Световая адаптация зрения. Светоощущение, адаптация глаза к освещению

Периферический орган зрения реагирует на происходящие перемены в освещении и функционирует в независимости от степени яркости освещения. Адаптация глаза представляет собой способность приспосабливаться к разным уровням освещенности. Реакция зрачка на происходящие перемены дает восприятие визуальной информации в миллионном диапазоне интенсивности от лунного до яркого освещения, несмотря на относительный динамический объем отклика зрительных нейронов.

Виды адаптации

Учеными изучены следующие виды:

  • световая - адаптация зрения при дневном или ярком освещении;
  • темновая - при темноте или слабом свете;
  • цветовая - условия изменения цвета подсветки объектов, которые расположены вокруг.

Как происходит?

Адаптация световая

Происходит при переходе из темноты к сильному освещению. Оно мгновенно ослепляет и изначально виден только белый, так как чувствительность рецепторов настроена на тусклый свет. Одну минуту времени занимает у конусов для поражения резким светом, чтобы захватить его. При привыкании светочувствительность сетчатки теряется. Полное привыкание глаза к естественному освещению происходит в течение 20 минут. Существует два способа:

  • резкое снижение чувствительности сетчатки;
  • сетчатые нейроны подвергаются скорому приспособлению, тормозящему функцию стержня и благоприятствующей конусной системе.

Темновая адаптация

Темновой процесс наступает при переходе из ярко освещенной области к темной.

Темновая адаптация представляет собой обратный процесс световой. Это случается при переходе от хорошо освещенной области к темной области. Первоначально наблюдается чернота, так как конусы перестают функционировать в свете низкой интенсивности. Механизм адаптации можно разделить на четыре фактора:

  • Интенсивность и время света: увеличивая уровни предварительно адаптируемых яркостей, время доминирования конического механизма расширяется, пока переключение стержневого механизма задерживается.
  • Размер и расположение сетчатки: расположение тестового пятна влияет на темную кривую из-за распределения стержней и конусов в сетчатке.
  • Длина волны порогового света непосредственно воздействует на темновую адаптацию.
  • Регенерация родопсина: при воздействии светлых фотопигментов как в стержневых, так и в конических фоторецепторных клетках получаются структурные изменения.

Стоит отметить, что ночное видение имеет гораздо более низкое качество, чем зрение при нормальном свете, так как ограничено уменьшенным разрешением и обеспечивает возможность отличать только оттенки белого и черного. Примерно полчаса занимает у глаза приспособиться к сумеркам и приобрести чувствительность в сотни тысяч раз более, чем при дневном свете.

Привыкание глаза к темноте занимает гораздо больше времени у пожилых людей, чем молодых.

Цветовая адаптация

Для человека цветовые предметы меняются при разном освещении только на короткий отрывок времени.

Заключается в смене восприятия рецепторов сетчатки глаза, у которых максимумы спектральной чувствительности располагаются в разных цветовых спектрах излучения. К примеру, при смене естественного дневного света на свет ламп в помещении, изменения произойдут в цветах предметов: зеленый цвет будет отражаться желто-зеленым оттенком, розовый - красным. Такие изменения видны только короткий отрывок времени, со временем они исчезают и кажется, что цвет объекта остается прежним. Глаз привыкает к излучению, отраженного от объекта и воспринимается как и при дневном свете.

Способность глаз приспосабливаться к различному освещению называют световой адаптацией. Но иногда случаются сбои.

Способность органов зрения приспосабливаться к различным условиям освещения ученые изучают давно. И, что интересно, у одного и того же человека эта способность постоянно меняется на протяжении всей жизни, например, в норме к 20-30 годам световая чувствительность нарастает, а достигнув своего пика, начинает постепенно снижаться. Также адаптация зрения зависит от множества различных факторов, таких как беременность, изменение температуры воздуха, психические переживания, перепады давления и пр.

