Ген отвечающий за старение. Управление геном обратило вспять старение организма. Другие пути достижения бессмертия в науке

Генно-инженерная активация фермента, который защищает концы хромосом, привела к восстановлению нормальной работы деградировавших органов. Среди прочего были достигнуты возврат репродуктивных функций и наращивание массы мозга подопытных животных. Исследователи предполагают, что найденный эффект при ряде условий можно распространить на человека.

Сначала биологи создали генетически изменённых мышей, у которых отсутствовал фермент теломераза , способный достраивать концы хромосом, называемые теломерами .

За несколько поколений теломеры в клетках мышей сильно укоротились, а сами зверьки продемонстрировали целый букет эффектов ускоренного старения: остеопороз, диабет и нейродегенеративные заболевания, плохую плодовитость, более раннюю, чем обычно, смерть…

Но учёные запрограммировали мышей так, что деактивированный фермент мог быть в любой момент снова включён путём добавления химиката 4-OHT, влияющего на нужный ген. Исследователи позволили мышам достигнуть взрослого состояния, а затем на время вернули выработку теломеразы. Результат проверили ещё через месяц.

За активностью теломеразы биологи следили при помощи светящихся маркеров. Детали эксперимента можно найти в статье в Nature (фото Mariela Jaskelioff, Ronald A. DePinho/Nature).

Биологи ожидали, что восстановление активности фермента замедлит или остановит старение, но эффект оказался даже более сильным — многие процессы пошли вспять. У самцов сморщенные яички восстановили форму, и зверьки вновь принялись генерировать здоровую сперму, давать потомство.

Мыши также вернули себе «молодые» селезёнку, печень и кишечник, восстановили ослабшее обоняние, позволившее им лучше проходить лабиринт. Вернулась к нормальной и продолжительность жизни грызунов.


Даже в мозге мышей старение было откинуто прочь: активировались клетки-прогениторы, производящие новые нейроны, стали возвращаться к нормальной толщине миелиновые оболочки вокруг нейронов, увеличились размер и масса мозга (фото Mariela Jaskelioff, Ronald A. DePinho/Nature).

При этом важно, что животные не продемонстрировали признаков рака, уточняет PhysOrg.com. Тем не менее среди биологов всё равно остаются опасения, что стимуляция теломеразы может вызывать рак (ведь раковые клетки активируют этот фермент, тем самым становясь почти бессмертными).

Депиньо считает, что такой риск можно сократить, включая теломеразу на короткое время — дни или недели. Однако, признаёт учёный, вопрос требует дальнейшей проработки.

Авторы работы полагают, что «теломерная» терапия в сочетании с другими методами поможет в лечении ряда возрастных нарушений. Но неясным остаётся вопрос: может ли принудительная активация теломеразы устранять эффекты самого обычного старения, а не преждевременного, например вызванного генетическими заболеваниями.

Этот момент ещё ждёт изучения, потому говорить о появлении лекарства от старости – преждевременно. Однако результат нового опыта обнадёживает: вероятно, спасение от старения следует искать именно в данном направлении.

Принято считать, что более краткая жизнь у мужчин связана с бОльшим количеством стрессов на работе. Но сегодня, когда разница в рабочих условиях между полами практически исчезла, разрыв нисколько не сокращается. Еще одна широко распространенная версия говорит, будто женщины менее «подвержены» пагубным пристрастиям — таким, как курение или выпивка — и чаще стараются правильно питаться. Но вместе с тем, в старости женщины в среднем обладают худшим здоровьем, чем мужчины, чего в этом случае ждать не стоило бы. И вообще, самки других видов также обычно живут дольше самцов. Причина должна быть какой-то иной.

Вообще, старение организма связано с постепенным накоплением небольших «ошибок» и повреждений в клетках и клеточных компонентах, белках, хромосомах и ДНК. Регенеративные способности нашего тела неидеальны, и понемногу крохотные «недоработки» все множатся, приводя к крупным последствиям.

