Окисление жирных кислот происходит. Окисление высших жирных кислот. Последовательность реакций бета-окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепью. Рис.10. Окисление жирной кислоты

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином (витамин В11). На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

Карнитин-зависимый транспорт жирных кислот в митохондрию

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

Дети раннего возраста, недоношенные и дети с малой массой особенно чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина недостаточен, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
  • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
  • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  1. Так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
  2. Для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
  3. Двойных связей в пальмитиновой кислоте нет .
  4. На активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .
  5. Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

Окисление жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в b-окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс b-окисления жирных кислот складывается из следующих этапов:

Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед b-окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg 2+ . Реакция катализируется ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин (g-триметиламино-b-оксибути-рат):

После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

Ацил-КоА в митохондрии подвергается процессу b-окисления.

Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в b-положении:

При b-окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

2) гидратация, катализируемой еноил-КоА-гидратазой;

3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

Совокупность этих четырех последовательностей реакций составляет один оборот b-окисления жирной кислоты (см. рис. 8).

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь b-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе b-окисления распадается на две молекулы ацетил-КоА.

При окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2-1 цикл b-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.


Например при окислении пальмитиновой кислоты (С 16) повторяется 16/2-1=7 циклов b-окисления и образуется 16/2=8 молекул ацетил-КоА.

Рисунок 8 – Схема b-окисления жирной кислоты

Баланс энергии. При каждом цикле b-окисления образуется одна молекула ФАДН 2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н + (реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН+Н + – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5*7=35 молекул АТФ. В процессе b-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 12*8=96 молекул АТФ.

Таким образом, всего при полном b-окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

Однако, образовавшийся в результате b-окисления жирных кислот ацетил-КоА, может не только окисляться до СО 2 , Н 2 О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина, а также углеводов в глиоксилатном цикле.

Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).

Жирные кислоты, проникающие из крови в клетку, сначала подвергаютсяреакции активации под действием фермента ацил-КоА-синтетазы:

RCOOH+HSKoA+ATP ® R-CO-SKoA+AMP+PP i

B-окисление жирных кислот - это специфический путь распада жирных кислот, заканчивающие образованием ацетил-КоА. b-окисление жирных кислот имеет такое название потому, что реакции окисления в радикале жирных кислот происходит по b--углеродному атому.b-окисление жирных кислот и последующее за ним окисление ацетил-КоА в ЦТК служатисточником энергии для синтеза АТР.

Процесс b- окисления происходит в матриксе митохондрий и только ваэробных условиях, так как связан с ЦПЭ. |

Внутренняя мембрана митохондрий непроницаема для ацил-КоА, поэтому существует система переноса жирных кислот через мембрану в комплексе с молекулой карнитина (рис.9)

Во внешней мембране митохондрий находится фермент карнитинацилтрансфераза I, который катализирует перенос ацила с КоА на небольшую молекулу карнитина. Затем ацилкарнитин с помощью транслоказы переносится через внутреннюю мемб­рану митохондрий, где фермент карнитинацил-трансфераза II переносит ацил на внутримитохондрильный HSKoA.

После того как ацил-КоА попадает в матрикс митохондрий, начинается процесс b- окисления, представляющий собой 4 последовательные реак­ции, которые заканчиваются укорочением жирной кислоты на 2 углеродных атома, так как отщепляется ацетильный остаток (рис.10).

Эти 4 последовательные реакции повторяются до тех пор, пока вся жирная кислота, имеющая четное число атомов углерода, не превратится в определенное количество молекул ацетил-КоА. Эти 4 реакции b- окисления (дегидрирование, гидратация, дегидрирование, от­щепление ацетил-КоА) обычно называют циклом b- -окисления, так как имеется в виду, что одни и те к реакции повторяются с радикалом жирной кис­лоты до тех пор, пока вся кислота не превратится в ацетильные остатки.

