Методы доставки днк в клетку. Доставка рекомбинантной днк и рнк в клетку. Механизмы действия терапевтических генов

Доцент кафедры химического машиностроения в Virginia Tech Чан Лу (Chang Lu). (Фото: Virginia Tech)

Доцент кафедры химического машиностроения Технологического университета Вирджинии (Virginia Tech ) Чан Лу (Chang Lu) и его исследовательская группа из инженеров-химиков нашли, как «значительно улучшить» доставку в клетку генетического материала - ДНК . Статья с описанием их работы опубликована в главном журнале по микрофлюидике Lab on a Chip , а также в Nature .


Конечная цель доктора Лу заключается в применении разработанного ими метода в области создания генетически модифицированных клеток для иммунотерапии рака , лечения стволовым клетками и регенерации тканей.

Один из наиболее широко используемых физических методов доставки генов в клетку является «невероятно неэффективным, потому что проницаемой является только небольшая часть от общей поверхности мембраны», считает доктор Лу.

Метод, к которому обратился Лу, называется электропорацией , по названию известного в течение десятилетий феномена увеличения проницаемости клеток в результате приложения к ним электрического поля, приводящего к образованию крошечных пор в их мембране.

Доктор Лу объясняет механизм действия усовершенствованного им и его коллегами метода электропорации таким образом: «Обычные методы электропорации доставляют ДНК только через очень ограниченную часть поверхности клетки, определяемую физическими явлениями, управляющими взаимодействиями между электрическим полем и клеткой. Наш метод позволяет достичь равномерной доставки ДНК через всю поверхность клетки, что, насколько нам известно, продемонстрировано впервые. Результатом является огромное увеличение объема передачи генетического материала».

В новом подходе используются «гидродинамические эффекты, которые возникают только тогда, когда потоки жидкости перемещаются по изогнутым каналам. Известно, что при таких условиях поток образует вихри. Переносимые таким потоком клетки вращаются, и воздействию электрического поля подвергается бо льшая часть площади их поверхности». Доставка генов с помощью потоков в изогнутых каналах имеет значительные преимущества по сравнению с традиционно используемой электропорацией в статичных растворах и прямых каналах.

«Спиральный канал дает двукратное увеличение по сравнению с прямым и еще большее по сравнению со статичным раствором», - поясняет ученый.

С помощью флуоресцентной микроскопии ученые смогли «картировать» подвергшиеся электропорации области на поверхности клетки и определить степень поступления в нее ДНК.

Фото с сайта Lab on a Chip

Обычная доставка ДНК с использованием кюветного типа устройств со статичной клеточной суспензией идет только в узкой полосе поверхности клетки. Если же электропорация проводится на клетках, плывущих в спиральном или изогнутой канале, изображения значительно отличаются, демонстрируя равномерное распределение переноса ДНК по всей поверхности клетки.

Изобретение относится к области биотехнологии, в частности к способу направленной доставки ДНК в опухолевые и стволовые клетки, экспрессирующие рецептор CXCR4. Представленное изобретение может быть использовано для направленной доставки генетических конструкций в стволовые и злокачественные опухолевые клетки с целью коррекции генных дефектов и предотвращения заболеваний. Способ включает подготовку носителей генетических конструкций путем включения в состав молекул носителя, представляющего собой ДНК-связывающую последовательность из восьми остатков аминокислоты лизина - КККККККК, сигнальных последовательностей. Присоединение сигнальной последовательности к ДНК-связывающей последовательности осуществляют с помощью линкерного участка из двух молекул ε-аминогексановой кислоты. После чего осуществляют формирование комплексов ДНК/носитель. Затем проводят трансфекцию in vitro. Предложенное изобретение позволяет повысить эффективность доставки гена интереса в опухолевые и стволовые клетки. 2 з.п. ф-лы, 4 ил.

Изобретение относится к генной медицине, генной терапии, биотехнологии и фармацевтике и может быть использовано для направленной доставки генетических конструкций в стволовые и злокачественные опухолевые клетки с целью коррекции генных дефектов и предотвращения заболеваний. Тканеспецифичность доставки генных конструкций обеспечивается благодаря использованию сигнальных последовательностей к рецептору CXCR4, который экспрессируется в клетках данного типа.

Генную терапию от подходов традиционной медицины отличает ее ориентированность на борьбу с причиной заболевания, а не с симптомами и последствиями. В настоящее время ведется разработка генотерапевтических подходов к лечению или профилактике широкого спектра заболеваний человека. Эти подходы могут быть применимы для терапии in vivo и ex vivo. Терапия in vivo основана на прямом введении генетических конструкций непосредственно в ткани организма. Доставка может осуществляться внутривенно с использованием аэрозольных распылителей или инъекций в определенные ткани. Генная терапия ех vivo основана на выделении специфического типа клеток из организма, введении в них "терапевтической" генной конструкции, отборе трансфецированных клеток и последующей реимплантацией пациенту.

В разрабатываемых в настоящее время подходах к доставке генетических конструкций выделяется три основных направления:

1) клонирование в составе вирусных векторов;

2) использование физических методов трансфекции;

3) использование комплексов плазмидных векторов экспрессии и молекул невирусных носителей.

Вирус-опосредованный перенос является высокоэффективным способом доставки ДНК в клетки-мишени, поскольку проникновение модифицированного вирусного вектора осуществляется аналогично процессу, происходящему в естественных условиях при переносе генома вируса в клетки хозяина. Наиболее изученными являются векторы, созданные на основе ретро-, адено-, аденоассоциированных вирусов. К достоинствам вирусов относится, прежде всего, сочетание в себе свойств вектора экспрессии и носителя, возможность специфичной доставки, способность трансфецировать делящиеся и неделящиеся клетки, возможность встраивания ДНК в хромосому для обеспечения долговременной экспрессии. Благодаря таким преимуществам данный подход до сих пор широко используется в исследованиях по доставки генов, хотя и имеет некоторые недостатки. Ретро- и аденоассоциированные вирусы имеют ограниченный размер клонированного фрагмента ДНК и риск инсерционного мутагенеза при встраивании вируса в геном хозяина. Серьезным недостатком аденовирусных векторов является ярко выраженный иммунный ответ при высоких дозах и повторных введениях аденовирусных конструкций (Walther W., Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human disease // Drugs. - 2000. - v.60. - P.249-271, патент РФ №2252255, C12N 15/37, C12N 15/86, C12N 15/861, C12N 15/867, опубл. 2005.05.20).