Еще в 1977 г. английский профессор Томас Кирквуд (Thomas Kirkwood) выдвинул идею о том, что наши тела вообще не должны безупречно восстанавливать свои структуры, поскольку это работает на руку эволюции вида: Homo sapiens нуждается в качественных представителях репродуктивного возраста, а старых лучше отбрасывать для экономии ресурсов. В его описании, похожем на концепцию « эгоистичного гена » Ричарда Докинза, организм предстает чем-то вроде временного пристанища для генетического материала, для его передачи от предшествующего поколения следующему. Как только передача эффективно произведена, организм становится пустой тратой энергии. Свою гипотезу Кирквуд довольно провокационно назвал « теорией одноразового тела » (Disposable Soma Theory), и в своей недавней статье расширил ее применительно к проблеме более ранней смерти мужчин.

Действительно, многочисленные лабораторные эксперименты показывают, что животные, отличающиеся большими сроками жизни, обладают более эффективными системами поддержки и восстановления клеток и их структур, нежели короткоживущие. В целом эти животные, как правило, крупнее и обладают более развитым интеллектом. Для них тело — не такой уж «одноразовый» объект, и энергетические вложения в его поддержку окупаются. Хотя бы в силу того, что дети таких видов обладают длительным периодом созревания, в ходе которого нуждаются в родительской опеке (это особенно ярко проявляется у людей).

Кроме того, эксперименты на грызунах показали, что «ремонтные системы» организма у самцов работают не столь эффективно, как у самок. Более того, если хирургически у самки грызуна удалить яичники, эта разница исчезает. Известно также, что кастрированные самцы чаще живут дольше. Кирквуд приводит также исторический пример: в штате Канзас некогда кастрация была (увы) одной из постоянных практик «лечения» и усмирения буйных психических больных, что позволило накопить статистику: кастраты жили, в среднем, аж на 14 лет дольше. Еще один пример Кирквуд берет из Японии, где ученые создали «супер-самку» мыши, объединив генетический материал пары самок и искусственно вырастив ее. Таким образом, мышка эта не несла ни единого гена, полученного от самца. Она прожила на треть дольше, чем обычная самочка мыши.

О чем все это говорит? Кирквуд, как эволюционист, делает следующие выводы. Биологическому виду важнее здоровье самок, чем самцов: именно самкам приходится, как правило, вынашивать и выращивать потомство. Репродуктивная роль самцов часто вовсе пассивна и мало меняется с изменением их здоровья. Виду «удобнее», чтобы самец, исполнив свои репродуктивные задачи, «ушел и не мешал» следующему поколению. Это косвенно подтверждается тем, что повышенные уровни

Важнейшим итогом выполнения Международного проекта «Геном человека» явилась идентификация практически всех генов человека, многие из которых, как показали дальнейшие исследования, прямо или косвенно вовлечены в процессы старения.

Старение человека, так же как и его геном, очень индивидуально.

В сильно упрощенном варианте все гены, определяющие старение и продолжительность жизни человека, достаточно условно подразделяются на две большие группы: гены биологических часов (1) и гены «слабого звена» (они же гены предрасположенности) (2) .

7.З.1.1. Гены биологических часов

В настоящее время известна весьма многочисленная группа генов, участие которых в процессах старения доказано в экспериментах, а их гомологи (так называемые ортологичные гены) уже идентифицированы у человека и исследуются в геронтологии. Подробный обзор генов

Таблица 7.3.1

Экспериментально установленные и подтвержденные гены «биологических часов»

Символ гена Название гена/функции
1 FOXO 1-4 Рецептор инсулина и инсулинового ростового фактора IGF-1
2 KLOTHO Обмен инсулина, IGF1, витамина D
3 PROP1 Модуляция уровня гормонов гипофиза
4 HGF Гормон роста человека
5 CLOCK Синтез кофермента Q-убиквитина
6 САТ Каталаза (обезвреживание перекисных соединений)
7 P66She Нейтрализация свободных радикалов
8 МТР Микросомальный белок-переносчик
9 СЕТР Белок-транспортер холестерина
10 TOR Рост и питание клеток
11 PPARA Регулятор обмена жирных кислот и типа гликолиза
12 SIRT1 Предполагаемый главный регулятор процесса старения


биологических часов приведен в монографии А. А. Москалева (2008). Некоторые такие гены представлены в таблице 7.3.1.

Особенно подробно изучены гены так называемого инсулинового каскада обеспечивающего обмен глюкозы. Он представлен генами гормона роста (HGF), тирозинкиназы, инсулиновым ростовым фактором и его регулятором (IGF-1 и Klotho), рецептором IGF и его регулятором (rIGF, FOXO1-4). На многих биологических объектах, а для отдельных генов и на человеке, показано, что аллельные варианты этих генов, тормозящие или частично блокирующие обмен глюкозы, весьма благотворно сказываются на продолжительности жизни .

