Что такое телескоп? Виды, характеристики и назначение телескопов. Что такое телескоп и что в него можно увидеть

Слово «телескоп» является производным от двух греческих слов, в переводе на русский язык означающих «далекий» и «наблюдать» .


Телескопом называют специальный оптический прибор, позволяющий приближать очень удаленные предметы, делать их отчетливо видимыми человеческому глазу. Для того чтобы такое увеличение было возможно, используют мощные линзы.

Кто придумал телескоп?

Считается, что первым использовать линзы для приближения удаленных предметов догадался ученый Галилео Галилей. В 1610-м году он сконструировал телескоп, через который разглядел кратеры на Луне, спутники Юпитера и прочие интересные детали, расположенные на космическом расстоянии. Но вместе с тем, при раскопках Трои археологи нашли хрустальные линзы, и это значит – не исключено, что умением приближать предметы люди обладали и раньше.

Обычно телескопы устанавливают – специальных сооружениях, предназначенных для наблюдений за различными явлениями природы. Обсерватории, имеющие вращающийся купол и расположенные в основном на возвышенностях, оснащают целыми комплексами телескопов.

Телескопы и инновации

Чем дальше шло развитие астрономии и прочих наук, тем совершеннее становились телескопы. Объекты стало возможно изучать в электромагнитном спектре, при помощи сложных систем детекторов и датчиков. Такое оборудование работает в различных диапазонах волн.


Сегодня есть телескопы, работающие в рентген-диапазоне и радио-диапазоне. Все эти телескопы кардинально отличаются друг от друга, но при этом имеют одну общую функцию: они дают человеку возможность детально изучать объекты, расположенные на очень далеком расстоянии.

Современные телескопы (точнее, радиотелескопы) – это мощное оборудование, которое анализирует и накапливает электромагнитное излучение удаленного объекта и направляет его в фокус. А уже там образуется увеличенное изображение объекта или формируется усиленный сигнал, позволяющий детально рассмотреть изучаемый объект. Космос также можно исследовать при помощи космических тепловизоров, которые передают изображение поверхностей удаленных объектов в инфракрасном диапазоне.

Наверное, самый знаменитый телескоп на планете – космический телескоп «Хаббл». Это инновационное оборудование расположено на орбите Земли и представляет собой скорее космическую обсерваторию. Телескоп был назван в честь астронома из США Эдвина Хаббла. Запустили «Хаббл» на орбиту в 1990-м году.

В течение последующих пятнадцати лет орбитальный телескоп получил более миллиона изображений двадцати двух тысяч космических тел, в том числе галактик, планет, звезд и туманностей. Уникальный телескоп делал снимки и передавал их на Землю.

Типы телескопов

Оптические телескопы могут работать с разными типами фокусирующего элемента. Соответственно, их делят на рефракторы (линза) и рефлекторы (зеркало).


Телескоп-рефрактор имеет объектив на передней стороне трубы, в задней части – окуляр. Объектив такого телескопа – это обычно составная линза из нескольких элементов с большим фокусным расстоянием. Самый большой в мире рефрактор имеет линзу диаметром 101 см.

В рефлекторе вместо объектива предусмотрено вогнутое зеркало, которое расположено в задней части трубы. Рефлекторными являются все большие астрономические телескопы. Рефлекторами пользуются и любители – это оборудование обходится не так дорого, как рефрактор, и собрать его можно своими силами.

В таком телескопе свет собирается в точке перед первичным зеркалом (первичным фокусом), а затем посредством вторичного зеркала направляется к более удобному для работы месту. Различают несколько общепринятых систем фокусировки: ньютоновский фокус, кассегреновский фокус, фокус Куде, фокус Несмита.

В больших телескопах наблюдатель может работать в первичном фокусе в специальной кабине, установленной в главной трубе. Многоцелевые профессиональные телескопы конструируют таким образом, чтобы наблюдатель мог выбирать фокус. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в рефлекторах обычно изготавливают из стекла или керамики, которая не реагирует на перепады температуры. Поверхность зеркала обрабатывают до получения сферической или параболической формы.


