Сущность реакции преципитации. Реакция преципитации в агаре

Реакция преципитации основана на образовании преципитата - осаждении иммунных комплексов антиген-антитело. В растворах они выпадают в осадок, а в гелях откладываются в виде полос. Для определения концентрации антител в исследуемом материале используют очищенные антигены, при этом существует несколько способов проведения реакции преципитации.

Преципитация в растворе

Реакция преципитации в растворах имеет особенность: количество преципитата зависит от количества реагента (антител). Если количество антител меньше количества антигена, то увеличение количества последних приводит к большему образованию преципитата. Наибольшее количество преципитата образуется при относительно равном количестве антигенов и антител. Если антиген находится в избыточном количестве по сравнению с антителами, то при увеличении его концентрации количество преципитата уменьшается.

Иммунодиффузия

Наиболее распространенный способ проведения реакций преципитации связан с иммунодиффузией - способностью антител и антигенов проникать в гель.
Для простой радиальной иммунодиффузии используют гель, в состав которого включены антитела. В тонком слое геля делают круглые прорези и помещают в них исследуемый материал с антигенами, которые проникают вглубь геля, взаимодействуют с антителами и образуют вокруг лунок кольца преципитата. Таким способом определяют содержание иммуноглобулинов в крови.
Многие реагенты для биохимических анализов выпускают зафиксированными на планшетках. В каждой ячейке планшетки содержится строго отмеренное количество реагента, поэтому можно проводить сразу множество анализов с высокой точностью результатов.
При двойной радиальной иммунодиффузии в тонком слое геля на определенном расстоянии друг от друга вырезают два круглых отверстия. В одно помещают реагент, а в другое - исследуемый материал. Антитела и антигены проникают в гель навстречу друг другу. В месте их взаимодействия образуется преципитат.
Для определения концентрации антигена в исследуемом материале измеряют расстояние от лунки с ним до линии преципитата.

В основе реакций преципитации лежит образование и выпадение в осадок комплексов антиген-антитело. В реакции участвуют растворимые антигены: преципитиногены (продукты микроорганизмов, тканей, химические вещества и лекарства). Антитела (преципитины), соединяясь с растворимыми антигенами, вызывают их агрегацию, что проявляется в помутнении прозрачных жидкостей или выпадении осадка (преципитата). Диагностические преципитирующие сыворотки выпускают с высоким титром антител. Их получают путем иммунизации лабораторных животных соответствующим антигеном. Титром преципитирующей сыворотки является минимальное количество антигена, которое данная сыворотка может преципитировать.

Реакцию преципитации можно проводить в жидкой и плотной среде (в агаре или геле).

Реакция преципитации в жидкой среде (кольцепреципитация). Реакцию ставят в узких пробирках, куда вносят преципитирующую антисыворотку, а сверху осторожно наслаивают прозрачный раствор антигена. При положительной реакции через несколько минут на границе соприкосновения двух жидкостей появится кольцо преципитации. При малых количествах реагентов реакцию можно проводить в капиллярах (микропреципитация).

Реакция преципитации в агаре. Сущность реакции в том, что антигены и антитела, помещенные в разные лунки в агаре, диффундируют навстречу друг другу и при взаимодействии образуют комплекс, который осаждается в виде линии преципитации.

Двойная радиальная иммунодиффузия по Оухтерлони. Реакцию проводят на пластинках с агаровым гелем. Растворы антигена и антисыворотки помещают в лунки, вырезанные на некотором расстоянии друг от друга. Иммунореагенты диффундируют в геле, при встрече образуют комплексы, которые осаждаются в виде линий преципитации. Этот метод позволяет исследовать сразу несколько образцов иммунореагентов. Например, вокруг лунки с антисывороткой можно разместить несколько лунок с растворами разных антигенов или наоборот.

Метод определения токсигенности микробов в реакции преципитации. Принцип иммунодиффузии в геле положен в основу метода, который применяется для изучения токсигенности (способности вырабатывать токсин) бактерий. Например, для обнаружения дифтерийного токсина на чашку Петри с агаром посередине накладывают полоску фильтровальной бумаги, пропитанную антитоксической сывороткой. Рядом засевают исследуемые культуры бактерий. Если они выделяют токсин, то при взаимодействии с антитоксинами между колониями и полоской бумаги образуются линии преципитации.

Иммунодиффузия в геле лежит в основе реакции преципитации по Манчини, которая используется для определения классов иммуноглобулинов в сыворотке крови


Реакции преципитации используются для; определения антигенов бактерий, тканей человека и животных; диагностики некоторых инфекционных заболеваний; определения видовой принадлежности белка в судебной медицине; выявления примесей в мясных, рыбных, мучных изделиях в санитарной практике.