Инъекции конструкций "голой" (naked) плазмидной ДНК были одним из первых подходов при разработке стратегий генотерапевтического лечения. Низкая эффективность трансфекции с использованием «голой» ДНК послужила толчком к разработке новых методов доставки генетических конструкций. Изучены различные физические способы доставки ДНК в клетки организма. Наиболее популярными среди них являются метод баллистической трансфекции и электропорация, которые широко применяются для трансфекции клеток кожи и мышц. Метод баллистической трансфекции основан на проникновении в клетку ДНК, осажденной на золотых или вольфрамовых микрочастицах. Трансфекция происходит под давлением потока сжатого газа или жидкости. Метод электропорации основан на локальном изменении электрического потенциала клеточной мембраны вследствие воздействия электрическим током. Электрические импульсы приводят к образованию пор в клеточной мембране, тем самым делая ее проницаемой для биомолекул. Для преодоления низкой эффективности трансфекции голой ДНК in vivo также используют метод гидродинамического шока - внутривенное или внутриартериальное введение плазмидного вектора в растворе большого объема. Основными недостатками существующих физических методов трансфекции являются невысокая эффективность и локальность эффекта доставки ДНК. Они позволяют плазмиде преодолеть клеточную мембрану и избежать включения в эндосомы, предотвращая таким образом энзиматическую деградацию, но, как правило, не обеспечивают длительной персистенции введенных генетических конструкций (Wells D.J. Gene therapy progress and prospects: electroporation and other physical methods // Gene Ther. - 2004. - v.11, №18. - P.1363-1369; Wang S., Joshi S, Lu S. Delivery of DNA to skin by particle bombardment // Methods Mol Biol. - 2004. - v.245. - P.185-196; Herweijer H., Wolff J.A. Progress and prospects: naked DNA gene transfer and therapy // Gene therapy. - 2003. - v.10, №6. - P.453-458).

Невирусные носители являются альтернативой вирус-опосредованному переносу генетических конструкций в клетки млекопитающих. Невирусные носители легко синтезируются, легкость их модификации позволяет вносить изменения в структуру и состав молекул, тем самым совершенствуя средства доставки. При использовании невирусных носителей отсутствуют ограничения на размер доставляемого вектора экспрессии. Кроме того, они менее токсичны, в большинстве случаев не вызывают специфического иммунного ответа и более безопасны в применении in vivo no сравнению с вирусными векторами. Поэтому введение генетической конструкции, упакованной в невирусные носители, может осуществляться повторно. Исследование невирусных носителей развивается в направлении улучшения трансфецирующих свойств плазмидной ДНК путем образования комплексов ДНК с различными синтетическими соединениями (липидами, олиго- и полипептидами, полимерами и др.) (например, патент РФ №2336090, А61К 39/00, A61K 47/00, опубл. 2008.10.20). Совершенствование невирусных средств доставки во многом зависит от детального понимания барьеров на пути проникновения ДНК в клетки организма (Schmidt-Wolf G.D., Schmidt-Wolf I.G. Non-viral and hybrid vectors in human gene therapy: an update // Trends Mol Med. - 2003. - v.9, №2. - P.67-72; Gardlic R, Palffy R, Hodosy J., Turna J., Celec P. Vectors and delivery systems in gene therapy // Med Sci Monit. - 2005. - v.11, №4. - P.110-121; Wiethoff C.M., Middaugh C.R. Barriers to nonviral gene delivery // J Pharm Sci. - 2003. - v.92, №2. - P.203-217).

Считается, что невирусный носитель должен обладать следующими характеристиками:

1) быть нетоксичными, компактизовать и защищать плазмидную ДНК от ферментативной деградации, выводиться из организма после использования;

2) обеспечивать проникновение плазмиды в клетку путем специфического связывания с плазматической мембраной клетки:

3) обладать способностью к высвобождению ДНК из эндосомального компартмента;

обеспечивать диссоциацию ДНК из комплекса для последующего транспорта плазмиды в ядро.

Для целей генотерапии наиболее предпочтительным способом доставки генетических конструкций является их тканеспецифичный перенос в клетки и ткани организма.

Первым барьером на пути внутриклеточного проникновения комплексов является плазматическая мембрана. Большинство комплексов взаимодействуют с поверхностью клетки с помощью электростатических сил. Возможным механизмом связывания комплексов с клеткой является их взаимодействие с белками клеточной поверхности - гликозаминогликанами. Однако при данном механизме проникновения комплексов отсутствует тканеспецифичный перенос генных конструкций. В то же время проблема тканеспецифичной доставки генетических конструкций актуальна для генной терапии целого ряда заболеваний. Для специфического взаимодействия с клеточной поверхностью в состав комплексов включают лиганды к рецепторам на поверхности клеток. В настоящее время охарактеризован ряд пептидных лигандов интегринов. К ним относится, в частности, трипептидный фрагмент RGD (интегрины присутствуют на поверхности многих клеток), трансферрин (его рецептор обладает повышенной экспрессией в пролиферирующих клетках), асиалоорозомукоид (асиалогликопротеиновый рецептор имеет специфическую экспрессию в гепатоцитах печени).

Для специфической доставки генетического материала в нервные клетки Зенг с коллегами предложили использовать носитель, состоящий из сигнального участка к рецептору TrkA (80-108 аминокислоты из фактора роста нервов) и ДНК-связывающей последовательности из 10 остатков аминокислоты лизина. Данный носитель в присутствии эндосомолитического агента хлороквина, способствующего выходу комплексов из эндосомального компартмента клетки, был способен тканеспецифично доставлять маркерный ген только в клетки с экспрессией рецептора TrkA. Данный носитель можно применять для генотерапевтического лечения различных неврологических заболевания, таких как эпилепсия, болезни Паркинсона и Альцгеймера. Однако он не пригоден для доставки генетического материала в другие типы клеток (Zeng J, Too HP, Ma Y, Luo E, Wang S A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery // J Gene Med 2004; 6: 1247-1256).

Стволовые клетки человека рассматриваются в качестве перспективных агентов для клеточной и генной терапии различных заболеваний человека. В то же время они относятся к одним из наиболее трудно трансфецируемых типов клеток. При генотерапевтическом лечении раковых заболеваний необходимо обеспечить доставку генов непосредственно в опухолевые клетки.

CXCR4 является рецептором фактора миграции стволовых клеток хемокина SDF-1α. CXCR4 экспрессируется в гематопоэтических клетках, эндотелии сосудов, мышечных сателлитных клетках. Отмечен высокий уровень экспрессии данного гена в более чем 20 видах раковых опухолей (рак груди, простаты и др.), а также в мигрирующих стволовых клетках. Рецептор CXCR4 также способен связываться с вирусным хемокином vMIP-II (вирус саркомы Капоши). Таким образом, включение в состав молекул носителя сигнальных последовательностей для связывания с рецептором CXCR4 является перспективным путем создания систем целевой доставки генов в опухолевые и стволовые клетки.