Для получения отражательных свойств на поверхность наносится тонкий слой алюминия. По-латыни «зеркальный» звучит как «speculum», поэтому для обозначения отражательного телескопа до сих пор иногда используют сокращение «spec».

Телескоп – устройство, предназначенное для наблюдения за небесными объектами – планетами, звездами, туманностями и галактиками. Слово «телескоп» образовано от двух греческих слов, обозначающих «вдаль» и «смотрю».

Первое устройство для наблюдения за отдаленными объектами – зрительную трубу – изобрел в начале XVII в. датский оптик И. Липперсгей. Ее схема была следующей: на переднем конце трубы была укреплена двояковыпуклая линза – объектив. Проходя через объектив, свет собирается в фокусе, где получается изображение небесного тела. На другом конце трубы находится окуляр, позволяющий рассматривать изображение в увеличенном виде. Сила увеличения этого оптического прибора зависит от размеров и выпуклости объектива и окуляра.

Вскоре после изобретения трубы о ней узнал итальянский ученый Галилео Галилей. Он увлекся задачей конструирования «перспективы», как тогда называли телескоп. Сначала он соорудил трубу с трехкратным увеличением, а позже довел этот показатель до тридцатикратного.

Галилей первым использовал подзорную трубу для астрономических наблюдений. Впервые он сделал это 7 января 1610 г. Даже скромных возможностей трубы Галилея хватило для нескольких открытий.

Галилей обнаружил, что поверхность Луны неровная и там, как и на Земле, есть горы и долины. Была раскрыта тайна Млечного Пути. Итальянец обнаружил, что Галактика является не чем иным, как собранием громадного множества звезд.

Помимо этого, Галилей открыл сразу четыре спутника Юпитера, которые назвал в честь Великого герцога Тосканского Козимо II Медичи «Медичейскими звездами».

В книге «Звездный вестник» ученый рассказал о своих наблюдениях. Его открытия вызвали ожесточенную полемику. Многие считали открытия Галилея иллюзией, порожденной зрительной трубой.

Галилей продолжил свои наблюдения. Рассматривая в телескоп Сатурн, он обнаружил по обе стороны планеты пятна. Он решил, что это такие же спутники, как у Юпитера. Два года спустя, к своему недоумению, исследователь увидел эту же планету в «полном одиночестве». Он так и не смог найти объяснения загадки. Лишь полвека спустя голландец X. Гюйгенс открыл, что на самом деле это было кольцо, окружающее Сатурн.

Дальнейшие исследования звездного неба позволили Галилею совершить еще несколько открытий. Он заметил, что Венера, «подражая» Луне, меняет свой облик. Это послужило решающим доказательством того, что Венера, в соответствии с теорией Коперника, вращается вокруг Солнца.

Галилей открыл пятна на Солнце и убедился, что Солнце вращается вокруг своей оси.

Независимо от Галилея, и даже раньше него, в 1609 г. внешний лик Луны с помощью телескопа зарисовал английский математик Т. Харриот. А приоритет открытия спутников Юпитера оспаривал у итальянца немец С. Мариус.

Галилей за пропаганду идей Коперника был подвергнут суду инквизиции и публично отрекся от своих взглядов. Церковь реабилитировала его лишь в 1980 г. В том же году журналы его наблюдений заново просмотрели историки астрономии. Они установили, что зимой 1612–1613 гг. ученый наблюдал планету Нептун, правда, приняв ее за звезду.

Эстафету создания телескопов подхватил у Галилея польский астроном?наблюдатель Ян Гевелий. В 1641 г. в Гданьске на крышах трех своих домов он оборудовал обсерваторию. Создание собственных телескопов Гевелий начинал со сравнительно небольших труб длиной 2–4 м. Совершенствуя технику изготовления, он сумел довести размеры телескопов до 10–20 м. Крупнейший из телескопов Гевелия не поместился в его обсерватории, и этот инструмент пришлось установить за городом, укрепив на специальной мачте высотой в 30 м. Длина трубы этого телескопа достигала 45 м.