Так, мутации и полиморфизм в гене IGF (варьирование числа повторов в промоторной области гена, G/A-полиморфизм), которые снижают активность экспрессии этого гена, ассоциированы с долголетием . Аллельные варианты и мутации генов daf-2 и FoxO (ортологи генов IGF-1 и FOX1-4 человека) способны почти вдвое удлинять жизнь дрозофилы и мышей . На 30 % увеличивается продолжительность жизни мышей с KL-VS, аллелем гена Klotho, продукт которого участвует в регуляции выработки инсулина через ген IGF-1 и в обмене костной ткани через ген рецептора витамина D - VDR .

Значительное удлинение продолжительности жизни (до 150 % от средней величины) отмечается у мышей и крыс, несущих мутации карликовости в гене гормона роста GF, который открывает инсулиновый каскад, а также в генах, модулирующих уровень гормонов и гормональную активность гипофиза (PROP1). Существенно отметить, что практически во всех случаях продолжительность жизни находится в обратной зависимости от потребления и расхода калорий. Метаболические эффекты в организме, связанные с мутациями и аллельными вариантами генов инсулинового каскада, очень сходны с таковыми при голодании или ограничении калорийности питания - наиболее известными и хорошо доказанными в экспериментах и в клинике способами продления жизни.

Известно также, что продолжительность жизни обратно пропорциональна интенсивности дыхания и процессов обмена, вследствие которых возникают опасные для организма перекиси и свободные радикалы (ROS - Reactive Oxygene Substances). Неслучайно среди генов, влияющих на продолжительность жизни (см. табл. 7.3.1), находятся ген каталазы (CAT), обезвреживающей перекисные соединения, ген P66She, продукт которого уничтожает свободные радикалы, и семейство генов Clock, регулирующих синтез и активность кофермента Q-убиквити- на, нейтрализующего все метаболические токсины клетки. Положительный эффект на продолжительность жизни оказывает и ген CETP (cholersterol ester transfer protein), мутация которого в 405 кодоне ведет к увеличению размеров липопротеиновых (холестериновых) частиц в крови, что препятствует их проникновению в стенки сосудов и формированию атеросклеротических бляшек .

Заслуживает внимания и регуляторный ген PPARA, контролирующий экспрессию множества генов, вовлеченных в обмен жирных кислот и глюкозы. Полиморфизм этого гена (замена G на C в кодоне 372) приводит к переключению аэробного гликолиза (генотип G/G) на анаэробный (генотипы G/C или С/С) .

Особое внимание исследователей проблемы генетики старения привлекают сегодня гены семейства Сиртуинов (SIRTUIN - silence information regulators - регуляторы замалчивания информации). Один из генов этого семейства SIRT2, открытый в 2001 году Ленни Гайренте у дрожжей, оказался непосредственно вовлеченным в регуляцию процессов старения у разных организмов (дрожжи, аскарида, дрозофила и мыши). Как показали дальнейшие исследования, гены этого


семейства активируются под влиянием дефицита калорий, а также в результате действия других стрессорных факторов. Его непосредственным индуктором оказался никотинамид динуклеотид (NAD) - продукт окисления NAD-H (см. раздел 7.1). Белки генов SIRT стимулируют выработку различных сигнальных молекул, например инсулина, повышают стабильность ДНК путем скручивания двойной спирали, активируют репаративные и защитные механизмы клетки, повышают скорость энергообмена, угнетают функции апоптозных генов, координируют реакцию на стресс клетки и организма в целом (рис. 7.3.1).

Как глобальный регулятор генной активности ген SIRT1 является лучшим кандидатом для объяснения благотворного воздействия ограничения калорийности питания на здоровье и продолжительность жизни . Координирующие эффекты генов этого семейства реализуются через белковые продукты других регуляторных генов: P53, FOXO, Ku70, MYOD, NCoR, через гистоны H3, H4 и H1 и гены, регулирующие ацетилирование гистонов Р300. Результатом работы генов SIRTявляется увеличение продолжительности жизни клеток и организма в целом. Эффект долгожительства таких генов уже показан на дрожжах, дрозофиле, червях и мышах, у которых избыток продукта этих генов увеличивал продолжительность жизни на 30-49 %.