На сегодняшний день специалисты говорят про световую и темновую адаптации, а также изучают различные нарушения зрения, которые возникают вследствие изменения света. Следует заметить, что исследований на тему темновой адаптации проводится на порядок больше, в связи с чем этот аспект является более изученным. Так что же это такое?

Темновая адаптация

Если световая адаптация – это способность глаз приспосабливаться к условиямповышенной освещенности, то темновая адаптация, соответственно, наоборот, приспособление глаза в условиях пониженного освещения. В норме максимум светочувствительности при темновой адаптации достигается в течение 30-45минут, если же процесс идет со сбоями, то говорят про понижение темновой адаптации.

Ученые это состояние называют гемералопией, а народный синоним данного состояниякуриная слепота . Выяснено, что гемералопия бывает врожденной (вследствие чего она возникает пока неизвестно) и приобретенной, а в исключительных случаях даже может иметь семейно-наследственный характер.

Это ли проблема?

Кто-то скажет со скепсисом: «Ну, видит чуть хуже человек в темноте. Это ли проблема? Ведь жить это ему не мешает».

На самом деле нарушения темновой адаптации чреваты целым рядом возможных проблем и многие серьезные расстройства зрения начинаются именно с этого состояния. Начнем с того, что приобретенной гемералопии нередко сопутствуют заболевания сетчатой оболочки глаза. Это может быть и отслойка сетчатки, и ее пигментная дистрофия, и воспалительные поражения сетчатки. Пострадать также может и зрительный нерв, вероятны его атрофия и застойный диск. Также приобретенная гемералопия может являться симптомом близорукости, глаукомы и других заболеваний органов зрения.

Кроме того существует целый ряд профессий, когда хорошее зрение в темноте просто необходимо. В таких случаях обязательно проводится исследование темновой адаптации при профессиональном отборе и последующих плановых медосмотрах. Понятно, что специалисты, не прошедшие тест, не будут допущены к выполнению своих служебных обязанностей. Так что, как видите, куриная слепота может стать предвестником вполне реальных проблем.

Исследования и диагностика

Адаптометр – это специальный прибор, который определяет темновую адаптацию. Действие основано на количественном учете восприятия интенсивности светового раздражения.

В офтальмологической практике применяют разные приборы – адаптометры Дашевского Нагеля, Гартингера и пр. А в отечественных больницах чаще всего используют адаптометр Белостоцкого – очень удобный и простой в применении.

Вопросы читателей

18 October 2013, 17:25 Здраствуйте! У меня постоянное ежедневное наприжение глаз уже около года, особенно при чтении, глаза просто слизаться и болят, год назад был поставлен диагноз миопия слабой стпени, спазм аккомадации, что это может быть? часто провожу за компьютером время

Задать вопрос

Параметры, по которым определяются нарушения темновой адаптации:

  • достижение максимальной световой чувствительности в течение первых 30-45 минут;
  • чем меньше глаз был адаптирован к свету, тем скорее должна нарастать световая чувствительность;
  • в процессе темновой адаптации светочувствительность повышается в 10 тысяч раз и более;
  • после того как человек находится в темноте 45 минут световая чувствительность повышается, но незначительно.

При диагностике обязательно учитывается возраст пациента, так как стандарты нормы в 6, 10 или, например, в 30-40 лет будут совершено различными. А в некоторых возрастных категориях они могут совпадать, так, кривая темновой адаптации в 12-14 лет (в этом возрасте еще происходит повышение световой чувствительности) совпадает с кривой взрослых 30-40 лет, когда световая чувствительность уже начинает постепенно снижаться. А зависит ход кривой темновой адаптации от скорости фотохимической реакции в сетчатке глаза.

На что обратить внимание
  • В сумерках человек начинает видеть значительно хуже. Адаптация к сумеречному освещению либо происходит продолжительное время, либо не наступает вообще.
  • Резкий переход из яркого света в слабо освещенное пространство может вызвать на время резкую . Человеку также трудноориентироваться в этой ситуации в пространстве.
  • Какие-либо болевые ощущения могут отсутствовать, а в дневное время человек с нарушениями темновой адаптации вовсе не испытывает дискомфорта.