Для доставки генетического материала в клетки, экспрессирующие рецептор CXCR4, Ле Бон с коллегами использовали синтетический лиганд к данному рецептору - AMD3100, который был соединен с полиэтиленимином или катионными липидами. Комплексы генетического материала с данными соединениями не приводили к достоверному повышению эффективности доставки маркерного гена в CXCR4+ клетки по сравнению с соединениями без сигналов. Носители, применяемые Ле Боном, не были эффективными, потому что специфическая доставка с их помощью возможна только при добавлении в среду трансфекции вещества, способствующего интернализации рецептора CXCR4 (форболовый эфир). (Le Bon В, Van Craynest N, Daoudi JM, Di Giorgio C, Domb AJ, Vierling P. AMD3100 Conjugates as Components of Targeted Nonviral Gene Delivery Systems: Synthesis and in Vitro Transfection Efficiency of CXCR4-Expressing Cells. // Bioconjugate Chem 2004, 15: 413-423).

Таким образом, существует необходимость в создании носителя генетических конструкций, способного обеспечить специфическую доставку в CXCR4(+) клетки и не оказывать влияния на близлежащие ткани. Такой способ обеспечивается настоящим изобретением.

В основу изобретения положена задача разработки способа специфической доставки генетических конструкций в клетки, экспрессирующие рецептор CXCR4, в котором за счет использования носителей генетических конструкций, содержащих в своем составе сигнальные последовательности к рецептору CXCR4, достигают повышения эффективности доставки гена "интереса". Важно отметить, что синтез заявляемых носителей может быть осуществлен с помощью любого из известных методов твердофазного пептидного синтеза.

Решение поставленной технической задачи обеспечивается тем, что в способе направленной доставки ДНК в опухолевые и стволовые клетки, экспрессирующие рецептор CXCR4, включающем подготовку носителей генетических конструкций путем включения в состав молекул носителя, представляющего собой ДНК-связывающую последовательность из восьми остатков аминокислоты лизина - KKKKKKKK, сигнальных последовательностей, формирование комплексов ДНК/носитель, проведение трансфекции in vitro, сигнальную последовательность выбирают из группы: фрагмент с 1 по 8 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYR; фрагмент с 1 по 17 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYRCPCRFFESH, где 9 и 11 аминокислоты заменены на серин; или фрагмент с 1 по 10 аминокислоту N-терминальной последовательности вирусного хемокина vMIP-II - LGASWHRPDK; присоединение сигнальной последовательности к ДНК-связывающей последовательности осуществляют с помощью линкерного участка из двух молекул ε-аминогексановой кислоты.

При этом сигнальная последовательность может представлять собой фрагмент с 1 по 8 аминокислоту последовательности N-конца белка SDF-1α-KPVSLSYR.

Либо сигнальная последовательность может представлять собой фрагмент с 1 по 17 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYRCPCRFFESH, где 9 и 11 аминокислоты заменены на серин.

В качестве сигнального участка также может быть использован фрагмент с 1 по 10 аминокислоту N-терминальной последовательности вирусного хемокина vMIP-II - LGASWHRPDK, синтезированный из D-аминокислот.

В качестве компонента, обеспечивающего выход из эндосом комплексов, состоящих из носителей и генетического материала, может быть использован глицерин или хлороквин.

В качестве генетического материала для носителей может быть использована плазмидная ДНК.

Указанный технический результат в предлагаемом изобретении достигается за счет использования в качестве носителя молекул олиголизина - КККККККК (К8), конъюгированных с сигнальными последовательностями к рецептору CXCR4 из белков SDF-1 или vMIP-II, а именно N-концевую последовательность хемокина SDF-1 (с 1 по 8 аа) либо N-концевую последовательность хемокина SDF-1 (с 1 по 17 аа, с заменой 9 и 11 аа на серин) или N-концевую последовательность вирусного хемокина vMIP-II (с 1 по 10 аа в D-конформации). Наличие олиголизина КККККККК в составе носителя позволяет конъюгатам образовывать комплексы с нуклеиновыми кислотами, в частности с плазмидной ДНК, за счет электростатического взаимодействия.

Указанный технический результат достигается тремя вариантами заявляемого носителя.

Указанный технический результат по первому варианту достигается тем, что в носителе short CDP на основе синтетических аналогов хемокина SDF-1, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-8 аа) последовательности N-конца белка SDF-1, имеющий структуру KPVSLSYR и обладающий активностью агонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру KKKKKKKK и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты (Ahx).

Указанный технический результат по второму варианту достигается тем, что в носителе (long CDP) на основе синтетических аналогов хемокина SDF-1, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-17 аа; аа9 и аа11 заменены на серин) последовательности N-конца белка SDF-1, имеющий структуру KPVSLSYRSPSRFFESH и обладающий активностью агонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру KKKKKKKK и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты.

Указанный технический результат по третьему варианту достигается тем, что в носителе (viral CDP) на основе синтетических аналогов белка вируса саркомы Капоши vMIP-II, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-10 Daa - синтезированный из D-аминокислот) последовательности N-конца белка vMIP-II, имеющий структуру LGASWHRPDK и обладающий активностью антагонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру КККККККК и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты.

Все три варианта заявляемого носителя могут быть синтезированы с помощью известных методов пептидного синтеза, например твердофазным Вос-методом (Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide // Journal of the American Chemical Society. 1963. V.85 (14), pp.2149-2154).

Примеры конкретной реализации

Изобретение поясняется с помощью фиг.1, на которой показано изменение интенсивности флуоресценции бромистого этидия при увеличении зарядовых соотношений носитель/ДНК в комплексах short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК. Падение интенсивности флуоресценции свидетельствует о возрастании плотности формировавшихся комплексов. Выход кривых флюоресценции на плато указывает на то, что комплексы достигли плотности, достаточной для гашения флуоресценции бромистого этидия.

На фиг.2 приведена зависимость активности люциферазы в клетках HeLa (CXCR4+) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. В этом случае использовали комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 3/1, 6/1, 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула, ДНК, комплексы ПЭИ/ДНК 1/8 (положительный контроль эксперимента - коммерческий носитель разветвленный полиэтиленимин 25 кДа - ПЭИ) и комплексы, содержащие ДНК и контрольный пептид (СР). СР отличается от носителей в настоящем изобретении отсутствием сигнала связывания с рецептором CXCR4 и по структуре представляет собой олиголизин КККККККК. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была в 10-100 раз выше, чем контролем СР.

На фиг.3 приведена зависимость активности люциферазы в клетках А172 (CXCR4+) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. Здесь использованы комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула ДНК, комплексы ПЭИ/ДНК 1/8 и комплексы, содержащие ДНК и пептид СР. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была в 10 раз выше, чем контролем СР.

Результаты на фиг.2 и фиг.3 свидетельствуют в пользу специфичности носителей в настоящем изобретении к рецептору CXCR4.

На фиг.4 показана зависимость активности люциферазы в клетках СНО (CXCR4-) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. Использованы комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула ДНК, комплексы ПЭИ/ДНК 1/8 и комплексы, содержащие ДНК и пептид СР. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была практически такой же, как с использованием контроля СР.

Носители с сигналом не способны обеспечить достоверно высокого по сравнению с контролем уровня доставки генетического материала в клетках без экспрессии рецептора.

