Электрический ток в полупроводниках полупроводниковые приборы. Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках

К полупроводникам относятся материалы проводимость, которых больше, чем у диэлектриков, поменьше, чем у проводников. К полупроводникам относят кремний (Si), фосфор(P), германий (Ge), индий (In), мышьяк (As).

Полупроводники имеют ряд особенностей:

    Электрический ток в полупроводниках обусловлен как движением свободных электронов, так и движением связанных электронов, так называемых дырок. Поэтому различают электронную и дырочную проводимости. Место, покинутое электронами условно положительно заряжено – дырка. Полупроводники, имеющие преимущественно электронную проводимость, называются полупроводниками (-)n-типа. Полупроводники, имеющие преимущественно дырочную проводимость, называются полупроводниками (+)р-типа.

    Проводимость полупроводников очень сильно зависит от температуры, эта зависимость в десятки раз больше, чем у металлов. С увеличением температуры проводимость полупроводников увеличивается, а сопротивление уменьшается, т.к. увеличивается количество пар носителей зарядов ē и дыр.

    Проводимость полупроводников сильно зависит от примесей и называется примесной проводимостью. Проводимость чистых полупроводников совсем невелика, чтобы увеличить проводимость к чистому полупроводнику добавляют примесь.

Примесь может увеличить во много раз либо число свободных электронов, либо дырок. В первом случае (рис.44(а)) примесь выполняет роль донора (отдает электроны) – проводимость n – типа, а во втором (рис.44(б)) – роль акцептора (отбирает электроны) – проводимость р – типа.

Полупроводниковый диод p-n переход.

Полупроводниковый прибор, имеющий одностороннюю проводимость, основанный на работе p-n перехода. Ток через диод может проходить только в одном направлении.

На границе раздела двух полупроводников с разной проводимостью, вследствие разной концентрации электронов и дырок, возникает диффузия, в результате которой образуется разность потенциалов (в области n– типа возникает (+) заряд, а в области р – типа (-) заряд). Имеет место напряженность поля Е вн

Если приложить к р – n– переходу внешнее поле Е 0 , то в зависимости от его направления, будет следующее:

1. Е 0 совпадает по направлению с Е вн; Е = Е 0 + Е вн, размеры ℓ увеличатся и тока не будет

2. Если Е 0 противоположно Е вн, то Е = Е вн – Е 0 ; Е вн = Е 0 ; Е = 0 через переход будет протекать электрический ток.

Вольт-амперная характеристика полупроводникового диода.

Полупроводниковый триод

Полупроводниковый триод состоит из двух полупроводников одного типа проводимости разделенных тонким слоем полупроводника другого типа проводимости (p-n-p) или (n-p-n).

Ток в этой системе регулируется засчет напряжения между базой и эмиттером, изменение тока в цепи эмиттера будет вызывать изменение тока в цепи коллектора, причем изменение напряжения будет значительным (усиление напряжения). П/nтриоды (транзисторы) так же как и электронные лампы – триоды применяются для усиления и генерирования электрических колебаний. Транзисторы имеют ряд преимуществ перед электронными лампами - не требуют питания для накала катода, виброустойчивы, малогабаритны и др., однако их характеристики зависят от температуры.

Полупроводниками называют вещества, занимающие в отношении электропроводности промежуточное положение между хорошими проводниками и хорошими изоляторами (диэлектриками).

Полупроводниками являются и химические элементы (германий Ge, кремний Si, селен Se, теллур Te), и соединения химических элементов (PbS, CdS, и др.).

Природа носителей тока в различных полупроводниках различна. В некоторых из них носителями зарядов являются ионы; в других носителями зарядов являются электроны .

Собственная проводимость полупроводников

Существует два вида собственной проводимости полупроводников: электронная проводимость и дырочная проводимость полупроводников.

1. Электронная проводимость полупроводников.

Электронная проводимость осуществляется направленным перемещением в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешних воздействий.

2. Дырочная проводимость полупроводников.

Дырочная проводимость осуществляется при направленном перемещении валентных электронов на вакантные места в парно-электронных связях - дырки. Валентный электрон нейтрального атома, находящегося в непосредственной близости к положительному иону (дырке) притягиваясь к дырке, перескакивает в неё. При этом на месте нейтрального атома образуется положительный ион (дырка), а на месте положительного иона (дырки) образуется нейтральный атом.

В идеально чистом полупроводнике без каких - либо чужеродных примесей каждому свободному электрону соответствует образование одной дырки, т.е. число участвующих в создании тока электронов и дырок одинаково.

Проводимость, при которой возникает одинаковое число носителей заряда (электронов и дырок), называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Малейшие следы примесей коренным образом меняют свойства полупроводников.

Электрическая проводимость полупроводников при наличии примесей

Примесями в полупроводнике считают атомы посторонних химических элементов, не содержащиеся в основном полупроводнике.

Примесная проводимость - это проводимость полупроводников, обусловленная внесением в их кристаллические решётки примесей.