49 реакция антиген-антитело.

Сущность реакции заключается в том, что комплемент, добавленный к специфическому комплексу антиген - антитело, связывается последним. Если отсутствует специфическое сродство между антигеном и сывороткой, то образования комплекса не произойдет и комплемент будет свободный, несвязанный. Связывание комплемента устанавливают по результатам, полученным от добавления гемолитической системы (гемолитическая сыворотка - J- эритроциты барана) к системе антиген - антитело. Если комплемент был связанный с антигеном и сывороткой, то литическая функция его не выявляется и эритроциты осядут на дно пробирки (положительная реакция). Если комплемент не был связанный, то он обусловит гемолиз сенсибилизированных эритроцитов (отрицательная реакция). Таким образом, без комплемента каждая из этих двух иммунологических реакций не может произойти, но в гемолитической системе оба компонента известны, и достаточно добавить комплемент, чтобы произошла реакция. В системе антиген + антитело один неизвестный компонент определяется другим известным, если этот комплекс свяжет комплемент. Отсюда вытекает практическое значение реакции, которая дает возможность по взаимодействию известного антигена с антителом определить свойства неизвестной сыворотки, установить наличие в ней комплементсвязывающих антител и определить природу неизвестного антигена с помощью известной специфической сыворотки, приготовленной на животных, или сыворотки реконвалесцентов.

Реакция преципитации (РП)

Феномен преципитации заключается во взаимодействии мелкодисперсных антигенов (преципитиногенов) с соответствующими антителами (преципитинами) и образованием преципитата (рис. 1). Постановку РП осуществляют двумя методами: в жидкой среде - по типу реакции флокуляции, кольцепреципитации или в плотной среде в агаре (геле). РП применяют в двух целях: выявление антигенов по известной иммунной преципитирующей сыворотке или антител с использованием известных антигенов. Существует много вариантов постановок реакции, но чаще всего используют следующие методики: реакция преципитации в геле по Оухтерлони, радиальная иммунодиффузия по Манчини, реакция иммуноэлектрофореза, реакция флокуляции, кольцепреципитации.

Рис. 1. Реакция преципитации:1 - антиген; 2 - антитело.

Реакция преципитации в геле по Оухтерлони. Для постановки реакции используют 1% агар Дифко, который разливают расплавленным на предметные стекла или чашки Петри слоем толщиной 0,5 см. В застывшем агаре вырезают лунки диаметром 5 мм специальным приспособлением. В одну лунку помещают взвесь, содержащую исследуемый антиген, в другую - иммунную сыворотку. Антиген и антитела диффундируют в питательную среду, вступают в иммунную реакцию и образуют полосы преципитации. Учет реакции проводят предварительно через 4 часа, окончательно - через 24-48 часов. Реакцию Оухтерлони можно использовать для определения токсичности бактерий, титра антител, активности стандартных диагностикумов или иммунных специфических сывороток (рис. 2).

Рис. 2. Реакция преципитации: А - реакция кольцепреципитации; Б - реакция преципитации по Оухтерлони.

Реакция кольцепреципитации

Данную реакцию применяют для выявления антигенов с помощью иммунной преципитирующей сыворотки, содержащей специфические антитела. Это качественный метод исследования. Реакцию проводят путем наслаивания на иммунную сыворотку среды, содержащей определенный антиген. Реакцию ставят в узких пробирках объемом 0,1- 0,5 мл. В случае соответствия антигена и антитела на границе между ними через 3-5 мин образуется кольцо преципитации (рис. 2). Необходимым условием образования нерастворимого иммунного комплекса является эквивалентное соотношение антигенов и антител.

Радиальная иммунодиффузия по Манчини

Радиальная иммунодиффузия по Манчини позволяет использовать моноспецифические антисыворотки и эталон с известным содержанием антигена. Тест-антиген и разведения растворов, исследуемых на наличие данного антигена, помещают в лунки, вырезанные рядами в пластине геля, куда предварительно внесена соответствующая моноспецифическая антисыворотка. Антиген диффундирует в гель и, соединившись со специфическими антителами, формирует кольца преципитации, диаметры которых зависят от концентрации антигена в лунках. Полученные результаты используют для построения калибровочной кривой, выражающей зависимость диаметров преципитантов от концентрации антигена в исследуемых растворах (рис. 3). Принцип радиальной диффузии положен в основу метода, применяемого для изучения токсигенности бактериальных культур и отбора из бактериальной популяции клонов с высокой степенью токсичности. В этом случае исследуемые культуры засевают в чашки с агаром, содержащим антитоксическую сыворотку. Вокруг отдельных колоний образуются кольца преципитации, диаметр которых прямо пропорционален степени токсичности штамма (рис. 3).