Осуществление изобретения можно пояснить следующим образом. Задача настоящего изобретения состоит в обеспечении направленной доставки генетических конструкций в клетки с экспрессией рецептора CXCR4 с использованием носителей генетического материала, содержащих сигнальные последовательности к данному рецептору.

На первом этапе проводят образование комплексов одного из воплощений носителя с генетической конструкцией, содержащей ген "интереса". Сформированные комплексы используют для доставки генетического материала в соответствующие клетки-мишени. Анализ эффективности проникновения в клетки оценивают с помощью ферментативных или иммуногистохимических методов.

Формирование комплексов проводят в изотоническом растворе. Предпочтительным является бессолевой буфер НВМ (Hepes-buffered mannitol). Размер образующихся комплексов составляет 170-230 нм.

В качестве генетических конструкций в одном из воплощений используют плазмидную ДНК.

Плазмидная ДНК содержит в своем составе маркерный (luc, lacZ) или терапевтический ген (в зависимости от заболевания), под контролем соответствующих промоторов и энхансеров (CMV, SV40 и др.) и другие элементы, необходимые, например, для репликации в клетки-хозяине или интеграции в геном. При генотерапевтичеком лечении раковых заболеваний могут быть использованы гены HLA-B7, IL-2, IL-4, TNF, IFN, P53, тимидинкиназы и проч.

В другом воплощении в качестве генетической конструкции используют олигонуклеотиды, состоящие из ДНК или РНК небольшого размера, комплементарные специфической последовательности в составе мРНК или ее предшественника для подавления синтеза белкового продукта или выбрасывания из мРНК экзона, несущего мутацию. Сформированные комплексы используют для доставки генетического материала в клетки с экспрессией рецептора CXCR4. Проникновение комплексов с носителем из настоящего изобретения происходит преимущественно с помощью рецептор-опосредованного переноса путем связывания с внеклеточными доменами рецептора CXCR4 и последующей интернализацией рецептора.

Доза носителей и генетического материала определяется индивидуально и зависит от типа клеток, количества рецептора CXCR4 на их поверхности и сложности трансфецирования данных клеток.

Для увеличения эффективности данных носителей трансфекцию клеток предпочтительно проводить с использованием эндосомолитического агента. К ним относятся глицерин, хлороквин и др. Данные вещества добавляют в среду трансфекции непосредственно перед внесением комплексов к клеткам. Они остаются несвязанными с комплексами, поэтому не влияют на их структуру.

В качестве ДНК-связывающей части носителя могут быть использованы пептиды, другие полимерные соединения, липосомы, которые способны к компактизации нуклеиновых кислот. Кроме того, они могут обладать эндосомолитическими свойствами (нет надобности в использовании дополнительного эндосомолитического агента) и в случае, когда это необходимо (например, для доставки терапевтических или маркерных генов), доставлять генетический материал в ядро.

При подборе условий трансфекции они создаются так, чтобы обеспечить наибольшую эффективность доставки. Предпочтительным является инкубация комплексов с клетками в течение 4 часов. Однако можно варьировать это время от 3 до 6 часов. По истечении времени инкубации производят смену среды и оставляют клетки на 24-48 часов (в зависимости от типа клеток и генетического материала) для экспрессии введенных конструкций с геном-интереса или проявления терапевтического эффекта олигонуклеотидов.

Анализ эффективности доставки проводится ферментативными или иммуногистохимическими методами в зависимости от типа введенной генной конструкции.

Пример 1. Формирование комплексов ДНК/носитель и изучение процесса комплексообразования.

В качестве генетического материала для направленной доставки генов в клетки была использована плазмида pCLUC4, содержащая ген люциферазы светляков под контролем промотора цитомегаловируса. Использовали одно из воплощений носителя.

Приготавливали растворы 1 мкг ДНК в 40 мкл 1X буфера НВМ (5% w/v mannitol, 5 mM Hepes, pH 7.5) и растворы носителя, соответствующие различным зарядовым соотношениям ДНК/носитель, в равном объеме буфера. В пробирку-эппендорф с раствором ДНК постепенно добавляли раствор носителя и интенсивно перемешивали в течение 20 секунд. Полученную смесь оставляли на 30 минут при комнатной температуре для завершения процесса формирования комплексов.

Результаты по комплексообразованию анализируют методом вытеснения бромистого этидия. Измерение флуоресценции этидиум бромида производят с помощью спектрального сканирующего мультирежимного считывающего устройства Varioscan Flash (Thermo, Finland). Наблюдается вытеснение бромистого этидия при излучении 590 нм (возбуждение при 544 нм) после добавления носителя к ДНК (20 мкг/мл), преинкубированной с интеркалирующим агентом бромистым этидием (400 ng/ml). Вытеснение было посчитано по формуле (F-Ff)/(Fb-Ff), где Ff и Fb - это интенсивности флюоресценции бромистого этидия в отсутствие и присутствии ДНК соответственно Результаты представлены на фиг.1.

Пример 2. Проведение трансфекции in vitro.

Клетки культуры HeLa, A172 и СНО рассевали на культуральные 48-луночные планшеты (Nunc) за 24 часа до трансфекции из расчета 50000 клеток на лунку, содержащую 500 мкл стандартной культуральной смеси, состоящей из культуральной среды DMEM (GIBCO), 10% сыворотки эмбрионов коров (GIBCO), 2 мМ глютамина, с добавлением пенициллина (50 U/мл), стрептомицина (50 мкг/мл) и 1 мМ содиум пирувата. Суспензию комплексов приготавливали согласно методике, описанной в примере 1 из расчета 2 мкг ДНК на каждую лунку культурального планшета. За 10 минут до внесения суспензии комплексов ДНК/носитель клетки несколько раз промывали средой DMEM и вносили в каждую лунку по 500 мкл среды, содержащей 15% глицерин и 1,5% этанол. Трансфекцию проводили путем добавления суспензии комплексов ДНК/носитель в среду. После внесения комплексов планшеты с клетками помещали в термостат с температурой 37°С и 5% содержанием CO 2 на 4 часа. По прошествии времени инкубации клетки промывали средой DMEM и вносили в каждую лунку по 500 мкл стандартной культуральной смеси. Культуральный планшет инкубировали в термостате при температуре 37°С и 5% содержанием СО 2 в течение 48 часов, после чего проводили выявление экспрессии маркерного гена.

Пример 3. Выявление экспрессии гена люциферазы после трансфекции in vitro.