В том случае, если проблема действительно имеется, рекомендуется не затягивать с визитом к офтальмологу. Специалист выяснит разновидность гемералопии, если это не основное заболевание, а симптом, то определит основной диагноз, после чего назначит соответствующее лечение. Например, при эссенциальной гемералопии лечение будет заключаться в полноценном питании с добавлением витаминов группы В и А, а вот если выяснится, что это симптоматическая гемералопия, то лечение будет намного более серьезным, вплоть до оперативного вмешательства.

Светоощущение - это способность зрительного анализатора воспринимать свет и различать степени его яркости. При исследовании светоощущения определяют способность различать минимальное световое раздражение - порог раздражения - и улавливать наименьшую разницу в интенсивности освещения - порог различения.

Процесс приспособления глаза к различным условиям освещения называется адаптацией. Различают два вида адаптации: адаптацию к темноте при понижении уровня освещенности и адаптацию к свету при повышении уровня освещенности.

Каждому известно, насколько беспомощным чувствуешь себя, попадая из ярко освещенного помещения в темное. Только спустя 8-10 мин начинается различение плохо освещенных предметов, а для того чтобы достаточно свободно ориентироваться, требуется еще по крайней мере 20 мин, пока зрительная чувствительность в темноте достигает необходимой для этого степени. При темновой адаптации увеличивается чувствительность к свету, максимальная адаптация наблюдается через час.

Обратный процесс адаптации к высокому уровню освещенности протекает намного быстрее, чем адаптация к темноте. При адаптации к свету понижается чувствительность глаза к световому раздражителю, она длится около 1 мин. По выходе из темного помещения зрительный дискомфорт исчезает уже спустя 3-5 мин. В первом случае - в процессе темновой адаптации проявляется скотопическое зрение, во втором, при световой адаптации - фотопическое.

Зрительная система адекватно реагирует как на быстрые, так и на медленные перепады лучистой энергии. Причем для нее характерна практически мгновенная реакция на быстро изменяющуюся обстановку. Светочувствительность зрительного анализатора столь же вариабельна, сколь разнообразны характеристики световых раздражителей окружающего нас мира. Необходимость адекватно воспринимать энергию как очень слабых, так и очень сильных источников света, не подвергаясь структурным повреждениям, обеспечивается способностью к перестройке режима работы.рецепторов. На ярком свету световая чувствительность глаза снижается, но вместе с тем обостряется реакция на пространственную и временную дифференцировку объектов. В темноте весь процесс происходит наоборот. Этот комплекс изменений как светочувствительности, так и разрешающей способности глаза в зависимости от внешней (фоновой) освещенности называют зрительной адаптацией.

Скотопически адаптированная сетчатка максимально чувствительна к световой энергии самого низкого уровня, но при этом резко снижается ее пространственная разрешающая способность и исчезает цветоощущение. Фотопически адаптированная сетчатка, будучи низкочувствительной для различения слабых источников света, вместе с тем обладает высокой пространственной и временной разрешающей способностью, а также цветоощущением. По указанным причинам даже в безоблачный день блекнет луна и гаснут звезды, а ночью без подсвечивания мы теряем способность читать текст, набранный даже крупным шрифтом.

Диапазон освещенности, в пределах которого осуществляется зрительная адаптация, огромен; в количественном выражении он измеряется от миллиарда до нескольких единиц.

Рецепторы сетчатки обладают очень высокой чувствительностью - они могут раздражаться одним квантом видимого света. Это связано с действием биологического закона усиления, когда после активации одной молекулы родопсина сотни его молекул активируются. Кроме того, палочки сетчатки организованы в крупные функциональные единицы при слабом освещении. Импульс от большого количества палочек конвергирует в биполярные, а затем в ганглиозные клетки, вызывая эффект усиления.