Рис. 3. Простая радиальная иммунодиффузия:а - кольца преципитации;б - калибровочная кривая.

Реакция иммуноэлектрофореза (ИЭФ)

В основе реакции лежит принцип преципитации. ИЭФ, как правило, используется для исследования антигенной структуры микроорганизмов. Реакцию проводят в два этапа. Вначале проводят электрофоретическое разделение антигена в забуференном агаровом геле. Антигенный комплекс помещают в лунку, которая находится в центре геля, залитого на стеклянную пластинку. Затем через гель пропускают электрический ток, в результате происходит перемещение антигенов на неодинаковые расстояния соответственно своей электрофоретической подвижности. После этого в канавку, которая расположена по краю пластинки, вносят специфическую иммунную сыворотку и помещают во влажную камеру. Антигены и антитела диффундируют в геле навстречу друг другу. В месте их соприкосновения образуются дугообразные линии преципитации. С помощью ИЭФ анализируются состав и количество белков сыворотки крови, спиномозговой жидкости, микробных протеинов (рис. 4).

Cтраница 1


Реакция преципитации (РП) отличается от реакции агглютинации размером частиц антигена и видом образующегося феномена.  

Реакция преципитации происходит в два этапа, во время которых реагирующие молекулы антигена и антител связываются друг с другом без каких-либо заметных изменений своей исходной химической структуры. Связывание антигена с антителами специфично, причем эта реакция частично или полностью обратима.  

Реакция преципитации происходит вскоре после смешивания растворов антигена и иммунной сыворотки.  

Реакцией преципитации (РП) называется осаждение из раствора АГ (преципитиногена) при воздействии на него иммунной сыворотки (преципитина) в растворе электролита.  

Для реакции преципитации необходимо оптимальное соотношение концентраций антигена и антител. В избытке антигена преципитат частично или полностью растворяется; в результате бывает невозможно оценить реакцию или же эта оценка может быть ошибочной. В то время как преципитаты, образованные кроличьими антителами, растворяются только при избытке антигена, преципитаты, образованные антителами лошади, часто могут растворяться в избытке как антигена, так и антител.  

Для реакции преципитации оптимальными являются те значения температуры, рН и ионной силы среды, которые существуют в организме. Ход реакции преципитации зависит от ионной силы раствора: с увеличением концентрации соли выше 0 15 М постепенно замедляется образование преципитата. В то же время рН среды в довольно широком диапазоне, от 6 5 до 8 6, не влияет на реакцию преципитации.  

Для реакции преципитации необходимо иметь специфические антисыворотки достаточно высокого титра.  

Если реакция преципитации происходит в зоне эквивалентности, то, определив азот преципитата, можно вычислить соотношение реагирующих компонентов.  


Этих недостатков лишена реакция преципитации в геле.  

На первом этапе реакции преципитации происходит связывание молекул антигена с антителами, но видимых преципитатов не образуется. На втором этапе реакции происходит агрегация возникших ранее комплексов антиген - антитело с образованием больших нерастворимых частиц, видимых невооруженным глазом. Первый этап реакции протекает быстрее, более обратим и специфичен, чем второй.  

Для экспресс-диагностики используют реакцию иммунной преципитации с окрашиванием преципитатов флюоресцирующими антителами. Готовят 2 % - ю суспензию фекалий, центрифугируют и пропускают ее через фильтр с диаметром пор 1 2 мкм. Суспензию (0 2 мл) смешивают с 0 2 мл разведенной иммунной сыворотки, выдерживают смесь 1 ч при 37 С и центрифугируют 1 ч при 12000 об / мин. Осадок ресуспензируют в 0 2 мл фосфатного буфера и добавляют 0 2 мл флюоресцирующего иммуноглобулина. После инкубации в течение 10 мин смесь центрифугируют 10 мин при 2000 об / мин, осадок ресуспензируют в фосфатном буфере, наносят на предметное стекло, накрывают покровным стеклом и исследуют под иммерсионным объективом в люминесцентном микроскопе.  