Складывается впечатление, что именно повышением активности генов семейства Sirtuin можно объяснить благотворное влияние голодания на продолжительность жизни человека.

Индукция активности этих генов может быть достигнута и при помощи экзогенных факторов, например препарата резвератрола, который содержится в красных винах. Известны уже около 18 других веществ растительного происхождения, которые могут активировать работу генов SIRT. Некоторые из этих модуляторов уже проходят клинические испытания (см. раздел 7.1).

Все эти наблюдения позволяют некоторым исследователям рассматривать гены семейства Sirtuin как главные регуляторные гены, контролирующие процессы старения у человека, осуществляющие координационную (надзорную) функцию не только над структурными генами (генами-рабами), но даже над многими регуляторными генами - транскрипционными факторами (генами-господами) . Дальнейшие исследования этого интересного семейства покажут, действительно ли они играют главную роль в старении или являются, безусловно, важными, но отнюдь не уникальными генами, контролирующими этот сложный многоуровневый процесс. В частности, имеются некоторые данные, указывающие на возможную онкогенность гена SIRT1. Удивительно, но связь онкогенности и продолжительности жизни отмечена и для ряда других генов, таких как онкосупрессоры Р53 и lgl (дрозофила), а также уже упоминавшийся ранее ген FOXO. Гетерозиготность по этим генам блокирует развитие опухолей, гомозиготность - ускоряет процесс старения, по-видимому, за счет апоптоза и быстрого истощения запаса стволовых клеток.

В плане проблемы долгожительства особенно интересен ген Nanog, активация которого ведет к резкому омоложению клеток млекопитающих и человека и даже способствует их превращению в стволовые (родоначальные) клетки, что открывает широкие перспективы для направленного восстановления поврежденных органов и тканей .

7.З.1.2. Гены «слабого звена»

Вторая обширная группа генов, связанная с процессами старения, а точнее - с продолжительностью периода активного долголетия касается генов «слабого звена», которые, по сути, идентичны генам предрасположенности, многие из которых уже неоднократно упоминались и были описаны в главе 5, а также при рассмотрении соответствующих болезней в главе 6. Функционально ослабленные

Гены долгожительства - старения. Популяционные исследования

Таблица 7.3.2
Ген

гены (белок)

Мутация/ Продолжительность
Митохондриальная ДНК С150Н, 517ВА >
BCL-2 Антиапоптозный ген Белок митохондрий >
GH-IGF- rIGF Инсулиновый каскад: гормон роста - инсулиновый ростовой фактор - рецептор инсулинового ростового фактора >
APOЕ (аполипопротеин) E4/E4
APOA1 P-аллель

(генный парадокс)

> пожилые
ALOX (липоксигеназа) Аллель 5 (ALOX-5)
MTHFR (метилентетрагидрофолатредуктаза) С677Т
АСЕ (ангиотензинконвер- тирующий фермент) I/D Alu-повтор >
PAI1 (ингибитор активации плазминогена) 675 4G/5G
PON (пароксоназа) Gln192Arg
GSTM1; GSTT1 (глютати- он трансферазы М1 и Т1) Нулевые аллели 0/0 > пожилые
NAT2, MYCL1, CYP17А1, CYP19А1, AR Различные мутации с + эффектом
IFNG (интерферон-у) +874-А-аллель > женщины
IL10 (интерлейкин-10) 1082 GG > мужчины
TNFА (фактор некроза опухоли) -308G > мужчины


полиморфные варианты этих генов и их сочетания составляют основу всех мультифакториальных заболеваний человека .

В таблице 7.3.2 приведен сокращенный список генов человека, мутации которых, как было показано в многочисленных популяционных исследованиях, ассоциированы (сцеплены) с долгожительством.

