия нескольких относительно слабых (подпороговых) возбуждений над суммой их раздельных эффектов. Феномен объясняется пространственной и временной суммацией.

Окклюзия – это явление, противоположное пространственному облегчению. Здесь два сильных (сверхпороговых) возбуждения вместе вызывают возбуждение такой силы, которая меньше арифметической суммы этих возбуждений отдельно.

Причина окклюзии состоит в том, что эти афферентные входы в силу конвергенции отчасти возбуждают одни и те же структуры и поэтому каждый может создать в них почти такое же сверхпороговое возбуждение, как и вместе.

Центры нервной системы

Функционально связанная совокупность нейронов, расположенных в одной или нескольких структурах ЦНС и обеспечивающих регуляцию той или иной функции или осуществление целостной реакции организма, называется центром нервной системы. Физиологическое понятие нервного центра отличается от анатомического представления о ядре , где близко расположенные нейроны объединяются общими морфологическими особенностями.

Центральная нервная система (ЦНС) состоит из головного и спинного мозга и их защитных оболочек. Оболочки головного и спинного мозга устроены следующим образом. Снаружи расположена твердая мозговая оболочка, под ней -- паутинная, а затем -- мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное пространство, содержащее спинномозговую жидкость, в которой как головной, так и спинной мозг буквально плавают. Мозговые оболочки и спинномозговая жидкость играют защитную роль, а также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества. Серое вещество составляют в основном тела клеток, а также некоторые отростки нервных клеток. Благодаря наличию серого вещества наш мозг «думает», образуя цепочки между телами нервных клеток. Белое вещество состоит из длинных отростков нервных клеток -- аксонов, выполняющих роль проводников и передающих импульсы из одного центра в другой.

Проводящие пути нервной системы обычно организованы таким образом, что информация (например, болевая или тактильная -- чувство прикосновения) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга в основном управляет движениями левой половины тела, а левая половина -- правой.

Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола. Большие полушария -- самая крупная часть мозга -- содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры -- так называемые подкорковые образования; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из серого и белого вещества. Мозжечок обеспечивает главным образом координацию движений.

Ствол мозга образован массой серого и белого вещества, не разделенной на слои. В стволе мозга расположены такие важные центры, как дыхательный и сосудодвигательный, а также ядра черепно-мозговых нервов, которые регулируют работу органов и мышц головы и шеи.

Спинной мозг, находящийся внутри позвоночного столба и защищенный его костной тканью, имеет цилиндрическую форму и покрыт тремя оболочками.

Периферическая нервная система

Периферическая система (ПНС) обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. ПНС представлена черепно-мозговыми и спинномозговыми нервами. Эти нервы на разных уровнях выходят из ствола головного мозга и из спинного мозга и доходят до мышц и органов. К периферической нервной системе относится и энтеральная нервная система, расположенная в стенке кишечника.

Вегетативная нервная система

Вегетативная, или автономная, нервная система (ВНС) регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной, так и в периферической нервной системе -- это ядра и сплетения, расположенные в головном и спинном мозге, а также нервы, которые идут от этих ядер и сплетений к внутренним органам. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, то есть относительно стабильного состояния внутренней среды организма. Эта система обеспечивает постоянную температуру тела, оптимальное кровяное давление; она же «отвечает» за частоту сердцебиений, дыхания.

Решать проблемы, связанные с заболеваниями нервной системы, достаточно сложно. В любом случае, прежде всего, необходим союз врача и пациента, понимание пациентом причин развития болезни, серьёзный настрой на борьбу с недугом и достижение цели выздоровления.

Нет процессов в организме человека не связанных с состоянием нервной системы, не обусловленных её избыточным напряжением, либо недостаточной активностью. И только поддержание нормальной деятельности этой сложно организованной системы, даже в тех случаях, когда уже имеет место то или иное повреждение, дает шанс победить болезнь. Направить в нужное русло работу нервной системы, а значит и организма в целом, - задача врача, дать возможность процессам выздоровления активно развиваться - непростая работа пациента.

Прежде всего, необходим комплексный подход к решению проблем:

Своевременное проведение консилиумов и коллегиальное принятие правильных решений в сложных клинических случаях;

О сочетание медикаментозных и немедикаментозных методов лечения. В этом случае рационально организованные процессы диагностики и лечения дают возможность добиться первых положительных результатов за короткое время.

Особую роль в лечении пациентов с неврологическим заболеваниями играет реабилитация и реадаптация, которым сегодня в мире придается огромное значение.

Используя специально разработанные для каждого больного, с учетом его индивидуальных особенностей, программы реабилитации, врачи - реабилитологи научат ходить, сделают все возможное для восстановления движений конечностей, пальцев рук, научат говорить и даже петь, помогут обрести уверенность в себе. При этом очень важно помнить, что чем раньше после травмы или инсульта начата программная реабилитация, тем больше залог успеха, тем лучше результат.