Гевелий, как и Галилей, использовал в качестве объектива для своих труб двояковыпуклую линзу. Такие линзовые телескопы называют телескопами?рефракторами. Доведя свои телескопы до очень больших размеров, Гевелий смог добиться довольно значительных увеличений при удовлетворительном качестве изображения. Но он не смог расширить возможности своих телескопов для наблюдений слабых объектов. Это связано с тем, что обнаружение слабых объектов требует увеличения поверхности объектива. Но создание больших линзовых телескопов было сопряжено с непреодолимыми техническими трудностями.

Астрономы смогли решить эту проблему, используя в качестве объектива вогнутые зеркала. Изготовление больших вогнутых зеркал намного проще, чем изготовление линз тех же размеров. Телескопы с зеркальными объективами получили название отражательных телескопов, или телескопов?рефлекторов.

В рефлекторе вогнутое зеркало помещается в нижнем конце трубы. Отражаясь от него, свет собирается у верхнего конца трубы, где при помощи небольшого зеркала отводится наблюдателю.

Небольшие телескопы?рефлекторы мастерил в своей домашней лаборатории еще И. Ньютон в 60–70?е годы XVII в. Первые крупные телескопы такого типа изготовил в конце XVIII в. англичанин В. Гершель. У них были огромные объективы, позволявшие наблюдать очень слабые объекты. Самый крупный из зеркальных телескопов Гершеля имел зеркало поперечником 120 см при длине трубы 12 м. Вверх?вниз он двигался при помощи блоков, а вращался вокруг своей оси на специальной платформе. В 1789 г. при помощи своего телескопа Гершель открыл первую планету Солнечной системы, названную Ураном.

У телескопов?рефлекторов тоже есть серьезные недостатки. Поле обозрения таких телескопов, как правило, мало: в него не помещается даже диск Луны. Это вызывает серьезные неудобства, особенно при фотографировании объектов большой площади, поскольку обзор требует смещения всего инструмента. Кроме того, телескопы?рефлекторы в большинстве случаев не пригодны для точных позиционных измерений.

В связи с этим, в начале XIX в. конструкторская мысль вновь обратилась к линзовым телескопам?рефракторам. Их быстрое усовершенствование произошло благодаря мастерству Й. Фраунгофера. Он соединил в объективе линзы из двух различных сортов стекла – кронгласа и флинтгласа. Оба изготавливаются из кварцевого стекла, различаясь лишь применяемыми добавками. Различные коэффициенты преломления света в этих стеклах позволяют резко ослабить окрашивание изображений – основной недостаток линзовых систем, с которым безуспешно боролся Ян Гевелий.

Фраунгофер первым научился изготавливать крупные линзовые объективы, у которых поперечники были в несколько десятков сантиметров. Ему удалось преодолеть трудности, связанные с тонкостями технологии варки стекла и охлаждения готового стеклянного диска. Диск, из которого предстоит отшлифовать объектив, должен быть сварен без пузырей и охлажден таким образом, чтобы в нем не возникло никаких напряжений. Напряжения могут привести к неравномерным изменениям формы объектива, шлифующегося с точностью до десятитысячных долей миллиметра.

Фраунгофер не только усовершенствовал оптику телескопа?рефрактора, но и превратил его в высокоточный измерительный инструмент. Его предшественникам не удалось найти удачного решения, того, как вести телескоп за звездой. Из?за суточного движения небесной сферы звезда постоянно перемещается и, двигаясь по кривой, быстро выходит из поля зрения неподвижного телескопа.

Фраунгофер наклонил ось вращения телескопа, направив ее в полюс мира. Для слежения за звездой достаточно было вращать его вокруг одной только полярной оси. Фраунгофер автоматизировал этот процесс, добавив к телескопу часовой механизм.

Фраунгофер уравновесил все подвижные части телескопа. Несмотря на большой вес, они повинуются легкому нажиму.

В 1824 г. Фраунгофер изготовил первоклассный телескоп для обсерватории в Дерпте.

Во второй половине XIX в. лучшие телескопы изготавливал американский оптикА. Кларк. В 1885 г. он изготовил для пулковского телескопа?рефрактора крупнейший в то время объектив диаметром 76 см. В 1888 г. на горе Гамильтон близ Сан?Франциско был сооружен телескоп с диаметром объектива 92 см работы Кларка. Вскоре на крыше обсерватории Чикагского университета установили телескоп с объективом в 102 см, который также сделал Кларк.