Количество молекул АТР, ко­торые образуются при окислении жирной кислоты, можно точно рассчитать. Для этого необходимо знать, что в каждом цикле:

а) образуется ацетил-КоА, который в ЦТК окис­ляется до СО 2 и воды.

Рисунок 9

Число молекул ацетил-КоА, образующихся в ре­зультате окисления жирной кислоты с числом п ато­мовС, можно рассчитать по формуле: п / 2,(п / 2) х 12 = количество молекул АТР,

б) при b- -окислении происходят 2 реакции дегид­рирования, в которых восстанавливаются 1 молеку­ла убихинона и 1 молекула NAD + , поэтому каждый цикл дает 5 молекул АТР с участием ЦПЭ;

г) суммарный выход АТР при окислении жирной кислоты с числом п атомов С можно рассчитать по формуле:

[ {(п / 2) х 12} + {(п / 2) – 1)} х 5] – 1* = число молей АТФ/ моль жирной кислоты.

*1 молекула АТР используется на активацию жирной кис­лоты.

Например, при окислении пальмитиновой кислоты (С16) происходит 7 циклов b- окисления, в результате которых образуется 8 моль ацетил-СоА, 7 моль FADH 2 и 7 моль NADH+Н+. Следовательно, выход АТР составляет 35 АТР в результате b- окисления и 96 АТР в результате цитратного цикла, что соответствует в сумме 131 моль АТР.

Регуляция b-окисления. Скорость b-окисления, так же как и других метаболических путей, зависит от доступности субстрата ацил-КоА, поэтому b- окисление жирных кислот активируется в постабсорбтивный период или при длительной физической рабо­те, когда в результате распада жиров в жировой ткани в крови увеличивается концентрация жирных кис­лот. В этих условиях мышцы, миокард и печень ак­тивно используют жирные кислоты как источник энергии. Мозг не использует жирные кислоты как источник энергии, так как они не проникают через гематоэнцефалический барьер, являясь гидрфобными молекулами.

Регуляторный фермент b-окисления - карнитинацилтрансфераза I . Аллостеричный ингибитор этого фермента - малонил-КоА образуется только при биосинтезе жирных кислот, следовательно, в постабсорбтивный период, когда поступление ацетильных остатков из митохондрий в цитозоль прекращается, синтез малонил-Ko тоже прекращается иb-окисление в отсутствие ингибитора активируется.

Как важнейший путь, поставляющий АТФ, b- окисление активируется при увеличении в клетке потребности в энергии. Это возможно благодаря непосредственной связи реакций b- окисления через коферментыNAD и FAD с цепью переноса электронов. Чем интенсивнее идет распад АТФ, тем быстрее окисляются жирные кислоты, обеспечивая синтез новых молекул АТФ.

Окисление жирных кислот может быть патологически повышено или патологически снижено.

Увеличение скорости окисления жирных кислот, особенно при недостатке углеводов происходит:

1. При приеме богатой жирами пище.

2. При голодании.

3. При сахарном диабете.

В этом случае из ацетил-КоА, образующего при β-окислении жирных кислот в печени образуется большое количество кетоновых тел. Накопление кетоновых тел приводит к ацидозу и называется кетоз.

Снижение скорости окисления жирных кислот наблюдается при:

1. Недостатке карнитина. Наблюдается у новорожденных, чаще недоношенных детей. Обусловлено либо нарушением биосинтеза карнитина, либо его «утечкой» в почках.

Симптомы:

· приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса окисления жирных кислот;

· уменьшения синтеза кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот в плазме крови;

· миастения (мышечная слабость);

· накопление липидов.

Лечение: прием карнитина внутрь.

2. Снижении активности карнитин-пальмитоилтрансферазы.

В печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови.

В мышцах - к нарушению процесса окисления жирных кислот, в результате чего возникает мышечная слабость и развивается миоглобинурия.

3. Дикарбоновой ацидурии.