По мере увеличения освещенности сетчатки зрение, определяемое в основном палочковым аппаратом, сменяется колбочковым зрением, причем максимум чувствительности сдвигается в направлении от коротковолновой к длинноволновой части спектра. Этот феномен, описанный Пуркинье еще в XIX в., хорошо иллюстрируется бытовыми наблюдениями. В букете из полевых цветов в солнечный день выделяются желтые и красные маки, в сумерках - синие васильки (сдвиг максимума чувствительности от 555 до 519 нм).

3-11-2012, 22:44

Описание

Диапазон воспринимаемых глазом яркостей

Адаптацией называется перестройка зрительной системы для наилучшего приспособления к данному уровню яркости. Глазу приходится работать при яркостях, меняющихся в чрезвычайно широком диапазоне, примерно от 104 до 10-6 кд/м2, т. е. в пределах десяти порядков. При изменении уровня яркости поля зрения автоматически включается целый ряд механизмов, которые и обеспечивают адаптационную перестройку зрения. Если уровень яркости длительное время существенно не меняется, состояние адаптации приходит в соответствие с этим уровнем. В таких случаях можно говорить уже не о процессе адаптации, а о состоянии: адаптации глаза к такой-то яркости L.

При резком изменении яркости происходит разрыв между яркостью и состоянием зрительной системы , разрыв, который и служит сигналом для включения адаптационных механизмов.

В зависимости от знака изменения яркости различают световую адаптацию - перестройку на более высокую яркость и темновую - перестройку на более низкую яркость.

Световая адаптация

Световая адаптация протекает значительно быстрее темновой. Выходя из темного помещения на яркий дневной свет, человек бывает ослеплен и в первые секунды почти ничего не видит. Образно выражаясь, зрительный прибор зашкаливает. Но если милливольтметр перегорает при попытке измерить им напряжение в десятки вольт, то глаз отказывается работать только короткое время. Чувствительность его автоматически и достаточно быстро падает. Прежде всего сужается зрачок. Кроме того, под непосредственным действием света выцветает зрительный пурпур палочек, в результате их чувствительность резко падает. Начинают действовать колбочки, которые, по-видимому, оказывают тормозящее действие на палочковый аппарат и выключают его. Наконец, происходит перестройка нервных связей в сетчатке и понижение возбудимости мозговых центров. В результате уже через несколько секунд человек начинает видеть в общих чертах окружающую картину, а минут через пять световая чувствительность его зрения приходит в полное соответствие с окружающей яркостью, что обеспечивает нормальную работу глаза в новых условиях.

Темновая адаптация. Адаптометр

Темновая адаптация изучена гораздо лучше, чем световая, что в значительной степени объясняется практической важностью этого процесса. Во многих случаях, когда человек попадает в условия низкой освещенности, важно заранее знать, через сколько времени и что он сможет видеть. Кроме того, нормальное течение темновой адаптации нарушается при некоторых болезнях, и поэтому ее изучение имеет диагностическое значение. Поэтому созданы специальные приборы для исследования темновой адаптации - адаптометры . В Советском Союзе серийно выпускается адаптометр АДМ. Опишем его устройство и метод работы с ним. Оптическая схема прибора изображена на рис. 22.

Рис. 22. Схема адаптометра АДМ

Пациент прижимает лицо к резиновой полумаске 2 и смотрит обоими глазами внутрь шара 1, покрытого изнутри белой окисью бария. Через отверстие 12 врач может видеть глаза пациента. С помощью лампы 3 и фильтров 4 стенкам шара можно сообщить яркость Lc, создающую предварительную световую адаптацию, во время которой отверстия шара закрывают заслонками 6 и 33, белыми с внутренней стороны.