По конструкции все вышеперечисленные телескопы были повторением телескопов Фраунгофера. Они легко управлялись, но из?за поглощения света в стеклах объектива и прогибания труб размеры этих телескопов оказались предельными для конструкций такого рода.

Внимание астрономов?конструкторов вновь обратилось к телескопам?рефлекторам.

В 1919 г. в Калифорнии в Маунт?Вилсоне вступил в строй телескоп?рефлектор с поперечником зеркала 2,5 м. Опыт его изготовления был учтен в проекте 5?метрового телескопа, на сооружение которого ушло четверть века. Он вступил в строй в 1949 г. в обсерватории Маунт?Паломар.

После Великой Отечественной войны в Крымской астрофизической обсерватории Академии наук СССР был введен в строй самый крупный в Европе телескоп?рефлектор с поперечником зеркала 2,6 м. Накопленный опыт позволил советским оптикам построить крупнейший в мире телескоп?рефлектор с поперечником зеркала 6 м. Его 24?метровая труба весит 300 т, а зеркало – 42 т. Зеркало телескопа в любом положении должно находиться в состоянии невесомости. Оно лежит на 60 подпорных точках. Три из них несущие, остальные – опорные.

Ведение инструмента за звездами осуществляет ЭВМ. Она рассчитывает смещение звезд, внося поправки на влияние рефракции и изгиб трубы, и поворачивает телескоп с необходимой скоростью. Масса подвижной части телескопа составляет 650 т.

В отличие от парагалактической монтировки, применявшейся Фраунгофером, в этом телескопе применена азимутальная монтировка. Сам телескоп называется БТА – большой телескоп азимутальный.

После долгих поисков места телескоп БТА был установлен в предгорьях Северного Кавказа близ станицы Зеленчукская на высоте 2070 м и вступил в строй в 1975 году.

В 1931 г. американец К. Янский при помощи антенны, предназначенной для исследования грозовых радиопомех, зарегистрировал радиоизлучение космического происхождения (от Млечного Пути). Длина его волны составляла 14,6 м.

В 1937 г. в США Г. Ребер построил первый радиотелескоп для исследования космического радиоизлучения – рефлектор диаметром 9,5 м.

Важнейшей характеристикой оптических приборов является разрешающая способность. Она равна наименьшему углу, под которым два объекта различаются данным прибором как самостоятельные. Для человеческого глаза в обычных условиях разрешающая способность составляет около Г. Разрешающая способность телескопа увеличивается с увеличением диаметра телескопа и уменьшением длины волны принимаемого излучения. Для оптических телескопов этот показатель ограничен атмосферой и не превышает 0,3 м.

В радиоастрономии этот показатель долгие годы был гораздо ниже, поскольку длина радиоволн в десятки тысяч раз больше, чем длина волн видимого света. В связи с этим возникла необходимость в постройке радиотелескопов с огромными объективами – параболоидами. Но разрешение радиотелескопов долгое время оставалось недостаточным. Оно составляло минуты и десятки минут. Это не давало возможности изучать тонкую структуру наблюдаемых на небе объектов и даже определять их протяженность.

Эта трудность была преодолена сооружением радиоинтерферометров. Они представляют собой два радиотелескопа, отнесенных друг от друга на сотни и тысячи километров. Сравнение одновременных наблюдений на обоих телескопах дает возможность добиться разрешающей способности до 0,00Г. Первый радиоинтерферометр был построен в Австралии в 1948 г. В 1967 г. были проведены первые наблюдения на интерферометрах с независимой записью сигналов и сверхбольшими базами.

В 1953 г. был сооружен первый крестообразный радиотелескоп. Полноповоротный радиотелескоп с диаметром параболоида 76 м был сооружен в английской обсерватории Джодрелл Бэнк. Позже в Эффельсберге (ФРГ), в радиотехническом институте им. М. Планка был построен телескоп с диаметром зеркала 100 м.

Крупнейший неподвижный радиотелескоп с неподвижной сферической чашей диаметром 300 м был построен в специально подготовленном кратере вулкана Аресибо (Пуэрто?Рико).