Иммунохимические методы, основанные на реакции преципитации, очень удобны для качественного и количественного анализа белков, для определения гомогенности белковых препаратов и наличия в них примесей, а также для идентификации компонентов белковых смесей. Как вспомогательный метод реакция преципитации применяется для изучения структуры белка. Преимущество этого метода по сравнению с другими состоит в том, что он может быть использован тогда, когда нельзя провести количественный химический анализ, например при определении данного компонента в смеси белков. Именно в этих случаях результаты, полученные с помощью иммунохимических реакций, могут быть очень полезны.  

При исследовании разложившихся трупов грызунов применяют реакцию преципитации, так как выделить чистую культуру бактерий в этом случае трудно.  

Иммуноэлектрофорез представляет собой сочетание электрофореза с реакцией преципитации. Сначала проводят электрофорез белков в тонком слое геля.  

1.1. МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ АНТИГЕНА С АНТИТЕЛОМ

Взаимодействие антигена со специфическим антителом проявляется в организме образованием иммунных комплексов. Прочному взаимодействию АГ с АТ способствуют: количество детерминант в АГ, количественное соотношение, последовательность расположения концевых групп аминокислот в детерминанте, наличие в детерминанте ароматических аминокислот, аффинность и авидность. Аффинитет – это связь одного активного центра (Fab 1или Fab 2) и детерминанты.

Авидность – это cвязь всех активных цетров с детерминантами.

Свойства комплекса АГ – АТ. Аффинитетом и авидностью измеряется прочная взаимосвязь с поверхностными структурами АГ и АТ.

Реакции АТ с АГ протекают также в системе «in vitro»то есть «в пробирке» и имеют ряд типичных характеристик: потребность в электролитах, обратимость, двухфазность (фаза взаимодействия активного центра АТ и детерминант АГ –несколько секунд или минут; фаза проявления – визуально наблюдаемый эффект несколько минут или часов). При соприкосновении гидрофобных групп белков в воде наступает их взаимное притяжение.

Часто такие реакции называют серологическими (от латинского «serum» – сыворотка), так как источником АТ служит сыворотка крови.

В связи с высокой чувствительностью и специфичностью серологические реакции нашли широкое диагностическое применение.

Серологические реакции применяют для двух целей:

  1. По известному АГ определяют в исследуемой сыворотке титр специфических к данному АГ антител. Титром сыворотки называют то ее максимальное разведение, которое еще дает положительную реакцию с соответствующим АГ.
  2. С помощью известного АТ, т.е. диагностической иммунной сыворотки, определяют наличие в исследуемом материале специфического антигена или осуществляют серологическую идентификацию выделенной чистой культуры возбудителя.

Все серологические реакции можно разделить на несколько групп:

  1. Реакции, протекающие с укрупнением частиц АГ в растворе электролита: реакция агглютинации в ее различных вариантах, реакция преципитации и ее различные модификации.
  2. Реакции, протекающие с участием комплемента: реакция связывания комплемента, иммунного гемолиза и их модификации.
  3. Реакции, протекающие с нейтрализацией антигена: реакции нейтрализации токсинов, вирусов, реакции торможения гемагглютинации.
  4. Реакции, протекающие с участием фагоцитоза: опсонофагоцитарная реакция и другие.
  5. Реакции иммунофлюоресценции в различных вариантах.
  6. Реакции иммуносорбентного анализа твердой фазы: ИФА, РИА.

Для серологических реакций могут быть использованы целые клетки (корпускулярные антигены), например, лимфоциты, плазмоциты, клетки, пораженные вирусами, и т.д. (РИФ, РИА, ИФА); бактериальные клетки (РА, РИФ, РИА, ИФА); а также растворимые компоненты (растворимые, молекулярные АГ) для реакции преципитации, нейтрализации, ИФА и других.

Корпускулярный АГ – это живые или убитые (инактивированные) клетки в изотонических или буферных растворах. При инактивации клеток пользуются методами, не вызывающими изменения специфичности и снижения иммуногенных свойств. Стандартные антигены из инактивированных патогенных микроорганизмов широко применяются в серологическом анализе при обнаружении антител в сыворотках людей и животных.

С помощью серологических реакций выявляют у исследуемых бактериальных клеток антигенный состав. Взвеси эритроцитов, лимфоцитов, опухолевых клеток в серологических реакциях используют для определения локализованных на их поверхностных мембранах АГ групп крови, СД–маркеров, трансплантационных, опухолеспецифических и других АГ, а также для обнаружения в сыворотках АТ к этим антигенам.v

Антигены выделяют и очищают фракционированием различными методами с использованием моноклональных антител.