Как показывают популяционные исследования анализа частот аллелей соответствующих генов в разных возрастных группах населения, такие гены весьма многочисленны и принадлежат к разным метаболическим системам организма. Так, положительный эффект на продолжительность жизни человека оказывают некоторые мутации митохондриальных генов (С150Н, 517ВА), замедляющие процессы клеточного дыхания, а также антиапоптозный ген BCL2, белковый продукт которого делает более устойчивой к разрушению мембрану митохондрий (табл. 7.3.2). К таковым также относятся гены системы детоксикации (GSTM1, GSTT1, NAT2, CYP2D6, CYP17А1), ответственные за метаболизм всех ксенобиотиков, гены липидного обмена (APOE, APOA1, APOB, ALOX-5), определяющие состояние сосудов, гены углеводного обмена (IGF, rIGF), гены, регулирующие сосудистый тонус и свертываемость крови (ACE, PAI1, PON, MTHFR), некоторые гены иммунного ответа (IFNG, IL10), ростовых факторов (TNFА, TGFB), ряд онкогенов, а также гены, контролирующие уровень и метаболизм гормонов (PIT1, PROP1, GHR/BP, CYP19А1). Дополнительную информацию об этих и других генах предрасположенности и соответствующих им аллелях можно получить в работах . Упомянем только несколько «генетических парадоксов», отмеченных при популяционных исследованиях некоторых из перечисленных генов . В частности, полиморфные варианты генов IFNG, IL10, TNF4 обнаруживают положительную ассоциацию с долгожительством у индивидов только одного пола. Один из аллелей гена АРОА1 (Р) имеет низкую частоту у молодых людей и лиц среднего возраста, но достаточно часто встречается у пожилых. Сходным образом «нулевые» аллели генов GSTM1 и GSTT1 явно недостаточно представлены у лиц среднего возраста, но достоверно чаще встречаются у пожилых и даже у столетних индивидов.

Аллельные варианты этих генов были выявлены как в популяционных исследованиях, так и при сравнительном анализе их частот у больных соответствующими хроническими болезнями и у здоровых индивидов. Мы вернемся к более детальному рассмотрению генов предрасположенности и их аллелей в следующий главе (см. главу 8).

Суммируя, можно отметить, что благодаря достижениям науки, и прежде всего генетики, стала очевидной решающая роль генома в процессах старения. Его наследственную основу составляют особые гены-регуляторы, получившие название генов старения (aging genes). Некоторые из таких генов-кандидатов уже идентифицированы. Изучение механизмов их действия и поиск других генов старения активно продолжаются.

Обнаружены гены, влияющие на старение!

Ученые выявили гены, регулирующие процесс старения

Британские исследователи сумели впервые выявить группу генов, которые регулируют «скорость старения» человеческого организма. Как пишет британская газета «Гардиан», это открытие может перевернуть подход медицины к проблеме здоровья и лечению «возрастных» болезней, таких как сердечно-сосудистые заболевания, некоторые виды рака и старческое слабоумие.

Ученые открыли несколько различных генов, отвечающих за скорость старения человеческого организма. Исследователи из Университета города Лейчестер и Королевского колледжа Лондона говорят, что эти же гены также отвечают и за прогрессию различных возрастных заболеваний. Строго говоря, ученые обнаружили гены, отвечающие за скорость хода биологических часов человека.

Как выяснили британские ученые, определенные гены, унаследованные от обоих родителей, могут заставить человека с возрастом по ряду биологических признаков быть на целых 8 лет «старше» тех, у кого эта генетический материал отсутствует. В таком сочетании эти своеобразные «катализаторы» старения встречаются у примерно 7 проц населения. У 55 проц населения этот генетический материал вообще не встречается.

Еще 38% людей из-за генов в среднем «старее» своих сверстников на 4 года. У 55% населения этот генетический материал вообще не встречается.

Исследователи говорят, что с момента рождения человека к организме начинается процесс сокращения длины теломеров, происходящий в момент деления клеток, и когда те достигают некой предельной точки, то становятся более подвержены риску различных заболеваний. Другая точка зрения исходит из того, что некоторые люди изначально рождаются с наборами ДНК, в которых теломеры меньше определенной длины.

В своей статье в журнале Nature Genetics исследователи говорят, что провели анализ 500 тысяч различных единичных мутаций (замен отдельных нуклеотидов, "букв" ДНК) в геномах клеток крови 2,917 тысячи людей и установили связь между наличием этих мутаций и длиной так называемых теломер.

Теломеры - это концевые участки хромосом, находящихся в ядре каждой клетки человеческого организма, которые укорачиваются при каждом новом делении клетки. Когда длины теломер становится недостаточно для нового деления, клетка отмирает. Такой процесс постепенного отмирания клеток в тканях организма называется медиками "биологическим старением".