Удаляли среду из культуральных планшетов, промывали клетки в 1х PBS (рН 7.2). В каждую лунку добавляли по 80 мкл лизис буфера (25 MM Gly-Gly, 15 мМ MgSO 4 , 4 мМ EGTA, 1 мМ DTT, 1 мМ PMSF; pH 7.8). По 50 мкл лизата переносили в полистироловые планшеты с непрозрачными стенками для измерения активности люциферазы. Измерение проводили с помощью спектрального сканирующего мультирежимного считывающего устройства Varioscan Flash (Thermo, Finland). Измерение проводили с использованием раствора luciferase flash mix (20 мМ Tricine, 1.07 мМ (MgCO 3) 4 Mg(OH) 2 × 5 H 2 O, 2.67 мМ MgSO 4 , 0 1 мМ EDTA, 33.3 мМ DTT, 530 мкМ АТР, 270 мкМ ацетил коэнзима А, 470 мкМ люциферина). Каждое измерение выполнялось в течение 10 секунд. Показания прибора получали в относительных световых единицах (RLU). Результаты эксперимента оценивали в относительных световых единицах на 1 мг тотального белка из клеточных экстрактов в лунке культурального планшета. Общее количество белка в каждой лунке измеряли с помощью protein assay kit (Bio-Rad), относительно калибровочной кривой по бычьему сывороточному альбумину. Результаты представлены на фиг.2, 3, 4.

Способы прямого введения генов в клетку

Прямое введение гена в клетку осуществляют несколькими способами:

Трансфекция

Микроинъекция

Электропорация

Метод «мини-клеток»

Упаковка в липосомы

Электронная пушка

При трансфекции ДНК адсорбируется на кристаллах фосфата кальция (Грэхем Ван дер Эб, 1973). Образуются частицы кальциевого преципитата. Они поглощаются клеткой путем фагоцитоза.

Для повышения эффективности трансформации к специфической ДНК, содержащей ген, по которому будет производится селекция, добавляется неспецифическая ДНК-носитель. Обычно для этой цели берут ДНК из тимуса теленка или спермы лосося. Часть ДНК связывается с мембраной и не попадает в клетки. ДНК акцептируют от 15 до 90% клеток. Через несколько суток после введения небольшая доля клеток способны экспрессировать чужеродные гены, но затем уровень экспрессии падает и более или менее стабильную трансформацию претерпевает 10 -3 - 10 -5 клеток.

Для трансфекции используется и ДЭАЭ-декстран, полимер, адсорбирующий ДНК. Эффект вхождения в клетки и время экспрессии высоки, но частота стабильной трансформации ниже, чем при использовании преципитата кальция. Частоту трансфекции увеличивает глицериновый шок (4 минуты в 15% растворе глицерина в НEPES-буфере).

В клетки можно вводить любой ген, если заранее лигировать его с клонированным селективным маркером. Однако дальнейшие исследования показали, что лигирование вне клетки не обязательно. Клетки, поглощающие селективный ген, вместе с ним поглощают и другую ДНК, имеющуюся в кальциевом преципитате. Таким образом, пользуясь методом котрансформации , практически любой клонированный сегмент ДНК можно ввести в культивируемые клетки эукариот, если включить эту ДНК вместе с селективным маркером в состав смеси для образования кальциевого преципитата.

Для трансфекции можно использовать хромосомы или фрагменты хромосом. Клетки-доноры блокируются на стадии митоза. Митотические хромосомы высвобождаются под воздействием осмотического шока и гомогенизации. Их очищают путем дифференциального центрифугирования. Хромосомы осаждают на поверхности клеток хлористым кальцием, а через несколько часов обрабатывают реагентом, способным перфорировать мембраны (например, глицерином).

Для обработки клеток-рецепиентов используются грубо очищенные препараты хромосом, так как хромосомы при этом разрушаются меньше всего. Количество хромосом для обработки 1 клетки ограничено. Лучше использовать не более 20 хромосом на 1 клетку-рецепиент, так как при высоких концентрациях хромосом в суспензии они агглютинируют. Рецепиентная клетка содержит фрагменты донорных хромосом, которые могут встраиваться в геном, могут реплицироваться самостоятельно. Во введенных фрагментах часто наблюдаются делеции.

Не все клетки способны к трансформации геномной ДНК с высокой частотой. Человеческие фибробласты эффективно включают плазмидную ДНК и почти не включают геномную.

Микроинъекция ДНК в клетки млекопитающих стала возможной с появлением прибора для изготовления микропипеток диаметром 0.1-0.5 микрона и микроманипулятора (рис. 45). Так, плазмиды, содержащие фрагмент вируса герпеса с геном тимидинкиназы (ТК) и плазмиду рВR322, были инъецированы в ТК - -клетки и было показано, что ТК - ген проник в ядра и нормально в них реплицировался. Метод введения ДНК с помощью микроинъекций был разработан в начале 70-х годов Андерсоном и Диакумакосом. В принципе, при наличии хорошего оборудования можно за 1 час инъецировать 500-1000 клеток, причем в лучших экспериментах в 50% клеток наблюдается стабильная интеграция и экспрессия инъецированных генов. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки, и для сохранения в клетках введенного гена не требуется никакого селективного давления.

Рис. 45. Введение ДНК путем микроинъекции

Электропорация основана на том, что импульсы высокого напряжения обратимо увеличивают проницаемость биомембран. В среду для электропорации добавляют клетки и фрагменты ДНК, которые необходимо ввести в клетки (рис. 46). Через среду пропускают высоковольтные импульсы (напряжение 200 - 350 В, длительность импульса 54 мс), приводящие к образованию пор (электропробой) в цитоплазматической мембране, время существования и размер которых достаточны, чтобы такие макромолекулы, как ДНК, могли из внешней среды войти в клетку в результате действия осмотических сил. При этом объем клетки увеличивается.

Напряженность электрического поля и продолжительность его действия, концентрации трансформирующей ДНК и реципиентных клеток для каждой системы клеток подбирают экспериментально, с тем чтобы достичь высокого процента поглощения ДНК выжившими клетками. Показано, что в оптимальных условиях электропорации количество трансформантов может достигать 80% выживших клеток.

Электропорация - физический, а не биохимический метод, и это, по-видимому, обусловливает его широкое применение. Многочисленные исследования продемонстрировали, что электропорация может успешно использоваться для введения молекул ДНК в разные типы клеток, такие как культивируемые клетки животных, простейшие, дрожжи, бактерии и протопласты растений. Электропорирующий эффект высоковольтного разряда на бислойную липидную мембрану, по-видимому, зависит от радиуса ее кривизны. Поэтому мелкие бактериальные клетки эффективно поглощают ДНК при значительно большей напряженности (10 кВ/см и более), чем крупные животные и растительные клетки, эффективно поглощающие ДНК при напряженности поля 1-2 кВ/см.

Электропорация - наиболее простой, эффективный и воспроизводимый метод введения молекул ДНК в клетки. Однако до недавнего времени этот метод использовался в ограниченном числе лабораторий в связи с отсутствием серийных приборов - электропораторов. Появление и совершенствование таких приборов в ближайшие годы приведет к широкому применению данного подхода в генетической инженерии самых разных типов клеток.