Иммунная сыворотка (антисыворотка) представляет собой сыворотку крови, содержащую антитела к данному антигену. В большинстве случаев иммунные (диагностические) сыворотки к микробным, тканевым и другим антигенам получаютэкспериментальным путем, иммунизируя животных соответствующими антигенами. По специфичности различают поливалентные (полиспецифические) и моновалентные (моноспецифические) антисыворотки. Поливалентные сыворотки содержат антитела ко многим антигенам, моноспецифические – к одному конкретному антигену.

1.2. РЕАКЦИЯ ПРЕЦИПИТАЦИИ (РП). ПОСТАНОВКА, УЧЕТ РЕЗУЛЬТАТОВ

РЕАКЦИЯ ПРЕЦИПИТАЦИИ – это агрегация антителами (преципитинами) растворимых (молекул) АГ (преципитиногенов), проявляющаяся в помутнении прозрачной жидкости, в появлении преципитата в виде осадка, кольца и т.д.

Антиген для реакции преципитации обязательно должен быть в молекулярном виде. Механизм реакции преципитации аналогичен реакции агглютинации, т.е. по «теории решетки».

Осаждение из раствора комплексов АГ – АТ происходит в диапазоне эквивалентных соотношений концентраций взаимодействующих молекул. В случае большого избытка одного из реагентов образуется растворимый комплекс АГ–АТ и феномен реакции не проявляется. Поскольку преципитиноген имеет ультрамикроскопическое строение и его концентрация в единице объема выше, чем АТ в таком же объеме сыворотки, то для осаждения более легких частичек АГ с образованием видимого преципитата необходимо значительно большее количество АТ. Поэтому диагностические преципитирующие сыворотки выпускают с высоким титром АТ.

Реакцию преципитации можно проводить в жидкой и твердой среде.

Классическая реакция преципитации в жидкой среде по Асколи

Обязательным условием постановки реакции преципитации (РП) в жидкой среде является максимальная прозрачность иммунореагентов. Реакция происходит при смешивании растворов АГ и АТ(метод подслаивания) или наслоения одного иммунореагента на другой. В этом случае по характеру образовавшего преципитата (в виде кольца) реакция получила название кольцепреципитации.

Положительной считается реакция когда в зоне взаимодействия жидкостей, содержащих Аг и Ат образуется дымчатое кольцо. Данная реакция в ветеринарной практике используется для обнаружения возбуделя сибирской язвы в кожевенном и прочем сырье, а также для изучения АГ структуры бактерий, сложных белков, жидкостей человека и животных; для изучения токсигенности бактерий; при диагностике ряда инфекционных заболеваний бактериальной, вирусной, грибковой природы (сибирской язвы, чумы, туляремии и т.д.); В качестве АГ используют раневые экссудаты, фильтраты экстрактов пораженных органов, спинно–мозговую жидкость и т.д. Для установления степени родства видов микроорганизмов, определяют общий АГ; в судебно–медицинской практике – для определения видовой принадлежности белков (крови, слюны, спермы и т.д.);идля выявления примесей в мясных, рыбных, мучных изделиях.

Реакция преципитации в агаре (геле)реакция Оухтерлони.

Для реакции используют гель, приготовленный из агара Дифко или же специально приготовленный предельно осветленный гель из агар–агара.

Сущность реакции заключается в том, что специфические Ат и АГ диффундируют в гель, взаимодействуя между собой, и образуют комплекс, который осаждается в виде линии преципитата. Радиальная иммунодиффузия в геле может быть простой и двойной.

Иммунодиффузия по Оухтерлони

В агаре, разлитом тонким слоем в чашки или же на предметное стекло, вырезают лунки на равном расстоянии друг от друга (4 – 10 мм) при помощи специальных штампов или стеклянных трубок с ровными краями. В лунки вносят раствор сыворотки или раствор антигена в различных разведениях. Из лунок АГ и АТ диффундируют навстречу друг другу и образуют преципитат в виде тонких белесоватых линий.

Поскольку диффузия реагентов из лунок в гель происходит радиально, это позволяет анализировать сразу несколько образцов иммунореагентов, разместив вокруг лунки с антисывороткой несколько лунок с растворами разных антигенов; или наоборот, заполняя периферические лунки антисывороткой, а центральную искомым антигеном; или в центральную лунку внести известный АГ, а в периферические – исследуемую сыворотку в разных разведениях.

Метод двойной иммунодиффузии применяют преимущественно для качественного анализа, для определения природы АГ и АТ, но можно использовать и для полуколичественного определения АГ и АТ путем их титрования.