Основной симптом - экскреция С 6 -С 10 -дикарбоновых кислот и развивается гипогликемия, не связанная с повышением кетоновых тел.

Этиология: отсутствие в митохондриях ацетил-КоА дегидрогеназы среднецепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма.

Возникает у людей после употребления незрелых плодов аки, которые содержат токсин гипоглицин, инактивирующий ацил-КоА-дегидрогеназу, в результате чего ингибируется процесс β-окисления.

5. Синдроме Цельвегера (цереброгепаторенальный синдром).

Является редким наследственным заболеванием, при котором во всех тканях отсутствует пероксисомы. У больных страдающих синдромом Цельвегера, в мозге накапливаются С 26 -С 28 -полиеновые кислоты, т.к. из-за отсутствия пероксисом у них не происходит процесс окисления длинноцепочечных жирных кислот.

6. Болезни Рефсума.

Редкое неврологическое заболевание. Связано с врожденным нарушением системы α-окисления, что приводит к накоплению в тканях фитановой кислоты, которая блокирует систему β-окисления.

Определение уровня общих липидов в плазме (сыворотке) крови по цветной реакции с сульфофосфованилиновым реактивом

Общие липиды - обобщенное понятие, включающее неэстерифицированные жирные кислоты, триглицериды, фосфолипиды, свободный и эстерифицированный холестерин, сфингомиелины.

Принцип метода: продукты распада ненасыщенных липидов образуют с реактивом (состоящим из серной, ортофосфорной кислот и ванилина) соединение, интенсивность окраски которого пропорциональна содержанию общих липидов в сыворотке крови.

Реактивы:

1. Концентрированная серная кислота;

2. Фосфорнованилиновая смесь. 4 объема концентрированной ортофосфорной кислоты смешивают с одним объемом 6 г/л раствора ванилина. Смесь хранят в посуде из темного стекла при комнатной температуре.

3. Эталонный раствор триолеина, 8 г/л.

Ход определения

К 0,02 мл сыворотки крови прибавляют 1,5 мл концентрированной серной кислоты. Содержимое перемешивают и помещают на 15 минут в кипящую водяную баню. После охлаждения гидролизата отмеривают 0,1 мл (контрольная проба 0,1 мл концентрированной серной кислоты), который переносят в другие пробирки, содержащие 1,5 мл фосфорнованилинового реактива. После перемешивания пробы инкубируют 50 минут в темном месте при комнатной температуре. Оптическую плотность пробы (А 1) и эталонного раствора (А 2) измеряют на фотоколориметре при длине волны 510-540 нм в кювете толщиной слоя 10 мм против контрольного раствора. Расчет производят по формуле: .

Нормальное содержание в сыворотке крови: 4 - 8 г/л.

Клинико-диагностическое значение. Изменения содержания в крови количественной и качественной составляющей данного показателя наблюдаются при многих заболеваниях и патологических состояниях, которые не рассматриваются в данном пособии. Применительно к мышечной деятельности наблюдается увеличение данного показателя после продолжительной физической нагрузки, что показывает степень включения липидного обмена в энергетическое обеспечение мышечной деятельности. При этом величина данного показателя обычно не выходит за референтные пределы. Более информативным является определение динамики сдвигов при физической нагрузке, составляющих данного показателя.

БИОСИНТЕЗ ЛИПИДОВ

Биосинтез липидов (липогенез) необходим для создания запасных форм. Биосинтез липидов начинается с биосинтеза жирных кислот.

Биосинтез жирных кислот

Система синтеза жирных кислот находится в растворимой цитоплазматической фракции многих органов и тканей, таких какпечень, почки, молочная железа, жировая ткань.

Биосинтез жирных кислот протекает с участием:

1. НАДФН∙Н + ;

5. ацетил-КоА в качестве субстрата и пальмитиновая кислота в качестве конечного продукта.

Особенности биосинтеза жирных кислот

Синтез жирных кислот не является простым обращением реакций β-окисления. Наиболее важными особенностями являются следующие:

1. Синтез жирных кислот протекает в цитоплазме, в отличие от распада который протекает в митохондриях.