При измерении световой чувствительности лампу 3 выключают и открывают заслонки 6 и 33. Включают лампу 22 и по изображению на пластинке 20 проверяют центрирование ее нити. Лампа 22 освещает через конденсор 23 и светофильтр дневного света 24 молочное стекло 25, которое служит вторичным источником света для пластинки из молочного стекла 16. Часть этой пластинки, видимая пациентом через один из вырезов в диске 15, служит тест-объектом при измерении пороговой яркости. Регулировка яркости тест-объекта производится ступенями с помощью фильтров 27-31 и плавно с помощью диафрагмы 26, площадь котором изменяется при вращении барабана 17. Фильтр 31 имеет оптическую плотность 2, т. е. пропускание 1%, а остальные фильтры - плотность 1,3, т. е. пропускание 5%. Осветитель 7-11 служит для боковой засветки глаз через отверстие 5 при исследовании остроты зрения в условиях ослепления. При снятии кривой адаптации лампа 7 выключена.

Небольшое, прикрытое красным светофильтром отверстие в пластинке 14, освещаемое лампой 22 с помощью матовой пластинки 18 и зеркальца 19, служит фиксационной точкой, которую пациент видит через отверстие 13.

Основная процедура измерения хода темновой адаптации состоит в следующем . В затемненном помещении пациент садится перед адаптометром и смотрит внутрь шара, плотно прижав лицо к полумаске. Врач включает лампу 3, установив с помощью фильтров 4 яркость Lc - 38 кд/м2. Пациент адаптируется к этой яркости в течение 10 мин. Установив поворотом диска 15 круглую диафрагму, видимую пациентом под углом 10°, врач по истечении 10 мин гасит лампу 3, включает лампу 22, фильтр 31 и открывает отверстие 32. При полностью открытой диафрагме и фильтре 31 яркость L1 стекла 16 равна 0,07 кд/м2. Пациенту дается указание смотреть на фиксационную точку 14 и сказать «вижу», как только он увидит светлое пятно на месте пластинки 16. Врач отмечает это время t1 уменьшает яркость пластинки 16 до значения L2, ждет, пока пациент снова скажет «вижу», отмечает время t2 и снова уменьшает яркость. Измерение длится 1 ч после выключения адаптирующей яркости. Получается ряд значений ti, каждому из которых соответствует свое, L1, что позволяет построить зависимость пороговой яркости Ln или световой чувствительности Sc от времени темновой адаптации t.

Обозначим через Lm максимальную яркость пластинки 16, т. е. ее яркость при полном раскрытии диафрагмы 26 и при выключенных фильтрах. Суммарное пропускание фильтров и диафрагмы обозначим?ф. Оптическая плотность Dф системы, ослабляющей яркость, равна логарифму обратной ему величины.

Значит, яркость при введенных ослабителях L = Lm ?ф, a lgL, = lgLm - Dф.

Так как световая чувствительность обратно пропорциональна пороговой яркости, т. е.

В адаптометре АДМ Lm - 7 кд/м2.

В описании адаптометра приведена зависимость D от времени темновой адаптации t, принимаемая врачами за норму. Отклонение хода темновой адаптации от нормы указывает на ряд заболеваний не только глаза, но и всего организма . Приведены средние значения Dф и допустимые граничные значения, еще не выходящие за пределы нормы. Исходя из значений Dф, мы вычислили по формуле (50) и на рис. 24

Рис. 24. Нормальный ход зависимости Sc от времени темновой адаптации t

приводим зависимость Sc от t в полулогарифмическом масштабе.

Более детальное изучение темновой адаптации указывает на большую сложность этого процесса. Ход кривой зависит от многих факторов : от яркости предварительной засветки глаз Lc, от места на сетчатке, на которое проецируется тест-объект, от его площади и т. д. Не входя в подробности, укажем на различие адаптационных свойств колбочек и палочек. На рис. 25

Рис. 25. Кривая темновой адаптации по Н. И. Пинегину

изображен график уменьшения пороговой яркости, взятый из работы Пинегина. Кривая снята после сильной засветки глаз белым светом с Lс = 27 000 кд/м2. Тестовое поле освещалось зеленым светом с? = 546 нм, тест-объект размером 20" проецировался на периферию сетчатки По оси абсцисс отложено время темновой адаптации t, по оси ординат lg (Lп/L0), где L0-пороговая яркость в момент t = 0, a Ln - в любой другой момент. Мы видим, что примерно за 2 мин чувствительность повышается в 10 раз, а за следующие 8 мин - еще в 6 раз. На 10-й минуте возрастание чувствительности опять ускоряется (пороговая яркость уменьшается), а затем снова становится медленным. Объяснение хода кривой такое. Сначала быстро адаптируются колбочки, но они могут повысить чувствительность только примерно в 60 раз. Через 10 мин. адаптации возможности колбочек исчерпаны. Но к этому времени уже расторможены палочки, обеспечивающие дальнейший рост чувствительности.