Для количественного определения антигена часто используют простую радиальную иммунодиффузию по Манчини, которая основана на измерении диаметра кольца преципитации, образующегося при внесении раствора исследуемого АГ в лунки, вырезанные в слое геля, в котором предварительно диспергирована моноспецифическая антисыворотка.

В стандартных условиях опыта диаметр кольца преципитации прямо пропорционален концентрации исследуемого АГ. Содержание АГ определяют относительно стандартного раствора АГ с известной его концентрацией. Чаще всего при помощи этого метода определяют белковые АГ: количество Yg разных классов в сыворотке крови и других жидкостях, секретов желез, белков крови, спинномозговой жидкости и т.д.

Реакцию иммунодиффузии обычно поводят при комнатной температуре, во влажных камерах. Продолжительность иммунодиффузии зависит от природы АГ.

Методы иммунодиффузии обладают высокой специфичностью и чувствительностью.

Реакция флокуляции – вид иммунопреципитации, при котором преципитат представляет собой хлопьевидную массу. Реакцию проводят смешиванием разных разведений сыворотки со стандартным количеством раствора АГ в объеме 2 мл.

Первая пробирка, где появились хлопья (инициальная флоккуляция) указывает на эквивалентное соотношение АГи АТ. По инициальной флоккуляции рассчитывают количество сыворотки или АГ, исходя из активности взятых в опыт стандартных препаратов. Применяется для определения токсинов микроорганизмов в исследуемом материале.

1.3. ИММУНОМИКРОБИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Иммунологические методы применяют для решения многих задач:

  1. Оценка состояния иммунной системы человека (иммунного статуса) по определению количественных и функциональных характеристик клеток иммунной системы и их продуктов.
  2. Определение состава и характеристик тканей человека: групп крови, резус фактора, трансплантационных антигенов.
  3. Диагностика инфекционных болезней и резистентности к ним по обнаружению и установлению титров антител (серодиагностика), выявлению антигенов возбудителей в организме, определению клеточных реакций на эти антигены.
  4. Сероидентификация культур бактерий и вирусов, выделенных из организма человека и животных.
  5. Выявление в организме человека и во внешней среде любых веществ, обладающих антигенными или гаптенными свойствами (гормоны, ферменты, яды, лекарства, наркотики и т.п.).
  6. Выявление иммунопатологических состояний, аллергий, трансплантационных и противоопухолевых реакций.

В основе иммунологических методов лежат серологические реакции, для постановки которых используют сыворотку (serum), содержащую антитела (основаны на взаимодействии антигенов и антител) и клеточные реакции, базирующиеся на взаимодействии антигенов (аллергенов) с Т–клетками.

Иммуномикробиологические исследования – вид микробиологического экспресс–анализа по выявлению специфических антител и антигенов.

Процесс взаимодействия антигена и антитела в серологических реакциях протекает в две фазы:

  1. специфическая – фаза взаимодействия, в которой происходит комплементарное соединение активных центров антител (паратопов) и эпитопов антигена. Обычно эта фаза длится несколько секунд или минут;
  2. неспецифическая – фаза проявления, характеризуется внешними признаками образования иммунных комплексов. Эта фаза может развиваться от нескольких минут до нескольких часов.

Оптимальное специфическое взаимодействие антител с антигеном происходит в изотоническом растворе с рН, близким к нейтральному. Реакция антиген–антитело в системе in vitro может сопровождаться возникновением нескольких феноменов – агглютинации, преципитации, лизиса. Внешние проявления реакции зависят от физико–химических свойств антигена (размер частиц, физическое состояние), класса и вида антител (полные и неполные), а также условий опыта (консистенция среды, концентрация солей, рН, температура).

Поливалентность антигенов и антител обеспечивает возникновение видимых невооруженным глазом агрегатов. Это происходит в соответствии с теорией образования сетей, согласно которой к образовавшемуся комплексу антиген–антитело последовательно присоединяются другие молекулы антител и антигена. В результате формируются сетевые структуры, которые превращаются в агрегаты, выпадающие в осадок. Характер и выраженность реакции зависят от количественного соотношения антигенов и антител. Наиболее интенсивно реакции проявляются в том случае, если реагенты находятся в эквивалентном соотношении.

Необходимое условие образование решетки (сетей) – наличие более трех антигенных детерминант на каждую молекулу антигена и по два активных центра на каждую молекулу антитела. Молекулы антигена являются узлами решетки, а молекулы антител – связующими звеньями. Область оптимальных соотношений (зона эквивалентности) концентраций антигена и антител, когда в надосадочной жидкости после образования осадка не обнаруживаются ни свободные антигены, ни свободные антитела.

