Уравнения с параметром. Решение задачи с параметрами

Найдите все значения параметра а, при которых система имеет ровно два решения.

Первое уравнение системы перепишем иначе, выделив квадраты двучленов:

Первое слагаемое есть расстояние между точками (x; y) до точки А(-1; 2).
Второе слагаемое есть расстояние между точками (x; y) до точки В(2; 6).
Сумма расстояний от точки (x; y) до двух других должна быть равна 5.

Расстояние между точками А и В легко вычислить, оно равно 5.

Точке (x; y) ничего не остаётся, как лежать на отрезке АВ. Это значит, что
первое уравнение системы задаёт отрезок АВ (отрезок - график уравнения).

Второе уравнение задаёт параболу. Она должна пересекать отрезок в двух точках.
При маленьких а пересечений нет. Первое пересечение возникнет в тот момент,
когда парабола пройдёт через точку А(-1; 2). Найдите это значение а (а = 1).

Если а капельку увеличить, пересечение останется единственным... до тех пор,
пока парабола не пройдёт через точку В(2; 6). Найдите это значение а (а = 2).

Сейчас и с этого момента пересечений ровно два. Но до тех пор, пока...
парабола не коснётся отрезка. Напишем сначала уравнение АВ.

Прямая y = kx + b проходит через А(-1; 2) и В(2; 6). Выполняется система:

Найдя из этой системы значения k и b, напишем уравнение прямой АВ:

Теперь потребуем, чтобы квадратное уравнение имело один корень:

Единственный корень при этом находится в пределах отрезка АВ.

При найденном значении параметра решение у начальной системы одно.
При а, больших найденного, пересечений у параболы с отрезком нет.

7

4

Adicionar a

  • Minha playlist
  • Assista mais tarde

Baixar vídeos

  • Carregando o link.....

2 anos atrás Visualizações 450

Найдите все значения а, при каждом из которых функция имеет ХОТЯ бы ОДНУ ТОЧКУ максимума. vk.com/video213138898_456239033 Определите, какое наибольшее количество общих членов может быть у двух арифметических прогрессий vk.com/video174629951_456239271 Алгоритм построения графика квадратичной функции. Решим ЕГЭ типа первый и второй насосы наполняют бассейн за 10 минут второй и третий. Набор основных текстовых задач для самостоятельного обучения методам Султанова. Имеется лом стали двух сортов, причём первый сорт содержит 10% никеля, а второй 30%. Ответ: в 2 раза больше надо взять второго сплава. Кусок сплава меди и цинка массой 36 кг содержит 45% меди. #matematika #ege
Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Примеры решения логарифмов. Квадратное уравнение и решение полных и неполных квадратных уравнений. Симплексный метод решения задач линейного программирования. Логарифмы примеры решения. Найдите косинус угла между векторами a{2;4} и b{2;1}. Толя написал в тетради трёхзначное число, делящееся на 30. Катя должна угадать это число, записав три трёхзначных числа, делящихся на 30, а затем сравнив эти числа с числом, написанным Толей. Какова вероятность, что Катя угадает записанное Толей число. Найдите корень уравнения log. В равнобедренную трапецию вписана окружность. Найдите среднюю линию трапеции, если точка касания окружности делит боковую сторону трапеции на отрезки, равные 2 и 4. На рисунке приведен график у=F(x) одной из первообразных функции f (x). На графике отмечены шесть точек с абсциссами х1, х2, …, х6. В скольких из этих точек функция у=f(x) принимает отрицательные значения. Найдите объем многогранника, приведенного на рисунке. Все двугранные углы прямые. Вычислите значение выражения. Скорость автомобиля v, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением а км/ч2, вычисляется по формуле. Определите, с какой наименьшей скоростью будет двигаться автомобиль на расстоянии 400 метров от старта, если по конструктивным особенностям автомобиля приобретаемое им ускорение не меньше 8000 км/ч2. Ответ выразите в км/ч. Три каменщика разной квалификации выложили кирпичную стену, причем первый работал 6 ч, второй - 4 ч, а третий - 7 ч. Если бы первый каменщик работал 4 ч, второй - 2 ч и третий - 5 ч, то было бы выполнено 2/3 всей работы. За сколько часов каменщики закончили бы кладку, если бы они работали все вместе одно и то же время.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • 1. Задача.
    При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

    1. Решение.
    При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

    1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

    2. Задача.
    Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
    2. Решение.
    Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

    2. Ответ:

    a О (-Ґ ; 1 – Ц 7 2
    ) И (1 + Ц 7 2
    ; Ґ ).

    3. Задача.
    Известно, что
    f 2 (x ) = 6x -x 2 -6.
    а) Постройте график функции f 1 (x ) при a = 1.
    б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

    3. Решение.
    3.а. Преобразуем f 1 (x ) следующим образом
    График этой функции при a = 1 изображен на рисунке справа.
    3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

    4. Задача.
    Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

    4. Решение.
    Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
    имеет ровно два решения?

    5. Решение.
    Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

    5. Ответ: 3.

    6. Задача (10 кл.)
    Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

    6. Ответ: a О }