Факторы, повышающие световую чувствительность при адаптации

Раньше, изучая темновую адаптацию, основное значение придавали возрастанию концентрации светочувствительного вещества в рецепторах сетчатки, главным образом родопсина . Академик П. П. Лазарев при построении теории процесса темновой адаптации исходил нз допущения, что световая чувствительность Sс пропорциональна концентрации а светочувствительного вещества. Таких же взглядов придерживался и Хехт. Между тем легко показать, что вклад повышения концентрации в общее увеличение чувствительности не так уж велик.

В § 30 мы указали границы яркостей, при которых приходится работать глазу - от 104 до 10-6 кд/м2. При нижнем пределе пороговую яркость можно считать равной самому пределу Lп = 10-6 кд/м2. А при верхнем? При высоком уровне адаптации L пороговой яркостью Lп можно назвать минимальную яркость, которую еще можно отличить от полной темноты. Используя экспериментальный материал работы, можно сделать вывод, что Lп при высоких яркостях составляет примерно 0,006L. Итак, нужно оценить роль различных факторов при уменьшении пороговой яркости от 60 до 10_6 кд/м2, т. ". в 60 млн. раз. Перечислим эти факторы :

  1. Переход от колбочкового зрения к палочковому. Из того, что для точечного источника, когда можно считать, что свет действует на один рецептор, Еп = 2-10-9 лк, а Ец = 2-10-8 лк, можно сделать вывод, что палочка чувствительней колбочки в 10 раз.
  2. Расширение зрачка от 2 до 8 мм, т. е. по площади в 16 раз.
  3. Увеличение времени инерции зрения от 0,05 до 0,2 с, т. е. в 4 раза.
  4. Увеличение площади, по которой производится суммирование воздействия света на сетчатку. При большой яркости угловой предел разрешения? = 0,6", а при малой? = 50". Увеличение этого числа означает, что множество рецепторов объединяется для совместного восприятия света, образуя, как обычно говорят физиологи, одно рецептивное поле (Глезер). Площадь рецептивного поля увеличивается в 6900 раз.
  5. Увеличение чувствительности мозговых центров зрения.
  6. Увеличение концентрации а светочувствительного вещества. Именно этот фактор мы и хотим оценить.

Допустим, что увеличение чувствительности мозга мало и им можно пренебречь. Тогда мы сможем оценить влияние возрастания а или, по крайней мере, верхний предел возможного увеличения концентрации.

Таким образом, повышение чувствительности, обусловленное только первыми факторами, будет 10X16X4X6900 = 4,4-106. Теперь можно оценить, во сколько раз чувствительность возрастает из-за увеличения концентрации светочувствительного вещества: (60-106)/(4,4-10)6= 13,6, т. е. примерно в 14 раз. Это число невелико по сравнению с 60 миллионами.

Как мы уже упоминали, адаптация - это весьма сложный процесс. Сейчас, не углубляясь в механизм его, мы количественно оценили значимость отдельных его звеньев.

Следует отметить, что ухудшение остроты зрения с падением яркости есть не просто недостаток зрения, а активный процесс, позволяющий при недостатке света видеть в поле зрения хотя бы крупные предметы или детали.


Острота зрения

Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки и называется остротой зрения.

Острота зрения - способность глаза воспринимать раздельно две точки, расположенные друг от друга на некотором расстоянии. Мерилом остроты зрения является угол зрения, то есть угол, образованный лучами, исходящими от краёв рассматриваемого предмета (или от двух точек A и B) к узловой точке (K) глаза.