Рис. 46. Метод электропорации

«Мини-клетки» получают путем блокирования донорных клеток митозе колцемидом. При продолжительной обработке клеток колцемидом в них вокруг каждой хромосомы формируется новая ядерная мембрана. Обработка цитохалазином В и центрифугирование приводит к образованию мини-клеток, представляющих микроядра, инкапсулированные в цитоплазматическую мембрану.

Полученные мини-клетки очень чувствительны к разного рода воздействиям, поэтому для слияния подбирают специальные мягкие условия. Метод трудный, капризный, эффективность низкая – 10 -6 – 10 -7 .

Упаковка в липосомы используется для защиты экзогенного генетического материала от разрушающего действия рестриктаз.

Липосомы - сферические оболочки, состоящие из фосфолипидов. Получают их путем резкого встряхивания смеси водного раствора и липидов, либо обрабатывая ультразвуком водные эмульсии фосфолипидов. Липосомы, состоящие из фосфатидилсерина и холестерина наиболее пригодны для введения ДНК в клетки животных и растений. Системы переноса с помощью липосом низкотоксичны по отношению к клеткам.

Метод биологической баллистики (биолистики) является одним из самых эффективных на сегодняшний день методов трансформации растений, особенно однодольных.

Суть метода заключается в том, что на мельчайшие частички вольфрама, диаметром 0,6-1,2 мкм, напыляется ДНК вектора, содержащего необходимую для трансформирования генную конструкцию. Вольфрамовые частички, несущие ДНК, наносятся на целлофановую подложку и помещаются внутрь биолистической пушки. Каллус или суспензия клеток наносится в чашку Петри с агаризированной средой и помещается под биолистическую пушку на расстоянии 10-15 см. В пушке вакуумным насосом уменьшается давление до 0,1 атм. В момент сбрасывания давления вольфрамовые частички с огромной скоростью выбрасываются из биолистической пушки и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток.

Обычно клетки, располагающиеся непосредственно по центру, погибают из-за огромного количества и давления вольфрамовых частиц, в то время как в зоне 0,6-1 см от центра находятся наиболее удачно протрансформированные клетки. Далее клетки осторожно переносят на среду для дальнейшего культивирования и регенерации.

С помощью биолистической пушки были протрансформированы однодольные растения, такие, как кукуруза, рис, пшеница, ячмень. При этом были получены стабильные растения-трансформанты. Кроме успехов в получении трансгенных однодольных, биолистическая трансформация применяется для прямого переноса ДНК в эмбриогенную пыльцу и дальнейшего быстрого получения трансгенных дигаплоидных растений, которые являются важным этапом в селекционной работе. В настоящее время этим методом была проведена трансформация растений табака и после регенерации гаплоидных растений получены стабильные трансформанты.

8860 0

В настоящее время известно около 40 различных способов доставки рекомбинантной ДНК в клетки, по-разному решающих проблему преодоления плазматической мембраны. Пока не существует единой классификации методов доставки рекомбинантной ДНК в клетки. Каждый автор обзоров классифицирует по-своему, возможно, потому, что для многих эмпирически найденных методов механизм преодоления мембраны не ясен до сих пор, например для трансформации. С терминологией также существует неопределенность, что неудивительно для бурно развивающейся новой области науки и практики.

Каждый из методов доставки чужеродной ДНК в клетки имеет свои особенности, преимущества и недостатки в отношении выживаемости клеток, эффективности введения, универсальности, возможностей технического осуществления. Выбор метода зависит от типа клеток-хозяев и типа использованного вектора, а также от личных предпочтений и возможностей экспериментатора. Ниже подробно рассмотрены некоторые наиболее известные способы доставки ДНК в клетки-мишени.

Трансформация в самом общем значении - это процесс введения свободной ДНК в клетку. В более узком значении термин применяется в основном по отношению к бактериям, обозначая процесс поглощения рекомбинантной ДНК компетентными клетками, индуцированный температурным фазовым переходом клеточной мембраны. E. coli является самым распространенным организмом при работе с рекомбинантными ДНК, и чтобы обеспечить внедрение в клетки плазмидной ДНК, клетки выдерживают с ледяным раствором СаС12 и ДНК, а затем подвергают тепловому шоку при 42 °С в течение ~1 мин.

По-видимому, в результате такой обработки происходит локальное разрушение клеточной стенки. Эффективность трансформации, которая определяется как число трансформантов на 1 мкг добавленной ДНК,
при этом составляет примерно 10000 - 10000000 . Эффективность этого метода невысока, приблизительно менее 0,1 % клеток оказываются трансформированными, но этот недостаток компенсируется применением схем отбора, позволяющих быстро идентифицировать нужные клоны.

Клетки, способные поглощать чужеродную ДНК, называются компетентными. Доля этих клеток в популяции обычно очень мала, но ее можно повысить, используя специальную питательную среду, условия культивирования и химические индукторы компетентности (подобранные, как правило, эмпирически). Часто используемый этап подготовки компетентных клеток получение сферопластов - клеток, частично или полностью (протопласты) лишенных наружной ригидной клеточной стенки.

Например, только таким способом была осуществлена эффективная трансформация многих грамположительных бактерий родов Bacillus, Listeria, Streptommyces и др. Некоторые методики трансформации дрожжей также включают стадии ферментативного удаления оболочки дрожжевой клетки с помощью глюкозидаз. Для организмов, устойчивых к химическим индукторам компетентности или не обладающих природной компетентностью, применяются другие системы доставки ДНК.

Конъюгация. Существуют бактериальные плазмиды (конъюгативные плазмиды), обладающие способностью создавать межклеточные контакты, через которые они и переходят из одной клетки в другую. Образование контактов между донорной и рецепиентной клетками обеспечивается конъюгативными свойствами плазмид, а сам перенос ДНК - мобилизационными. При этом конъюгативная плазмида может увлекать за собой обычный плазмидный вектор, находящийся в той же клетке.

Таким образом можно трансформировать клетки-реципиенты, с трудом поддающиеся трансформации другими способами. Например, показан мобилизационный перенос челночного вектора pAT187 с широким кругом хозяев из E. coli в различные грамположительные бактерии (родов Bacillus, Enterococcus, Staphylococcus и др.), хотя и с намного меньшей эффективностью, чем для переноса между разными штаммами E. coli.

Более того, недавно была продемонстрирована возможность конъюгативного переноса ДНК из бактериальных клеток в культивируемые клетки животных. В процессе конъюгации переносится только одна цепь донорской плазмиды, на которой затем синтезируется вторая цепь. Это приводит к тому, что конъюгативно передаваемая плазмида не подвергается атаке хозяйских рестриктаз. Эффективность этого метода для бактерий сопоставима с трансформацией.

Вирусная инфекция. Для внедрения векторов на основе вирусов широко используется природный инфекционный путь заражения клетки-хозяина, который зависит от типа вируса.

Перфорационные методы. Одним из популярных методов введения нуклеиновых кислот в клетки-мишени является электропорация - временное создание пор в бислойной липидной мембране под кратким воздействием электрического поля. Является универсальным физическим методом трансформации, методика которого разработана практически для всех типов клеток.