В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется в основном движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n - типа (от латинского слова negativus - отрицательный). Основными носителями заряда являются электроны, а не основными - дырки. Полупроводники n - типа - это полупроводники с донорными примесями.


1. Донорные примеси.

Донорными называют примеси, легко отдающие электроны, и, следовательно, увеличивающие число свободных электронов. Донорные примеси поставляют электроны проводимости без возникновения такого же числа дырок.

Типичным примером донорной примеси в четырёхвалентном германии Ge являются пятивалентные атомы мышьяка As.

В других случаях практически невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками p - типа (от латинского слова positivus - положительный). Основными носителями заряда являются дырки, а не основными - электроны. . Полупроводники р - типа - это полу-проводники с акцепторными примесями.

Акцепторными называют примеси в которых для образования нормальных парноэлектронных связей недостаёт электронов.

Примером акцепторной примеси в германии Ge являются трёхвалентные атомы галлия Ga

Электрический ток через контакт полупроводников р- типа и n- типа p-n переход - это контактный слой двух примесных полупроводников p-типа и n-типа; p-n переход является границей, разделяющей области с дырочной (p) проводимостью и электронной (n) проводимостью в одном и том же монокристалле.

Прямой p-n переход

Если n-полупроводник подключён к отрицательному полюсу источника питания, а положительный полюс источника питания соединён с р-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в р-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников. Электроны, переходя границу, «заполняют» дырки, ток через р-n-переход осуществляется основными носителями заряда. Вследствие этого проводимость всего образца возрастает. При таком прямом (пропускном) направлении внешнего электрического поля толщина запирающего слоя и его сопротивление уменьшаются.

В этом направлении ток проходит через границу двух полупроводников.


Обратный р-n-переход

Если n-полупроводник соединён с положительным полюсом источника питания, а р-полупроводник соединён с отрицательным полюсом источника питания, то электроны в n-полупроводнике и дырки в р-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны, ток через р-n-переход осуществляется неосновными носителями заряда. Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Вследствие этого проводимость образца оказывается незначительной, а сопротивление - большим.

Образуется так называемый запирающий слой. При таком направлении внешнего поля электрический ток через контакт р- и n-полупроводников практически не проходит.

Таким образом электронно-дырочный переход обладает одно-сторонней проводимостью.

Зависимость силы тока от напряжения - вольт - амперная характеристика р-n перехода изображена на рисунке (вольт - амперная характеристика прямого р-n перехода изображена сплошной линией, вольт - амперная характеристика обратного р-n перехода изображена пунктирной линией).

Полупроводниковые приборы:

Полупроводниковый диод - для выпрямления переменного тока, в нем используют один р - n - переход с разными сопротивлениями: в прямом направлении сопротивление р - n - перехода значительно меньше, чем в обратном.

Фоторезисторы - для регистрации и измерения слабых световых потоков. С их помощью определяют качество поверхностей, контролируют размеры изделий.

Термисторы - для дистанционного измерения температуры, противопожарной сигнализации.

>>Физика: Электрический ток в полупроводниках

В чем главное отличие полупроводников от проводников? Какие особенности строения полупроводников открыли им доступ во все радиоустройства, телевизоры и ЭВМ?
Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растет, как у металлов (рис.16.3 ), а, наоборот, чрезвычайно резко уменьшается (рис.16.4 ). Такие вещества и называют полупроводниками .

Из графика, изображенного на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведет себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.
Строение полупроводников . Для того чтобы включить транзисторный приемник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придется вникнуть в природу связей , удерживающих атомы полупроводникового кристалла друг возле друга.
Для примера рассмотрим кристалл кремния.
Кремний - четырехвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанных с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Схема структуры кристалла кремния изображена на рисунке 16.5.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью . В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отделяются от атома, которому они принадлежат (коллективируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.
Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.
Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы «цементирующим раствором», удерживающим кристаллическую решетку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.
Электронная проводимость. При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторенные пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, создавая электрический ток (рис.16.6 ).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью . При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/м 3 . Это приводит к уменьшению сопротивления.
Дырочная проводимость. При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном. Его называютдыркой . В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).
Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.
Если напряженность электрического поля в образце равна нулю, то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток, связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов (рис.16.7 ).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряженности поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.
Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью .
Мы рассмотрели механизм проводимости чистых полупроводников. Проводимость при этих условиях называют собственной проводимостью полупроводников.
Проводимость чистых полупроводников (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость).

???
1. Какую связь называют ковалентной ?
2. В чем состоит различие зависимости сопротивления полупроводников и металлов от температуры?
3. Какие подвижные носители зарядов имеются в чистом полупроводнике?
4. Что происходит при встрече электрона с дыркой?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

В полупроводниках - это направленное движение дырок и электронов, на которое оказывает влияние электрическое поле.

В результате экспериментов было отмечено, что электрическому току в полупроводниках не сопутствует перенос вещества - в них не происходят какие-либо химические изменения. Таким образом, носителями тока в полупроводниках можно считать электроны.