Острота зрения обратно-пропорциональна углу зрения, то есть, чем он меньше, тем острота зрения выше. В норме глаз человека способен раздельно воспринимать объекты, угловое расстояние между которыми не меньше 1′ (1 минута).

Острота зрения - одна из важнейших функций зрения. Она зависит от размеров колбочек, находящихся в области жёлтого пятна, сетчатки, а также от ряда факторов: рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика (и его эластичности), стекловидного тела (кои составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста.

Адаптация зрения

Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация глаза - приспособление зрения к различным условиям освещения. Адаптация происходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность

воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).

Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте - процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза. Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50-60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов - адаптометров.

Понижение адаптации глаза к темноте наблюдают при некоторых глазных (пигментная дистрофия сетчатки, глаукома) и общих (A-авитаминоз) заболеваниях.

Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)

Восприятие, его виды и свойства

Внешние явления, воздействуя на наши органы чувств, вызывают субъективный эффект в виде ощущений без какой бы то ни было встречной активности субъекта по отношению к воспринимаемому воздействию. Способность ощущать дана нам и всем живым существам, обладающим нервной системой, с рождения. Способностью же воспринимать мир в виде образов наделены только человек и высшие животные, она у них складывается и совершенствуется в жизненном опыте.

В отличие от ощущений, которые не воспринимаются как свойства предметов, конкретных явлений или процессов, происходящих вне и независимо от нас, восприятие всегда выступает как субъективно соотносимое с оформленной в виде предметов, вне нас существующей действительностью, причем даже в том случае, когда мы имеем дело с иллюзиями или когда воспринимаемое свойство сравнительно элементарно, вызывает простое ощущение (в данном случае это ощущение обязательно относится к какому-либо явлению или объекту, ассоциируется с ним).

Ощущения находятся в нас самих, воспринимаемые же свойства предметов, их образы локализованы в пространстве. Этот процесс, характерный для восприятия в его отличии от ощущений, называется объективацией.

Еще одно отличие восприятия в его развитых формах от ощущений состоит в том, что итогом возникновения ощущения является некоторое чувство (например, ощущения яркости, громкости, соленого, высоты звука, равновесия и т.п.), в то время как в результате восприятия складывается образ, включающий комплекс различных взаимосвязанных ощущений, приписываемых человеческим сознанием предмету, явлению, процессу. Для того чтобы некоторый предмет был воспринят, необходимо совершить в отношении его какую-либо встречную активность, направленную на его исследование, построение и уточнение образа. Для появления ощущения этого, как правило, не требуется.

Отдельные ощущения как бы «привязаны» к специфическим анализаторам, и достаточно бывает воздействия стимула на их периферические органы - рецепторы, чтобы ощущение возникло. Образ, складывающийся в результате процесса восприятия, предполагает взаимодействие, скоординированную работу сразу нескольких анализаторов. В зависимости от того, какой из них работает активнее, перерабатывает больше информации, получает наиболее значимые признаки, свидетельствующие о свойствах воспринимаемого объекта, различают и виды восприятия. Соответственно выделяют зрительное, слуховое, осязательное восприятие. Четыре анализатора - зрительный, слуховой, кожный и мышечный, - чаще всего выступают как ведущие в процессе восприятия.

Восприятие, таким образом, выступает как осмысленный (включающий принятие решения) и означенный (связанный с речью) синтез разнообразных ощущений, получаемых от целостных предметов или сложных, воспринимаемых как целое явлений. Этот синтез выступает в виде образа данного предмета или явления, который складывается в ходе активного их отражения.