При работе с E. coli подготовленную клеточную суспензию (~50 мкл) и ДНК помещают между электродами и подают единичный импульс тока длительностью ~4,5 мс при напряжении 1,8 кВ, расстояние между электродами составляет 1 мм. После такой обработки эффективность трансформации повышается до 109-1011 для малых плазмид (~3-6 тпн) и до 106 для больших (~135 тпн). Аналогичные условия используют для введения в Е. coli вектора ВАС.

Электропорирующий эффект высоковольтного разряда на бислойную липидную мембрану, по-видимому, зависит от радиуса ее кривизны. Поэтому мелкие бактериальные клетки эффективно поглощают ДНК при значительно большей напряженности (12-18 кВ/см), чем крупные животные и растительные клетки, эффективно поглощающие ДНК при напряженности поля 1-2 кВ/см. Электропорация - наиболее простой, эффективный и воспроизводимый метод введения молекул ДНК в клетки, требующий, однако, специального прибора электропоратора.

Другие перфорационные методы доставки ДНК в клетку: обработка клеток ультразвуком, соскабливание клеток с субстрата в присутствии экзогенного материала, центрифугирование клеток в среде с ДНК в сочетании с электропорацией, осмотическая перфорация плазматической мембраны, пробой клетки лазерным микролучом, использование порообразующего токсина стрептолизина-О.

Трансфекция. Первоначально этот термин обозначал введение в клетки вирусной ДНК, сейчас его значение расширилось до обозначения введения любой чужеродной ДНК в клетки эукариот. Термин «трансформация», обозначающий процесс введения ДНК в клетку для прокариот и дрожжей, оказалось, использовать неудобно, поскольку применительно к животным клеткам трансформация - это превращение нормальных клеток в раковые. В узком смысле под трансфекцией в основном понимают введение ДНК в эукариотические клетки с помощью различных химических реагентов.

Одним из первых разработанных методов эффективной трансфекции была инкубация ДНК с ДЕАЕ-декстраном. Полученная эффективность была сопоставима с трансформацией бактерий и достигала 106 трансфектантов на мкг ДНК.

Механизм действия ДЕАЕ-декстрана окончательно не установлен, но известно, что он связывается с ДНК и с клеточной мембраной, стимулируя пиноцитоз (рис. 2.8), хотя сам клетками не захватывается. К недостаткам метода стоит отнести токсичность ДЕАЕ-декстрана для некоторых типов клеток, зависимость эффективности от качества препарата, очень малую частоту получения стабильных трансфектантов.


Рис. 2.8. Схема введения ДНК в составе различных комплексов в клетку путем эндоцитоза: фагоцитоза и пиноцитоза (а). Схематичное изображение частицы из нелипидного поликатиона в дендроформе со связавшейся ДНК, отрицательный заряд которой компенсируется катионным полимером (б)


Эффективность трансфекции удалось повысить в 10-100 раз инкубацией клеток с осажденной фосфатом кальция ДНК. Плотные частицы кальциевого преципитата ДНК поглощаются клеткой путем фагоцитоза (рис. 2.8), но при этом только небольшая часть проникших молекул достигает ядра и встраивается в хромосомную ДНК. Кальций-фосфатный метод более эффективен и дешев, но вызывает разрыв молекул ДНК, что переводит кольцевые молекулы в линейную форму, иногда неинфекционную в случае трансфекции вирусов. Кроме того, условия кальций-фосфатной трансфекции приходится подбирать для каждых клеток-мишеней индивидуально.

В ходе поисков других трансфецирующих реагентов было выявлено, что полимерные молекулы, несущие избыточный катионный заряд, могут существенно повысить эффективность трансфекции. Полимерные катионы образуют с нуклеиновыми кислотами устойчивые комплексы с нейтрализованными зарядами, которые могут с высокой эффективностью транспортировать ДНК и РНК внутрь клетки, защищая от действия эндонуклеаз на пути к ядру (рис. 2.9).



Рис. 2. 9. Схема транспорта ДНК в ядро клетки в составе комплекса поликатион-ДНК, связанного со специфическим лигандом, путем лиганд-опосредованного эндоцитоза


Синтетические нелипидные полимерные катионы в линейной или разветвленной конформации (дендритная форма) могут конденсировать ДНК и РНК в относительно малые частицы, которые затем связываются с клеточной мембраной и проникают в клетку путем неспецифического эндоцитоза. В настоящее время для трансфекции из группы нелипидных поликатионов используются в основном полиэтиленимин, полиамидоамины и дендримеры на их основе, катионные белки типа полилизина, протамина и гистонов, а также различные коммерческие продукты, например PAMAM.

Революцией явилось введение в практику первого низкотоксичного катионного липида ДОТМА (1,2-диолеил-3-N,N,N-триметиламинопропан), синтезированного Фелгнером (Feigner, 1987) с соавторами. Эффективность трансфекции с использованием катионного липида (рис. 2.10) была приблизительно в 100 раз больше относительно любого другого химического реагента, причем с большой долей стабильных трансгенных клеток.



Рис. 2. 10. Структура комплекса с ДНК (а) и общая структура катионного ли-пидного полимера (б). Катионные липидные полимеры (линейные и разветвленные), похожие по своей структуре и свойствам на клеточные мембранные фосфолипиды формируют комплексы с ДНК в виде многослойных катионных липосом (а) при простом смешивании реагентов. Такие комплексы проникают в клетку путем эндоцитоза или слияния с клеточной мембраной через липидную часть


Одновременно был введен в практику новый термин «липофекция», подчеркивающий высокую эффективность генетической трансформации клеток, приближающую липид-катионные комплексы к инфекционным вирусным частицам.

Развивая успех, были разработаны многочисленные вариации этих соединений (липофектин, липофектамин, селлфектин и др.).

Параллельно разрабатывались средства доставки на основе фосфолипидных липосом, начиненных ДНК или РНК.

Маленькие сферы из искусственных мембран могут сливаться с плазматическими мембранами клеток или поглощаться эндоцитозом, высвобождая содержимое внутрь клетки. Небольшую эффективность липосомной трансфекции повысило введение в структуру липосом фосфолипидов, например, кардиолипина и фосфатидилэтаноламина, образующих наряду с бислойными мембранами также инвертированные мицеллярные структуры, известные как кубические и гексагональные фазы, способные инициировать слияние мембран.

Липосомный метод достаточно капризен и требует тщательного подбора всех условий для эффективной трансфекции конкретных клеток. Кроме того, процедура инкапсулирования, обычно обработка ультразвуком, часто повреждает крупные молекулы ДНК.

Новым этапом в развитии трансфекционных реагентов стала разработка более эффективной и адресной доставки в специфические клетки-мишени нуклеиновых кислот путем введения в структуру синтетических трансфекционных реагентов и липосом различных лигандов для связывания с мембранными белками-рецепторами. Наличие таких адресных групп (лигандов), узнаваемых клеточными рецепторами, позволяет использовать механизмы лиганд-опосредованного эндоцитоза (см. рис. 2.9).