Авторы публикации под руководством профессоров Нилеша Самани (Nilesh Samani) и Тима Спектора (Tim Spector) из Лейцестерского университета в Великобритании и Королевского колледжа Лондона, соответственно, сумели показать, что участок одной из хромосом, называемый 3q26, содержит в себе область, вариации "букв" ДНК в которой влияет на длину теломер. Таким образом, люди, имеющие такой вариант этой области ДНК, имеют более короткие теломеры, что в пересчете на время означает примерно на 3,6 лет жизни меньше, чем у людей, этих вариаций не содержащих.

Ученые отметили, что эти вариации находятся в области хромосом, прилежащей к гену TERC, который, в свою очередь, ранее уже был выявлен генетиками как один из факторов, определяющих длину теломер. Его активизация ведет к замедлению биологических часов человека.

"В процессе нашего исследования было точно установлено, что дополнительные гены, присутствующие в клетках человека, могут либо ускорить этот процесс либо замедлить его. Некоторые люди изначально могут быть генетически запрограммированы стареть быстрее остальных. Биологическое старение организма особенно ускоряется под воздействием неблагоприятных факторов - курения, малоподвижного образа жизни или ожирения. Такие люди уже в более раннем возрасте могут начать подвергаться старческим болезням", - говорит Тим Спектор, профессор Королевского колледжа в Лондоне.

Таким образом, ученым удалось показать, что старение и изнашивание организма связаны не только с ходом времени, факторами окружающей среды и вредными привычками, но и биологическими причинами, поскольку некоторые люди рождаются с предрасположенностью состариться быстрее.

Одно из главных открытий, связанных с данными генами, заключается в том, что при помощи этих генов в будущем медики планируют лечить одновременно и некоторые из сердечных заболеваний.

Лондонские медики отмечают, что на сегодня известно, что такие болезни, как болезнь Паркинсона или Альцгеймера - это типичные возрастные заболевания, равно как и некоторые распространенные сердечные недуги. По их словам, наравне с генами за регуляцию биологических часов отвечают и такие части хромосом человека, как теломеры, они также переносят часть биологической генной информации.

Ученые открыли замедлитель старения

Американские исследователи установили, что в организме живых существ есть белок, который выполняет функции естественного замедлителя процессов старения. Данное открытие предполагается использовать для предотвращения дегенеративных изменений и лечения заболеваний, связанных с пожилым возрастом.

Как сообщает РИА "Новости", исследования проводили сотрудники Калифорнийского университета, находящегося в Сан-Диего. Они изучили организм плодовых мушек дрозофил и обнаружили, что один из белков в их организме отвечает за обмен веществ и процессы старения. При этом он же выделяется в том случае, когда живая клетка испытывает стресс.

В ходе дальнейшей работы выяснилось, что структура и биохимические функции этого белка идентичны у мушек, крупных животных и даже человека. "Патологии, вызываемые недостаточной работой сестрина, включали в себя накопление жиров в организме, появление сердечной аритмии и дегенерации мышц даже у молодых мушек. Эти патологии удивительно похожи на общие расстройства организма - избыточный вес, сердечную недостаточность и потерю мышц, сопровождающие старение у людей", - заметил профессор Майкл Карин, руководивший группой исследователей.

Следующей целью ученых станет изучение влияния сестрина именно на дегенеративные старческие заболевания у человека, причину которых наука пока определить не может. "Вероятно, в один прекрасный день мы научимся использовать белковые молекулы, аналогичные изученному нами сестрину для предотвращения отмирания кожи, связанного со старением, а также лечить целый набор дегенеративных заболеваний, возникновение которых связано с пожилым возрастом, таких, например, как потеря мышечной массы и болезнь Альцгеймера", - объявил Карин.

Генетические преимущества позволяют людям жить дольше обезьян

По мнению западных генетиков, определенные генетические преимущества позволяют людям жить дольше, чем ближайшим биологическим родственникам, в частности шимпанзе. В то же время процесс старения у людей проходит более стремительно, а в период старения генетическая система может давать больше сбоев, что ставит человека в большую опасность перед различными заболеваниями.