2. Промежуточные продукты синтеза жирных кислот ковалентно связаны с сульфгидрильными группами ацилпереносящего белка (АПБ).

3. Многие ферменты синтеза жирных кислот у высших организмов и человека организованы в мультиферментный комплекс, называемый синтетазой жирных кислот.

4. Непосредственно ацетил-КоА используется только как затравка.

5. Растущая цепь жирной кислоты удлиняется путем непосредственного присоединения двухуглеродных компонентов, происходящих из ацетил-КоА. Активированным донором двухуглеродных компонентов на стадии элонгации служит малонил-КоА. Реакция элонгации запускается высвобождением СО 2 .

6. Роль восстановителя при синтезе жирной кислоты выполняет НАДФН·Н + .

7. Синтез жирной кислоты является циклическим процессом протекающим на поверхности синтетазы жирных кислот.

8. Элонгация под действием комплекса синтетазы жирных кислот останавливается на этапе образования пальмитата (С 16). Дальнейшая элонгация и введение двойных связей осуществляется другими ферментными системами.

Этапы биосинтеза жирных кислот

I этап - транспорт ацетил-КоА из митохондрий в цитоплазму

Жирные кислоты синтезируются в цитоплазме, а ацетил-КоА образуется из пирувата в митохондриях. Мембрана митохондрий не проницаема для ацетил-КоА, поэтому транспорт ацетил-КоА через мембрану обеспечивается специальными механизмами. Роль карнитина в транспорте ацетил-КоА не велика, так как он переносит только длинноцепочечные жирные кислоты. Данная проблема решается путем синтеза цитрата.

Митохондрия Цитоплазма


Ацетил-КоА + оксалоацетат ацетил-КоА + оксалоацетат + АДФ + Ф н


НО - С - СООН цитрат + АТФ + HSKoA


СН 2 - СООН

Рис. 20. Схема транспорта ацетил-КоА через мембрану митохондрий

Цитрат образуется в митохондриальном матриксе путем конденсации ацетил-КоА и оксалоацетата. Затем диффундирует в цитоплазму, где расщепляется цитратлиазой. Таким образом, ацетил-КоА и оксалоацетат переносятся из митохондрий в цитоплазму с использованием одной молекулы АТФ.

Источники НАДФН·Н + для биосинтеза жирных кислот

Оксалоацетат, образовавшийся в результате переноса ацетил-КоА в цитоплазму должен быть возвращен обратно в митохондрию. Данный процесс сопряжен с генерацией НАДФН·Н + . Реакция происходит в цитоплазме и протекает в 2 этапа:

1. Оксалоацетат + НАДН·Н + Малат + НАД +

МДГ (декарбоксилирующая)

2. Малат + НАДФ + Пируват + СО 2 + НАДФН·Н +

Образовавшийся пируват легко диффундирует в митохондрии, где он карбоксилируется в оксалоацетат под действием пируваткарбоксилазы (с затратой энергии АТФ).

Пируват + НСО 3 - + АТФ Оксалоацетат + АДФ + Ф н

Нормальное окисление жиров в организме тесно связано с циклом Кребса. Основной путь образования оксалоацетата - карбоксилирование ПВК. Для сгорания 1,5 г жирных кислот, требуется 1 г углеводов. Отсюда, среди биохимиков есть поговорка, что «жиры сгорают в пламени углеводов».

Оксалоацетат, который синтезировался в данной реакции, затем взаимодействует с ацетил-КоА с образованием цитрата, который окисляется в ЦТК.

Таким образом, на каждую молекулу ацетил-КоА, которая переходит из митохондрий в цитоплазму, образуется одна молекула НАДФН·Н + . Следовательно, при переходе 8 молекул ацетил-КоА необходимых для синтеза пальмитиновой кислоты, образуется 8 молекул НАДФН·Н + . Еще 6 молекул требуемых для этого процесса генерируются в пентозофосфатном пути.