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало , а для компенсации его аберраций служат линзы.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Что такое телескоп

Инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал.

По мере развития астрономической техники появилась возможность изучать объекты во всем электромагнитном спектре, для чего были разработаны специальные системы телескопов и дополнительных детекторов, позволяющие работать в различных диапазонах волн. Термин "телескоп", первоначально означавший оптический инструмент, получил более широкое значение. Однако в телескопах, работающих в видимом, радио- и рентгеновском диапазонах, используются системы и методы, сильно различающиеся между собой.

Оптические телескопы бывают двух основных типов (рефракторы и рефлекторы), отличающиеся выбором главного собирающего свет элемента (линза или зеркало соответственно). У телескопа-рефрактора на передней стороне трубы имеется объектив, а в задней части, где формируется изображение, - окуляр или фотографическое оборудование. В отражательном телескопе в качестве объектива использовано вогнутое зеркало, располагающееся в задней части трубы.

Объектив телескопа-рефрактора обычно представляет собой составную линзу из двух или нескольких элементов с относительно большим фокусным расстоянием. Использование составных линз уменьшает хроматическую аберрацию (такие линзы называют ахроматическими дублетами и триплетами). Минимизировать как хроматическую, так и сферическую аберрацию можно, если использовать большое фокусное расстояние, но это приводит к тому, что рефракторы получаются длинными и громоздкими. В прошлом для уменьшения погрешностей строились только рефракторы больших размеров. Если надо подчеркнуть, что наблюдения проводились с помощью рефракторного телескопа, то используют сокращение обозначение OG (object glass, т.е. объектное стекло).

При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы, и их легче изготовить самостоятельно. В рефлекторе свет собирается в точке перед первичным зеркалом, называемой первичным фокусом. Собранный пучок света обычно направляется (посредством вторичного зеркала) к более удобному для работы месту. С этой точки зрения различают несколько общепринятых систем, в том числе ньютоновский фокус, кассегреновский фокус, фокус куде и фокус Несмита. В очень больших телескопах наблюдатель имеет возможность работать непосредственно в первичном фокусе в специальной кабине, установленной в главной трубе. На практике как вторичное зеркало, так и кабина в первичном фокусе не оказывают существенного влияния на работу телескопа. Большие многоцелевые профессиональные телескопы обычно строят так, что наблюдатель получает возможность выбора фокуса. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в отражательных телескопах обычно изготавливают из стекла или керамики, которая не расширяется (и не сжимается) при изменении температуры. Поверхность зеркала тщательно обрабатывается до получения требуемой формы, обычно сферической или параболической, с точностью до долей длины волны света. Для получения отражательных свойств на поверхность стекла наносится тонкий слой алюминия. В ранних отражательных телескопах, например, у Уильяма Гершеля (1738-1822), первичное зеркало было изготовлено из полированного металлического сплава (68% меди и 32% олова). По латыни термин "зеркальный" предается как "speculum"; по этой причине для обозначения отражательного телескопа до сих пор иногда используют сокращение "spec". Самые ранние стеклянные зеркала покрывали серебром, но это оказалось неудобным из-за того, что на воздухе серебро темнеет.

В наиболее современных больших телескопах применяются методы активной оптики, которые позволяют использовать более тонкие и легкие зеркала, необходимая форма которых сохраняется поддерживающей системой, управляемой компьютером. Это позволяет использовать как зеркала с очень большими диаметрами, так и зеркала, составленные из отдельных элементов.

Мощность получаемого светового сигнала и разрешающая способность телескопов зависят от размера объектива. Чтобы получить возможность наблюдения все более слабых объектов и достичь разрешения мелких деталей, в астрономии наблюдается тенденция к созданию инструментов все большего размера, хотя этих целей частично можно достичь и за счет создания более чувствительных детекторов и применения интерферометров.

Увеличение мощности само по себе не имеет большого значения, если не считать небольших любительских телескопов, предназначенных для визуальных наблюдений. Усиление при визуальном наблюдении легко можно изменять с помощью различных окуляров. Максимальная степень усиления обычно ограничена не техническими характеристиками телескопа, а условиями видимости.