Несмотря на то, что с генетической точки зрения люди и высшие приматы, такие как шимпанзе и орангутаны, очень похожи, продолжительность жизни последних почти никогда не превышает 45-50 лет. По мнению профессора Университета Южной Калифорнии в Девисе Калеба Финча, в процессе эволюции люди смогли лучше приспособиться к борьбе с заболеваниями и разнообразными биологическими инфекциями, а также изменениями, вызванными большим потреблением мяса, в частности увеличением объемов холестерина.

Финч говорит, что конкретные генетические преимущества, полученные человеком за миллионы лет, сейчас являются предметом исследований, однако уже сейчас ясно, что гены, которые с одной стороны повышают стойкость человека к различному внешнему воздействию, имеют и обратную сторону в виде онкологических заболеваний, таких как рак или лейкемия, а также в виде сердечных заболеваний. Еще большую разницу между людьми и их ближайшими биологическими родственниками за сотни тысяч лет внесли гастрономические особенности. К примеру, ученые обнаружили только в организме людей транспортный холестериновый ген, так называемый аполипопротеин Е, побочным действием которого является склонность к воспалительными процессам и множеству аспектов старения мозга и артерий, а также заболеваний, связанных с этими процессами.

Вышеупомянутый ген ApoE3 является уникальным для людей, более того, в процессе эволюции на базе этого гена возникла его минорная модификация - ApoE4, минимальные сбои в работе которой ведут к сбоям нейронного развития головного мозга, провоцируют болезнь Альцгеймера и существенно увеличивают риск сердечных заболеваний. Финч говорит, что неверная работа только лишь этого гена стоит людям в среднем четырех лет жизни.

Генетика старения и продолжительности жизни является одной из фундаментальных дисциплин в исследовании процессов старения. Собственно, с нее и начались успехи в биологии старения, поскольку в начале 1990-х годов Синтия Кеньон из Университета Южной Калифорнии (США) показала, что мутация всего лишь в одном гене у модельного животного — круглого червя-нематоды C. elegans — приводит к увеличению продолжительности его жизни в 2 раза. Этот факт позволил многим исследователям поверить, что старение действительно можно существенно замедлить и сделать это возможно уже здесь и сейчас.

С тех пор исследования продолжались, к нематодам добавились другие модельные животные: плодовые мушки дрозофилы (излюбленный и хорошо изученный генетиками объект) и мыши. Благодаря использованию методов трансгенеза, все они тоже стали активно использоваться в исследованиях генетики старения. Если в эксперименте Синтии Кеньон имела место мутация, выключающая активность продукта определенного гена, то трансгенез позволяет исследовать, как, наоборот, активация дополнительных копий определенных генов способна влиять на продолжительность жизни и скорость старения.

И здесь самой удобной модельной системой оказались как раз плодовые мушки дрозофилы, поскольку продолжительность их жизни очень невелика.

Эксперименты с ними позволили открыть десятки генов продолжительности жизни.

Оказалось, что гены, ассоциированные со старением, в большинстве своем связаны с регуляцией метаболизма и реагированием клетки на недостаток нутриентов. Нутриенты — это питательные вещества, например аминокислоты, которые нужны для построения клеточных белков, обеспечивающих нашу жизнедеятельность. Гены, связанные с детекцией нутриентов, кодируют, прежде всего, различные киназы (разновидность ферментов. — Forbes ), которые активизируют процессы клеточного роста и деления, но при этом из-за интенсификации метаболизма возрастает число ошибок, клетка быстрее стареет, и организм в целом — тоже. Поэтому мутации в генах, участвующих в регуляции метаболизма и ускоряющих его, приводят к замедлению старения и увеличению продолжительности жизни.

В качестве известного примера можно привести киназу mTOR. Она находится в центре метаболических путей, которые в ответ на наличие аминокислот в клетке запускают процессы синтеза белка, и в конечном итоге — роста и деления клеток. Но при этом данная киназа выключает за ненадобностью механизмы очищения клетки от внутриклеточного мусора. Аутофагия — это явление, когда клетка сама себя начинает переваривать, уничтожая прежде всего поврежденные митохондрии и агрегаты белков. Тем самым замедляется старение. А когда питательных веществ у клетки достаточно, ей энергозатратный процесс самопереваривания включать не нужно. Поэтому процесс старения ускоряется.