II этап - образование малонил-КоА.

Является первой реакцией биосинтеза жирных кислот. Катализируется ферментом ацетил-КоА-карбоксилазой. Коферментом является биотин. Реакция заключается в карбоксилилировании ацетил-КоА, источником СО2 является бикарбонат.

C = O + HCO 3 - + АТФ Е– биотин CН 2 + АДФ+H 3 PO 4

ацетил - KоA малонил - KоA

Рис. 21. Карбоксилирование ацетил-КоА (коферментом ацетил-КоА-карбоксилазы является биотин)

Малонил-КоА, по сути, является активированным ацетил-КоА. Энергия запасается заранее в виде карбоксильной группы и освобождается при декарбоксилировании непосредственно при биосинтезе жирных кислот. В дальнейшем биосинтезе жирных кислот ацетил-КоА используется как затравка, а непосредственно синтез идет из малонил-КоА.

III этап - биосинтез жирных кислот.

протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты.

Доставка жирных кислот к месту их окисления – к митохондриям – происходит сложным путем: при участии альбумина осуществляется транспорт жирной кислоты в клетку; при участии специальных белков (fatty acid binding proteins, FABP) – транспорт в пределах цитозоля; при участии карнитина – транспорт жирной кислоты из цитозоля в митохондрии.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот . Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Считают, что активация жирной кислоты протекает в 2 этапа. Сначала жирная кислота реагирует с АТФ с образованием ациладенилата, представляющим собой эфир жирной кислоты и АМФ. Далее сульфгидрильная группа КоА действует на прочно связанный с ферментом ациладенилат с образованием ацил-КоА и АМФ.

Транспорт жирных кислот внутрь митохондрий . Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление. Переносчиком активированных жирных кислот с длинной цепью через внутреннюю митохондриальную мембрану служит карнитин. Ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина, который диффундирует через внутреннюю митохондриальную мембрану:

Реакция протекает при участии специфического цитоплазматического фермента карнитин-ацилтрансферазы. Уже на той стороне мембраны, которая обращена к матриксу, ацильная группа переносится обратно на КоА, что термодинамически выгодно, поскольку О-ацильная связь в кар-нитине обладает высоким потенциалом переноса группы. Иными словами, после прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацилтрансферазы:

Внутримитохондриальное окислениежирных кислот . Процесс окисления жирной кислоты в митохондриях клетки включает несколько последовательных энзиматических реакций.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты. Таким образом, первой реакцией в каждом цикле распада ацил-КоА является его окисление ацил-КоА-де-гидрогеназой, приводящее к образованию еноил-КоА с двойной связью между С-2 и С-3:

Существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации . Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Заметим, что гидратация еноил-КоА стереоспецифична, подобно гидратации фумарата и аконитата (см. с. 348). В результате гидратации транс-Δ 2 -двойной связи образуется только L-изомер 3-гидроксиацил-КоА.

Вторая стадия дегидрирования . Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакцию катализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция . В ходе предыдущих реакций происходило окисление метиленовой группы при С-3 в оксогруппу. Тиолазная реакция представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА

За один цикл β-окисления образуется 1 молекула ацетил-СоА, окисление которого в цитратном цикле обеспечивает синтез 12 моль ATP . Кроме того, образуется 1 моль FADH 2 и 1 моль NADH+H , при окислении которых в дыхательной цепи синтезируется соответственно 2 и 3 моль ATP (в сумме 5).

Таким образом, при окислении, например, пальмитиновой кислоты (С16) происходит 7 циклов β-окисления, в результате которых образуется 8 моль ацетил-СоА, 7 моль FADH 2 и 7 моль NADH+H. Следовательно, выход ATP составляет 35 молекул в результате β-окисления и 96 ATP в результате цитратного цикла, что соответствует в сумме 131 молекул АТФ.