Изображения, получаемые в астрономических телескопах, инвертированы. Так как введение дополнительной линзы, которая могла бы скорректировать изображение, поглотит часть светового потока, не принеся особой пользы, астрономы предпочитают работать непосредственно с инвертированными изображениями.

Монтировка астрономического телескопа - важная часть конструкции, так как наблюдатель должен иметь возможность легко направлять телескоп в заданную точку неба и поддерживать его ориентацию при вращении Земли, отслеживая видимое движение объекта по небу. Небольшие любительские телескопы и современные управляемые компьютером телескопы используют альтазимутальную монтировку. До появления компьютерного управления наиболее распространенной была экваториальная монтировка. Экваториальную установку имеют многие из работающих в настоящее время телескопов, причем эта система остается популярной и для любительских инструментов

Экваториальная монтировка

Способ установки телескопа, при котором инструмент может вращаться вокруг полярной оси, параллельной оси вращения Земли, и оси склонения, перпендикулярной полярной оси. Вращение вокруг этих двух осей обеспечивает независимое задание обеих экваториальных координат. Движение вокруг полярной оси изменяет прямое восхождение; движение вокруг другой оси - склонение.

Экваториальная монтировка имеет определенные преимущества: чтобы скомпенсировать видимое движение неба, вызываемое вращением Земли, достаточно поворачивать телескоп только вокруг одной из двух осей (полярной). Однажды наведенный на точку небесной сферы с нужным склонением, телескоп уже не требует дополнительной корректировки. Поэтому в течение многих лет все телескопы сколько-нибудь значительного размера проектировались исключительно с экваториальной монтировкой. Однако развитие компьютерного управления позволило осуществлять наведение и управление даже очень большими телескопами при более простой альтазимутальной монтировке. Тем не менее экваториальная монтировка остается популярной и до сих пор достаточно широко применяется на практике.

Чтобы обеспечить адекватную поддержку и свободу движения для телескопов различных размеров и типов, были разработаны различные виды экваториальной монтировки. К основным вариантам установки относятся немецкая, английская, рамочная, подковообразная и вилочная. Поскольку полярная ось должна быть параллельна земной оси (т.е. направлена в точку северного полюса мира), каждая конструкция экваториальной монтировки подходит только для той широты, для которой она была разработана

Предназначенный для наблюдения небесных тел: звёзд, планет, туманностей, метеоров, комет, искусственных спутников и т. п. По оптической схеме различают три основных типа телескопов: телескоп-рефрактор, телескоп-рефлектор и зеркально-линзовый телескоп.

Рефракторами называют телескопы с линзовыми объективами. Своей оптической схемой и конструкцией они напоминают обычную зрительную трубу . Рефрактор был первым оптическим прибором с достаточно большим увеличением, пригодным для астрономических наблюдений. Впервые с этой целью его использовал Г. Галилей в 1609 г. Правда, телескоп Галилея обеспечивал увеличение всего в 32 раза. Современные рефракторы дают увеличение наблюдаемых объектов в 500 и более раз. Применяются они в основном для визуальных наблюдений и фотографирования небесных тел. Т. н. фотографические рефракторы (или астрографы) по существу представляют собой большой фотоаппарат: кассета с фотоплёнкой помещается в фокальной плоскости объектива телескопа.

К наиболее крупным линзовым телескопам относятся, напр., рефрактор Йёрксской астрономической обсерватории в США ( диаметром 1.05 м) и рефрактор Пулковской обсерватории (D = 0.65 м).

Рефлекторами называют телескопы с зеркальными объективами. Такой объектив представляет собой вогнутое параболическое зеркало; изображение наблюдаемого объекта получается в его главном фокусе. В рефлекторах с зеркалом диаметром более 2.5 м в главном фокусе иногда размещают кабину наблюдателя. В меньших рефлекторах для удобства наблюдения световые лучи, несущие изображение, отражаются дополнительным плоским зеркалом в окуляр, который находится сбоку от трубы телескопа. Рефлекторы выгодно отличаются от рефракторов отсутствием хроматической аберрации (окрашенности контуров изображений) и большим увеличением благодаря большим размерам зеркального объектива по сравнению с линзовым. Применяются гл. обр. для фотографирования неба и спектральных наблюдений, реже – для визуальных наблюдений. Наибольшими из зеркальных телескопов считаются, напр., рефлектор Специальной астрофизической обсерватории на Северном Кавказе (диаметр главного зеркала 6 м), рефлектор Маунт-Паломарской астрономической обсерватории в США (D = 5 м), рефлектор Крымской астрофизической обсерватории (D = 2.6 м).