Выключение киназы mTOR посредством мутации или фармакологического ингибирования (замедления) приводит к активации аутофагии и замедлению старения. Ингибирующий эффект означает подавление функций определенного гена или кодируемого данным геном белка. Мы можем выключать активность продукта данного гена фармакологически, когда вещество связывается с каким-то ферментом, блокирует его активность или резко уменьшает ее. И если этот продукт гена был задействован в процессе старения, то мы получаем замедление старения.

Гены, которые можно отнести к генам долголетия, наоборот, участвуют в репаративных (восстановительных) процессах в клетке, например гены белков теплового шока. Когда клетка подвергается стрессу, белки в ней сбиваются в агрегаты, что не позволяет им выполнять какую-то функцию. В результате замедляется жизнедеятельность клетки (для клетки это плохо и приводит к ускоренному старению), и активируются белки теплового шока, которые растаскивают эти агрегаты или отправляют их на утилизацию (аутофагия).

Если трансгенез раньше активно использовался на простых модельных животных, таких как дрозофила, нематода, то в настоящее время все чаще проводятся более дорогие и длительные исследования, когда трансгенез осуществляют на мышах. Мыши — это уже млекопитающие, эволюционно они близки к людям, поэтому такие исследования особенно ценны. Вот только эксперименты с мышами длятся целые годы. Зато результаты таких исследований, по сути, являются доклиническими испытаниями, результаты которых можно пытаться применять в медицинской практике.

Если мы знаем ген-мишень, мы можем пытаться регулировать его активность при нормальном старении, в том числе и в человеческом организме.

Это может быть либо фармакологическая регуляция, когда подбираются вещества, ингибирующие функцию продукта, предположим, старение-ассоциированного гена или, наоборот, выключающие ингибитор гена долголетия. Это фармакологический путь, который ведет в конечном итоге к созданию геропротекторов — фармакологических препаратов, замедляющих старение.

Однако на подходе уже и генная терапия, когда мы сможем управлять функцией гена в организме человека, внося, например, дополнительную копию и активизируя ее в какой-то ткани-мишени. С помощью генно-терапевтического подхода мы сможем замедлять процессы старения сосудов, чтобы побороть атеросклероз, замедлить сердечную недостаточность, бороться с болезнью Альцгеймера или Паркинсона. Именно сердечно-сосудистые, метаболические и нейродегенеративные возрастные болезни являются основными причинами смертности на сегодняшний день.

Генетика старения и продолжительности жизни за последние пару десятков лет позволила выявить больше тысячи генов-мишеней, ассоциированных со старением и долголетием. И ряд этих генов-мишеней кодируют белки, для которых известны фармакологические регуляторы. Например, уже упоминавшаяся киназа mTOR имеет в качестве ингибитора вещество, которое называется рапамицин. И было показано, что добавление рапамицина способно приводить к увеличению продолжительности жизни у мышей до 25%. Кроме того, эксперименты Синтии Кеньон в свое время показали, что мутации в гене киназы P3K могут приводить к увеличению продолжительности жизни вдвое. А наши эксперименты уже на дрозофиле выявили, что фармакологические ингибиторы киназы P3K приводят к 20%-ному увеличению продолжительности жизни. Это, конечно, не увеличение в разы, но, тем не менее, наши фармакологические эффекты воспроизводят генетический подход, что вселяет надежду на их применение в будущих лекарствах.

Ингибиторы циклооксигеназ (ферментов, которые участвуют в процессах воспаления), такие как аспирин, ибупрофен — тоже являются, по-видимому, потенциальными геропротекторами и, замедляя процесс старения, увеличивают продолжительность жизни в модельных экспериментах. Геропротекторный эффект ибупрофена был выявлен международной командой исследователей из Вашингтонского университета, Института старения Бака и нашей группой одновременно на трех модельных организмах, что вселяет надежду на универсальность этого эффекта и его применение в медицине. Спектр таких препаратов сейчас существенно расширяется.

К сожалению, фармакологически не все мишени являются доступными, не все регулируются какими-то веществами, но здесь может помочь генная терапия. Уже есть два исследования на мышах, когда с помощью генной терапии продолжительность их жизни увеличивалась на 22%. И еще один эксперимент показал, что введение гена теломеразы (дополнительной копии гена фермента, достраивающего концы хромосом) тоже очень существенно продлевало жизнь мышам. То есть те мишени, которые фармакологически недоступны, мы в перспективе сможем регулировать уже с помощью генной терапии.