Способность материала к формированию в нём электрического тока может быть определена По данному показателю проводники занимают промежуточную позицию между проводниками и диэлектриками. Полупроводники - это различные виды минералов, некоторые металлы, сульфиды металлов и т.д. Электрический ток в полупроводниках возникает из-за концентрации свободных электронов, которые могут направленно передвигаться в веществе. Сравнивая металлы и проводники, можно отметить, что существует различие между температурным влиянием на их проводимость. Повышение температуры ведёт к уменьшению У полупроводников показатель проводимости увеличивается. Если в полупроводнике увеличится температура, то движение свободных электронов будет более хаотичным. Это связано с повышением числа столкновений. Однако в полупроводниках, по сравнению с металлами, существенно повышается показатель концентрации свободных электронов. Данные факторы оказывают противоположное влияние на проводимость: чем больше столкновений, тем меньше проводимость, чем больше концентрация, тем она выше. В металлах нет зависимости между температурой и концентрацией свободных электронов, так что с изменением проводимости при повышении температуры только понижается возможность упорядоченного перемещения свободных электронов. Что касается полупроводников, то показатель влияния повышения концентрации более высокий. Таким образом, чем больше будет расти температура, тем большей будет проводимость.

Существует взаимосвязь между движением носителей заряда и таким понятием, как электрический ток в полупроводниках. В полупроводниках появление носителей зарядов характеризуется различными факторами, среди которых особо важными являются температура и чистота материала. По чистоте полупроводники делятся на примесные и собственные.

Что касается собственного проводника, то влияние примесей при определённой температуре не может считаться для них существенным. Поскольку в полупроводниках ширина запрещённой зоны невелика, в собственном полупроводнике, когда температура достигает происходит полное заполнение валентной зоны электронами. Но зона проводимости является полностью свободной: в ней нет электропроводимости, и она функционирует как идеальный диэлектрик. При других температурах существует вероятность того, что при тепловых флуктуациях определённые электроны могут преодолеть потенциальный барьер и оказаться в зоне проводимости.

Эффект Томсона

Принцип термоэлектрического эффекта Томсона: когда пропускают электрический ток в полупроводниках, вдоль которых существует температурный градиент, в них, кроме джоулева тепла, будет происходить выделение или поглощение дополнительных количеств тепла в зависимости от того, в каком направлении будет течь ток.

Недостаточно равномерное нагревание образца, имеющего однородную структуру, оказывает влияние на его свойства, в результате чего вещество становится неоднородным. Таким образом, явление Томсона является специфическим явлением Пельте. Единственная разница заключается в том, что различный не химический состав образца, а неординарность температуры вызывает эту неоднородность.

Полупроводники – это материалы, которые при обычных условиях являются диэлектриками, но с увеличение температуры становятся проводниками. То есть в полупроводниках при увеличении температуры, сопротивление уменьшается.

Строение полупроводника на примере кристалла кремния

Рассмотрим строение полупроводников и основные типы проводимости в них. В качестве примера рассмотрим кристалла кремния.

Кремний является четырехвалентным элементом. Следовательно, в его внешней оболочке имеются четыре электрона, которые слабо связаны с ядром атома. С каждым по соседству находится еще четыре атома.

Атомы между собой взаимодействуют и образуют ковалентные связи. От каждого атома в такой связи участвует один электрон. Схема устройства кремния изображена на следующем рисунке.

картинка

Ковалентные связи являются достаточно прочными и при низких температурах не разрываются. Поэтому в кремнии нет свободных носителей заряда, и он при низких температурах является диэлектриком. В полупроводниках существует два вида проводимости: электронная и дырочная.

Электронная проводимость

При нагревании кремния ему будет сообщаться дополнительная энергия. Кинетическая энергия частиц увеличивается и некоторые ковалентные связи разрываются. Тем самым образуются свободные электроны.

В электрическом поле эти электроны перемещаются между узлами кристаллической решетки. При этом в кремнии будет создаваться электрический ток.

Так как основными носителями заряда являются свободные электроны, такой тип проводимости называют – электронной проводимостью. Количество свободных электронов зависит от температуры. Чем сильнее мы будем нагревать кремний, тем больше ковалентных связей будет разрываться, а следовательно, будет появляться больше свободных электронов. Это приводит к уменьшению сопротивления. И кремний становится проводником.

Дырочная проводимость

Когда происходит разрыв ковалентной связи, на месте вырвавшегося электрона, образуется вакантное место, которое может занять другой электрон. Это место называется дыркой. В дырке имеется избыточный положительный заряд.

Положение дырки в кристалле постоянно меняется, любой электрон может занять это положение, а дырка при этом переместится туда, откуда перескочил электрон. Если электрического поля нет, то движение дырок беспорядочное, и поэтому тока не возникает.

При его наличии, возникает упорядоченность перемещения дырок, и помимо тока, который создается свободными электронами, появляется еще ток, который создается дырками. Дырки будут двигаться в противоположном движению электронов направлении.

Таким образом, в полупроводниках проводимость является электронно-дырочной. Ток создается как с помощью электронов, так и с помощью дырок. Такой тип проводимости еще называется собственной проводимостью, так как участвуют элементы только одного атома.