Часто встречающаяся проблема - это головная боль. Современные системы исследования головного мозга намного ускоряют процесс выяснения причин головной боли, позволяя, прежде всего, исключить высокое внутричерепное давление, хронический воспалительный процесс или опухоль.

Но значительно чаще головная боль связана с избыточным напряжением мышц головы и шеи и носит название “головная боль напряжения”. В этом случае медикаментозные методы лечения оказывают временный эффект, так как не только не устраняют причин боли, но и не воздействуют на те множественные механизмы, которые лежат в основе хронической головной боли. И хотя механизмы головной боли (сосудистые, невралгические, мышечные и др.) необходимо в каждом случае уточнять, многолетний опыт показывает, что наибольший эффект в лечении хронической головной боли оказывают так называемые рефлекторные методы воздействия на все выше перечисленные механизмы.

Релаксационные методы массажа, комплексное воздествие на мышечную систему, массаж стоп, иглорефлексотерапия - надежный арсенал современных методов терапии, обеспечивающий стойкий эффект лечения. Поддерживающие профилактические курсы лечения гарантировано позволяют избежать обострений.

Напряжением мышечных волокон очень часто вызвана боль в тех мышцах, которые расположены близко к позвоночнику. При этом достаточно правильно организованного воздействия руками на различные мышечные группы, сочетания расслабляющих и тонизирующих методов, комплекса лечебной физкультуры, что позволяет избежать использования сильных обезболивающих средств и других медикаментов, общее действие которых не безразлично для организма.

Ещё одна категория пациентов, которые в настоящее время нередко обращаются к неврологу - это дети. И здесь также необходим комплексный подход, команда опытных специалистов: неврологов, массажистов, логопедов, психологов, которые, работая по единой программе лечения и реабилитации, смогут сделать все возможное для развития и коррекции движений и речи, развития логического мышления и памяти, поддержания стабильного эмоционального состояния и хорошего настроения у каждого ребенка. А каждый ребенок требует к себе особого внимания.

Разработанная сегодня психологами эмоционально щадящая диагностика состояния ребенка снимает трудности контакта, проявления негативизма и повышенную тревожность у детей, решает проблему психологического комфорта ребенка и его родителей. Много внимания сегодня уделяется использованию в комплексе лечения детей различных видов массажа: классического, сегментарного, точечного, “тайского” и других. Огромные резервные возможности детского организма при комплексном воздействии на системы физического и психического развития ребенка позволяют за короткие сроки получить значимый результат лечения.

Напряженный ритм жизни, обилие информации, плотный график работы, когда совсем нет времени для отдыха и, кажется, работаешь на пределе возможного - все это нередко приводит к эмоциональным срывам, депрессии, и даже ощущению физического нездоровья. Так у здоровых людей развивается синдром хронической усталости.

Разорвать этот замкнутый круг лучше всего вовремя. С этой целью необходимо, прежде всего, использовать программы профилактического лечения, которые снимут напряжение, накопившуюся усталость, вернут бодрость и хорошее настроение. Консультации психолога помогут разобраться в проблемах, найти правильные решения, важные для нормализации атмосферы дома и в коллективе сотрудников.

Орган чувств -- это сложившийся в процессе эволюции специализированная периферическая анатомо-физиологическая система, обеспечивающая благодаря своим рецепторам получение и первичный анализ информации из окружающего мира и от других органов самого организма, то есть из внешней и внутренней среды организма. Одни органы чувств могут в определенной степени дополнять другие.

Человек получает информацию посредством пяти органов чувств:

Глаза (зрение);

Уши, включая вестибулярный аппарат (слух и чувство равновесия);

Язык (вкус);

Нос (обоняние);

Кожа (осязание).

Информация о раздражителях, воздействующих на рецепторы органов чувств человека, передается в центральную нервную систему. Она анализирует поступающую информацию и идентифицирует ее (возникают ощущения). Затем вырабатывается ответный сигнал, который передается по нервам в соответствующие органы организма.

Органы чувств (organa sensuum) представляют собой рецепторы, или периферические отделы анализаторов, воспринимающие различные виды раздражений, поступающих из внешней среды. Каждый рецептор способен воспринимать определенные факторы, реагируя на так называемые адекватные раздражители. Затем раздражение трансформируется в нервный импульс и по проводящим путям поступает в промежуточные отделы анализаторов, образуемые нервными центрами, располагающимися в спинном мозге и в стволовой части головного мозга. Отсюда импульс передается в центральный отдел анализаторов -- в кору головного мозга. Именно здесь происходит анализ и синтез нервного возбуждения, возникшего в результате рецепции раздражителя органами чувств. Все три группы отделов (периферическая, промежуточная и центральная) связаны между собой морфологически и функционально, представляя единую систему.