В качестве таких лигандов используют белки и пептиды, узнаваемые рецепторами; олигосахариды, поскольку на поверхности многих животных клеток присутствуют лектины -белки-рецепторы, специфически их связывающие; полисахариды. Процессы взаимодействия с клетками таких адресных комплексов ДНК(РНК)-трансфекционный реагент имеют сходство с проникновением в клетку вирусных частиц.

В настоящее время биотехнологические фирмы предлагают широкий спектр разнообразных трансфекционных реагентов - от самых простых и дешевых до самых последних разработок, специализированных под разные типы клеток и задачи. Также интенсивно продолжается создание новых еще более эффективных трансфецирующих реагентов.

Микроинъекция - клеточная мембрана прокалывается микроиглой и раствор, содержащий ДНК, вводится в цитоплазму клетки или напрямую в ядро, если ядро достаточно большое (например, ядро яйцеклетки). Микроинъекция ДНК в клетки млекопитающих стала возможной с появлением прибора для изготовления микропипеток диаметром 0,1-0,5 мк и микроманипулятора. Метод очень эффективен, доля клеток со стабильной интеграцией и экспрессией инъецированных генов может достигать 50 %. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки и для сохранения в клетках введенного гена не требуется никакого селективного давления.

Баллистическая трансфекция, биобаллистика, или биолистика (бомбардировка микрочастицами), основана на обстреле клеток микросферами размером около 1 -2 мкм, покрытых ДНК. Применяются микрочастицы золота, вольфрама (иногда бывает фитотоксичен), силикона и различные синтетические наносферы. Микрочастицы, покрытые ДНК, проходят через клеточные слои и переносят генетическую конструкцию непосредственно в органеллы и ядра клеток. Созданный для этой цели «генный пистолет» (gene gun), или «генная пушка», который был разработан Д. Сенфордом (J. Sanford) в 1987 г. для введения ДНК в зерна хлебных злаков, по своему устройству сходен с пневматическим оружием (рис. 2.11).



Рис. 2.11. Введение рекомбинантной ДНК в листья растения с помощью многоразового «генного пистолета» фирмы Bio-Rad (а) и его общая схема (б). Гелиевый импульс выбрасывает микрочастицы, покрытые ДНК или РНК, из капсулы с образцом. Микрочастицы, несущие ДНК, ускоряются и фокусируются для максимального проникновения в клетки, продвигаясь по разгоночному каналу и по стволу пистолета, при этом на широком выходе поток гелия диффузно расходится в стороны. Фильтр-спейсер поддерживает оптимальную дистанцию для поражения цели с максимальным удалением гелия, чтобы свести к минимуму повреждающие воздействия на поверхность клеток


Глубина проникновения микрочастиц, как правило, невелика - до 1 мм, однако при особых условиях обстрела микрочастицы могут проникать в ткань на глубину до 4-5 мм и переносить гены, например, в волокна поперечно-полосатых мышц. Баллистическая трансфекция очень эффективна даже там, где толстые клеточные стенки (дрожжи, растения) являются препятствием для многих других методов доставки, и применяется в том числе для тканей, органов и даже целых организмов. В настоящее время широко используется в генотерапии, для получения трансгенных животных и растений.

Такое разнообразие средств и методов трансфекции обусловлено различными задачам, широким спектром используемых клеток-мишеней и типов доставляемых в клетки нуклеиновых кислот, а также потребностями общества в получении все более эффективных средств доставки генетической информации в клетки, ткани и целые организмы. Особое внимание уделяется развитию трансфекционных реагентов и методов в связи с поразительными перспективами генной терапии человека, для которой необходимы адресные высокоэффективные и безопасные средства генной доставки.

Стабильное и транзиентное внедрение чужеродной ДНК в клетку. После введения рекомбинантной ДНК в эукариотическую клетку, лишь ее малая часть оказывается в ядре, поскольку ядерная мембрана является труднопреодолимым барьером для чужеродной ДНК. В ядре рекомбинантная ДНК может быть интегрирована в хромосому или некоторое время существовать во внехромосомном состоянии.

Соответственно, различают стабильную трансфекцию, когда рекомбинантные ДНК интегрируются в хромосомы клеток-реципиентов и становятся их неотъемлемой частью, а также временную, или транзиентную, трансфекцию (transient transfection), при которой молекулы рекомбинантной ДНК существуют и транскрибируются в ядрах во внехромосомном состоянии непродолжительное время. Стабильное наследование внедренной чужеродной ДНК - основное условие получения трансгенных организмов для хозяйственных целей.

Поэтому разработке методов введения ДНК в клетки, ведущих к получению большей доли стабильных трансформантов, уделяется особое внимание. Кроме того, большой процент стабильных трансформантов, также позволяет отказаться от селективных и маркерных генов, являющихся балластными при создании трансгенных организмов.

Н.А. Воинов, Т.Г. Волова

Как показывают многочисленные исследования, использование различных вирусов является весьма эффективным решением, которое позволяет пробраться через имунную защиту организма , а затем инфицировать клетки, используя их для распространения вируса. Для осуществления данной процедуры, генные инженеры выбрали наиболее подходящие вирусы из группы ретровирусов и аденовирусов. Ретровирусы привносят генетическую информацию в виде рибонуклеиновой кислоты (РНК), молекулы, похожей на молекулу ДНК, которая помогает перерабатывать генетическую информацию, сохраненную в ДНК. Как только удается проникнуть вглубь так называемой клетки-мишени, из молекулы РНК получается копия молекулы ДНК. Данный процесс называется обратной транскрипцией. Как только новая молекула ДНК оказывается присоединенной к клетке, все новые копии клеток будут содержать этот модифицированный ген.

Аденовирусы несут генетическую информацию сразу в виде ДНК, который доставляется в неделящуюся клетку. Хотя эти вирусы доставляют ДНК непосредственно в ядро клетки-мишени , ДНК не совмещается с геномом клетки. Таким образом, модифицированный ген и генетическая информация не передаются дочерним клеткам. Преимуществом генной терапии, проводимой с помощью аденовирусов, заключается в том, что существует возможность введения генов в клетки нервной системы и в слизистую оболочку дыхательных путей, опять же, посредством вектора. Кроме того, существует и третий метод генной терапии, осуществляемый посредством так называемых аденоассоциированных вирусов. Эти вирусы содержат относительно небольшое количество генетической информации , и их гораздо сложнее вывести, чем ретровирусы и аденовирусы. Однако преимущество аденоассоциированных вирусов заключается в том, что они не вызывают реакции иммунной системы человека.

Генеалогический метод антропогенетики

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных.

Как метод изучения генетики человека генеалогический метод стали применять только с начала XX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - арабскими.

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.