В зеркально-линзовых телескопах объектив представляет собой оптическую систему, состоящую из сферических или эллиптических зеркал и линз. Основную роль в образовании изображения играют зеркала, а линзы служат гл. обр. для коррекции искажений, вносимых зеркалами. По сравнению с линзовыми зеркально-линзовые объективы имеют бо́льшие фокусные расстояния при меньших размерах всего прибора и лучше исправляют хроматические аберрации. Широко известны телескоп Шмидта (изобретён немецким оптиком Б. Шмидтом в 1929 г.) и телескоп Максутова (создан российским учёным Д. Д. Максутовым в 1941 г.). Зеркально-линзовые телескопы пригодны для любых наблюдений. Наиболее крупные телескопы этого типа с главным зеркалом диаметром 1 м установлены в Абастуманской астрофизической обсерватории (Грузия) и на горе Серро-Робле (Чили).

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Синонимы :

Смотреть что такое "телескоп" в других словарях:

    Телескоп … Орфографический словарь-справочник

    Рефрактор, рефлектор Словарь русских синонимов. телескоп сущ., кол во синонимов: 21 брахителескоп (1) … Словарь синонимов

    - (греч., этим. см. телескопия). Оптический инструмент, зрительная труба, при помощи которой рассматривают предметы, находящиеся на далеком расстоянии; употребляется более для астрономических наблюдений. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка

    телескоп - а, м. télescope m., н. лат. telescopium <гр. далеко видящий. 1. Оптический прибор для наблюдения небесных светил. БАС 1. Поздно вечером шел он.. в руке у него был ручной телескоп, он остановился и прицелился в какую то планету: это озадачило … Исторический словарь галлицизмов русского языка

    ТЕЛЕСКОП (Telescopium), слабо видимое созвездие в Южном полушарии. Наиболее яркая звезда Альфа, 3,5 звездной величины. ТЕЛЕСКОП, прибор для получения увеличенных изображений отдаленных объектов или исследования электромагнитного излучения от… … Научно-технический энциклопедический словарь

    Телескоп. Рефлектор с диаметром главного зеркала 6 м (Специальная астрофизическая обсерватория РАН, Северный Кавказ). ТЕЛЕСКОП (от теле... и...скоп), астрономический инструмент для изучения космических объектов по их излучению. В зависимости от… … Иллюстрированный энциклопедический словарь

    Муж. большая зрительная труба, на сошке, или укрепленная иным образом, более для астрономических наблюдений; есть телескоп стекольный и есть зеркальный. Телескопное устройство. Телескопические планеты, незримые простым глазом. Толковый словарь… … Толковый словарь Даля

    - «ТЕЛЕСКОП» (1831 1836) двухнедельный «журнал современного просвещения», изд. в Москве Н. И. Надеждиным (с 1834 при ближайшем участии В. Г. Белинского) с приложением «Молвы», еженедельной газеты «мод и новостей». Эстетическая позиция «Т.» состояла … Литературная энциклопедия

    Телескоп во сне предвещает не лучшую пору в семейных и любовных отношениях. На работе Вас также ожидают неприятности. Наблюдение с помощью телескопа за звездами обещает чрезвычайно увлекательные поездки, за которыми последуют финансовые… … Сонник Миллера

    - (от теле... и...скоп) астрономический инструмент для изучения небесных светил по их электромагнитному излучению. Телескопы делятся на гамма телескопы, рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиотелескопы. Существуют 3 типа… …

    Литературно общественный журнал, 1831 1836, Москва. Издавался Н. И. Надеждиным. Печатались А. С. Пушкин, А. В. Кольцов, с 1833 В. Г. Белинский. Закрыт за опубликование первого из Философических писем П. Я. Чаадаева … Большой Энциклопедический словарь