Орган зрения (organum visus) воспринимает световые раздражители. С их помощью осуществляется процесс восприятия окружающих предметов: размера, формы, цвета, расстояния до них, движения и др. Через глаз поступает 90 % информации из окружающего мира.

Орган слуха - ухо -- сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 -- 20 000 Гц (колебаний в секунду).

Орган обоняния (organum olfactus) является периферическим отделом обонятельного анализатора и воспринимает химические раздражения при попадании в полость носа пара или газа. Обонятельный эпителий (epithelium olfacctorium) располагается в верхней части носового прохода и задневерхнем отделе перегородки носа, в слизистой оболочке полости носа. Этот отдел носит название обонятельной области слизистой оболочки полости носа (regio olfactoria tunicae mucosae nasi). В нем содержатся обонятельные железы (glandulae olfactoriae). Рецепторы обонятельной области слизистой полости носа способны воспринимать несколько тысяч различных запахов.

Орган вкуса (organum custus) представляет собой периферический отдел вкусового анализатора и располагается в полости рта. Язык -- непарный вырост дна ротовой полости у позвоночных животных и человека.

Основная функция -- помощь при пережёвывании пищи. Важными функциями языка так же являются определение вкуса пищи посредством размещённых на его верхней поверхности вкусовых рецепторов (сосочков), и изменение акустических свойств ротовой полости при издавании гортанных звуков. Последняя функция особенно ярко выражена у людей, которые имеют развитую речевую систему.

Осязамние (кинестемтика, тактимльное чувство) -- один из пяти основных видов чувств, к которым способен человек, заключающийся в способности ощущать прикосновения, воспринимать что-либо рецепторами, расположенными в коже, мышцах, слизистых оболочках. Различный характер имеют ощущения, вызываемые прикосновением, давлением, вибрацией, действием фактуры и протяженности. Обусловлены работой двух видов рецепторов кожи: нервных окончаний, окружающих волосяные луковицы, и состоящих из клеток соединительной ткани капсул

Вестибулямрный аппарамт (лат. vestibulum -- преддверие), орган, воспринимающий изменения положения головы и тела в пространстве и направление движения тела у позвоночных животных и человека; часть внутреннего уха.

Вестибулярный аппарат -- сложный рецептор вестибулярного анализатора. Структурная основа вестибулярного аппарата -- комплекс скоплений реснитчатых клеток внутреннего уха, эндолимфы, включенных в неё известковых образований -- отолитов и желеобразных купул в ампулах полукружных каналов. Из рецепторов равновесия поступают сигналы двух типов: статические (связанные с положением тела) и динамические (связанные с ускорением). И те и другие сигналы возникают при механическом раздражении чувствительных волосков смещением либо отолитов (или купул), либо эндолимфы. Обычно отолит имеет большую плотность, чем окружающая его эндолимфа, и поддерживается чувствительными волосками.

При изменении положения тела изменяется направление силы, действующей со стороны отолита на чувствительные волоски.

Вследствие разной инерции эндолимфы и купулы при ускорении происходит смещение купулы, а сопротивление трения в тонких каналах служит демпфером (глушителем) всей системы. Овальный мешочек (утрикулюс) играет ведущую роль в восприятии положения тела и, вероятно, участвует в ощущении вращения. Круглый мешочек (саккулюс) дополняет овальный и, по-видимому, необходим для восприятия вибраций.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

Центральная нервная система (ЦНС) - основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков.

Центральная нервная система состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50-100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.

Результат деятельности нервной системы - та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина - правой. Из этого общего правила, однако, есть несколько исключений.

Состоит из трех основных структур: больших полушарий, мозжечка и ствола.

Большие полушария - самая крупная часть мозга - содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.

Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар - от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.

Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества - задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества - передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.

Главная и специфическая функция ЦНС - осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС - кора больших полушарий головного мозга и ближайшие подкорковые образования - в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Основные черты строения и функции ЦНС связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепно-мозговые нервы, отходящие от головного мозга, и спинномозговые нервы - от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы - нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами.

Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам.

Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны. Связь между различными отделами ЦНС осуществляется также с помощью множества отростков афферентных, эфферентных и вставочных нейронов этих отделов, образующих внутрицентральные короткие и длинные проводящие пути. В состав ЦНС входят также клетки нейроглии, которые выполняют в ней опорную функцию, а также участвуют в метаболизме нервных клеток.

К каким докторам обращаться для обследования Центральной нервной системы:

Невролог

Нейрохирург