Агрегаты, способные выпадать в осадок, образуются при соединении антигенов с полными антителами. Неполные антитела (моновалентные) не вызывают образования сетевых структур и крупных агрегатов. Для выявления таких антител используют специальные методы, основанные на использовании антиглобулинов (реакция Кумбса).

Серологические реакции, благодаря высокой специфичности и чувствительности, применяют для выявления и количественного определения антигенов и антител. Количество иммунореагентов в реакциях выражают титром – максимальным разведением сыворотки или антигена, при котором еще наблюдается реакция.

Серологические реакции в микробиологических и иммунологических лабораториях используют в двух целях:

  1. для сероидентификации микроорганизмов, токсинов, антигена вообще с помощью известного антитела (иммунной диагностической сыворотки),
  2. для серодиагностики – определения природы антитела в сыворотке крови больного при бактериальных, вирусных, реже других инфекционных заболеваниях с помощью известного антигена (диагностикума).

Для определения родовой, видовой и типовой принадлежности антигена необходимы заведомо известные иммунные диагностические сыворотки. Их получают путем многократного введения животным (чаще кроликам) в нарастающих дозах убитых или живых микроорганизмов, продуктов их распада, обезвреженных или нативных токсинов. После определенного цикла иммунизации животных делают массивное кровопускание или тотальное обескровливание животного. Кровь, собранную в стерильную посуду, сначала помещают в термостат при температуре 37°С на 4 – 6 ч для ускорения свертывания, затем – в ледник на сутки. Полученную прозрачную сыворотку отсасывают в стерильную посуду, добавляют консерванты, определяют титр антител, проверяют на стерильность и разливают в ампулы.

Используются неадсорбированные и адсорбированные диагностические сыворотки. Неадсорбированные сыворотки обладают высокими титрами антител, но способны давать групповые (перекрестные) реакции. Адсорбированные сыворотки отличаются строгой специфичностью действия (реагируют только с гомологичным антигеном). Сыворотки, содержащие антитела только к одному определенному антигену называются монорецепторными.

Выпускают также сыворотки, меченные флюорохромами, ферментами, радиоизотопами, которые позволяют с высокой степенью точности обнаружить даже следы антигена.

В качестве антигенов (диагностикумы) в серологических реакциях применяют взвеси живых или убитых бактерий, продуктов их расщепления, токсины, вирусы. В ряде случаев используют экстракты или выделенные химическим путем антигены из микроорганизмов и тканей животных.

Все иммуномикробиологические методы можно разделить на 3 группы:

  1. основанные на прямом взаимодействии антигена с антителом (феномены агглютинации, преципитации, гемагглютинации, иммобилизации и др.);
  2. основанные на опосредованном взаимодействии антигена с антителом (реакции непрямой гемагглютинации, коагглютинации, латекс–агглютинации, угольной аггломерации, бентонит–агглютинации, связывания комплемента и др.);
  3. с использованием меченых антител или антигенов (метод флюоресцирующих антител, иммуноферментный и радиоиммунный анализы и другие методы).

К числу современных сложных методов иммунологической диагностики относят: иммуноферментный анализ, имммуносенсоры, методы генного зондирования, иммуноэлектрофорез и иммуноблоттинг.

Иммуноблотинг – один из современных высокоточных вариантов электрофореза с анализом разделенных белков иммунологическим методом. Тест осуществляется в три этапа: сначала проводится–электрофорез в полиакриламидном геле в присутствии ионного детергента додецилсульфата натрия. Разделенные антигены переносятся за счет капиллярных сил или дополнительного электрофореза на иммобилизующую нитроцеллюлозную мембрану. Находящиеся на мембране антигены анализируются с помощью меченых ферментной или радиоактивной меткой антител (иммуноферментным или радиоиммунным методом).

Впервые принцип иммуносенсоров был использован М. Аizawа и соавт. (1977), когда они сконструировали мембрану, способную на иммунологический ответ. В настоящее время опубликовано несколько сообщений об использовании аналогичного подхода для определения различных микробных антигенов или антител к ним .

Принцип методов, основанных на иммуносенсорной технологии, заключается в изменении физико–химических свойств мембраны или другого носителя, связанного с антителами или антигенами. Уменьшение мембранного потенциала, изменение оптических или химических свойств среды, прилегающей к носителю, выявляются с помощью специального электрода или оптического устройства и выражаются в виде электрического сигнала.v

Существует два основных типа иммуносенсоров, различающихся по особенностям определения реакции антиген – антитело. 1 тип – так называемый немеченый иммуносенсор. Такое устройство состоит из металлического электрода для потенциометрии, покрытого полупроницаемой полимерной мембраной с иммобилизованными на ней молекулами антител (или антигена). В результате реакции с искомым комплементарным веществом образуются иммунные комплексы на поверхности мембраны.