Предметность, целостность, константность и категориалъностъ (осмысленность и означенность) - это основные свойства образа, складывающиеся в процессе и результате восприятия. Предметность - это способность человека воспринимать мир не в виде набора не связанных друг с другом ощущений, а в форме отделенных друг от друга предметов, обладающих свойствами, вызывающими данные ощущения. Целостность восприятия выражается в том, что образ воспринимаемых предметов не дан в полностью готовом виде со всеми необходимыми элементами, а как бы мысленно достраивается до некоторой целостной формы на основе небольшого набора элементов. Это происходит и в том случае, если некоторые детали предмета человеком непосредственно в данный момент времени не воспринимаются. Константность определяется, как способность воспринимать предметы относительно постоянными по форме, цвету и величине, ряду других параметров независимо от меняющихся физических условий восприятия. Категориальность человеческого восприятия проявляется в том, что оно носит обобщенный характер, и каждый воспринимаемый предмет мы обозначаем словом-понятием, относим к определенному классу. В соответствии с этим классом нами в воспринимаемом предмете ищутся и видятся признаки, свойственные всем предметам данного класса и выраженные в объеме и содержании этого понятия.

Описанные свойства предметности, целостности, константности и категориальности восприятия с рождения человеку не присущи; они постепенно складываются в жизненном опыте, частично являясь естественным следствием работы анализаторов, синтетической деятельности мозга.

Чаще и больше всего свойства восприятия изучались на примере зрения - ведущего органа чувств у человека. Существенный вклад в понимание того, как из отдельных зрительно воспринимаемых деталей предметов складывается их целостная картина - образ, внесли представители гешталыппсихологии - направления научных исследований, сложившегося в начале XX в. в Германии. Одним из первых классификацию факторов, влияющих на организацию зрительных ощущений в образы в русле гештальтпсихологии предложил М. Вертгеймер. Выделенные им факторы следующие:

Близость друг к другу элементов зрительного поля, вызвавших соответствующие ощущения. Чем ближе друг к другу пространственно в зрительном поле располагаются соответствующие элементы, тем с большей вероятностью они объединяются друг с другом и создают единый образ.

Сходство элементов друг с другом. Это свойство проявляется в том, что похожие элементы обнаруживают тенденцию к объединению.

Фактор «естественного продолжения». Он проявляется в том, что элементы, выступающие как части знакомых нам фигур, контуров и форм, с большей вероятностью в нашем сознании объединяются именно в эти фигуры, форму и контуры, чем в другие.

Замкнутость. Данное свойство зрительного восприятия выступает, как стремление элементов зрительного поля создавать целостные, замкнутые изображения.

Принципы перцептивной организации зрительного восприятия иллюстрируются рис. 36. Ближе друг к другу расположенные линии в ряду А скорее объединяются друг с другом в нашем восприятии, чем далеко расставленные. Добавление горизонтальных, разнонаправленных отрезков к отдельным, стоящим далеко друг от друга вертикальным линиям в ряду Б побуждает нас, напротив, видеть целостные фигуры в них, а не в близко расположенных линиях. В данном случае это квадраты. Соответствующее впечатление усиливается еще больше (ряд В), становится необратимым, если контуры оказываются замкнутыми.

Выяснилось, что восприятие человеком более сложных, осмысленных изображений происходит по-иному. Здесь в первую очередь срабатывает механизм влияния прошлого опыта и мышления, выделяющий в воспринимаемом изображении наиболее информативные места, на основе которых, соотнеся полученную информацию с памятью, можно о нем составить целостное представление. Анализ записей движений глаз, проведенный АЛ. Ярбусом 1, показал, что элементы плоскостных изображений, привлекающих внимание человека, содержат участки, несущие в себе наиболее интересную и полезную для воспринимающего информацию. При внимательном изучении таких элементов, на которых более всего останавливается взор в процессе рассматривания картин, обнаруживается, что движения глаз фактически отражают процесс человеческого мышления. Установлено, что при рассматривании человеческого лица наблюдатель больше всего внимания уделяет глазам, губам и носу. Глаза и губы человека действительно являются наиболее выразительными и подвижными элементами лица, по характеру и движениям которых мы судим о психологии человека и его состоянии. Они многое могут сказать наблюдателю о настроении человека, о его характере, отношении к окружающим людям и многом другом.