Это приводит к изменению заряда мембраны и ее поверхностного потенциала. Изменение разности потенциалов и определяется электродом. 2 тип – меченый иммуносенсор. В этом случае на мембране также иммобилизуются антитела или антиген, но реакция определяется по изменению проводимости (амперметрия). Для этого используют кислородный электрод, реагирующий на изменение концентрации О2 после реакции антител с антигеном, меченым ферментом (например, каталазой). Конкуренция искомого антигена с известным количеством меченого конъюгата дает изменение проводимости раствора в области мембраны, что реализуется в виде электрического сигнала на выходе электрода.

В другой модификации результат цветной ферментативной реакции может быть определен и с помощью оптического устройства.

Для оценки результатов реакции в двух описанных типах иммуносенсоров значительно реже используют пьезоэлектрический эффект, измерение температурных колебаний и некоторые другие способы, менее разработанные в равнении с электрохимическими и оптическими.

Особенностью иммуносенсоров, отличающей их от других систем иммунохимической диагностики, является то, что информация о возникновении иммунного комплекса непосредственно реализуется в виде физического сигнала – изменения разницы потенциалов, оптической плотности, силы тока и т. п.

Одним из первых применений иммуносенсоров было измерение количества антител при сифилисе. Для этого на полупроницаемой мембране электрода связывали антигены трепонемы и инкубировали его в растворе сыворотки крови. Изменения разницы потенциалов наблюдали вплоть до разведения положительной контрольной сыворотки 1:800, причем, увеличение сигнала соответствовало повышению концентрации антител. Важно то, что после отмывания иммуносенсор можно использовать вновь. Аналогичный подход был применен для определения антител другой специфичности (к групповым антигенам крови) и альбумина.

Более сложное строение иммуносенсора увеличивает чувствительность анализа. Так при использовании меченого иммуносенсора достигается чувствительность до 0,1 нг белка/мл. Имеются данные об определении таким методом HBs– антигена с помощью I–электрода и антител к HBs–антигену, меченых пероксидазой. Устройство, включающее стеклянную матрицу, активированную различными вирусными антигенами (биочип) было использовано для серологической диагностики вирусных заболеваний. Предприняты попытки определять с помощью иммуносенсоров продукты синтеза некоторых грибов (охратоксин А), клетки С. Albicans. в настоящее время отсутствуют коммерческие образцы иммуносенсоров для диагностики инфекционных заболеваний, следует обратить внимание на основные этапы использования подобных устройств.

Опыт использования аналогичных систем для определения глюкозы в крови, гормонов, низкомолекулярных веществ позволяет разделить процесс анализа на три этапа:

  1. подготовка образца для анализа. Некоторые типы иммуносенсоров способны взаимодействовать непосредственно с биологическим материалом. Однако чаще всего используется предварительно отделенная центрифугированием плазма или сыворотка крови, разведенная специальным раствором.
  2. проведение аналитической процедуры. Помещая каплю раствора на микроэлектрод, или опуская электрод в исследуемый образец, создается контакт реагентов. Время достижения равновесия от нескольких секунд (для низкомолекулярных веществ) до нескольких минут (для высокомолекулярных агентов, антигенов, клеток). Результат определяется по разнице в показаниях с референс–электродом или по изменению сигнала после реакции. Результат может быть выражен в систематических единицах (милливольт, миллиампер), либо с помощью микропроцессора трансформирован в единицы концентрации искомого агента, в соответствии с предварительным калиброванием.
  3. регенерация иммуносенсора. Для повторного или многократного использования иммуносенсора необходимо освободить его рабочую поверхность от веществ, активно или пассивно сорбированных в ходе анализа. Наиболее простой способ регенерации состоит в интенсивном последовательном промывании иммуносенсора раствором с кислым значением рН и буферным раствором с высокой ионной силой. Для некоторых типов иммуносенсоров до сих пор не найдено оптимальных условий регенерации, не снижающих их чувствительность. В этих случаях используют сменные одноразовые мембранные элементы. В ближайшее время будут созданы надежные портативные иммуносенсоры для диагностики наиболее распространенных инфекционных заболеваний, как это сделано уже для анализаторов глюкозы.