Легкие – как они работают? Строение лёгких. Газообмен в лёгких и тканях Газообмен между легкими и тканями происходит в

Инструкция

В легочном дыхании принимают участие межреберные мышцы и диафрагма - плоская мышца, находящаяся на границе брюшной и грудной полостей. При сокращении диафрагмы давление в легких понижается давление, и в результате в них устремляется воздух. Выдох делается пассивно: легкие самостоятельно выталкивают воздух наружу. Процесс дыхания контролируется частью головного мозга – продолговатым мозгом. В нем находится центр регуляции дыхания, который реагирует на присутствие в крови углекислого газа. Как только его уровень повышается, центр посылает сигнал диафрагме по нервным путям, она сокращается, и происходит вдох. При повреждениях дыхательного центра применяют искусственную вентиляцию легких.

Процесс газообмена осуществляется в альвеолах легких - микроскопических пузырьках, находящихся на концах бронхиол. Они состоят из сквамозных (дыхательных) альвеоцитов, больших альвеоцитов и хеморецепторов. Основная роль в данном случае принадлежит кровеносной системе. Поступивший в альвеолы легких кислород проникает в стенки капилляров. Подобный процесс происходит вследствие разницы в крови и в воздухе, находящемся в альвеолах. Кровь в венах имеет меньшее давление, поэтому из альвеол кислород устремляется в капилляры. Углекислый газ в альвеолах имеет меньшее давление, поэтому из венозной крови он поступает в просвет альвеол.

В крови находятся эритроциты, содержащие белок гемоглобин. К гемоглобину присоединяются молекулы кислорода. Обогащенная кислородом кровь называется артериальной, она переносится к сердцу. Сердце перегоняет ее к клеткам тканей. В клетках кровь отдает кислород, а взамен забирает углекислый газ, который также переносится с помощью гемоглобина. Затем происходит обратный процесс: кровь поступает из тканевых капилляров в вены, в сердце и в легкие. В легких венозная кровь с углекислым газом поступает в альвеолы, углекислый газ вместе с воздухом выталкивается наружу. Двойной газообмен происходит в альвеолах молниеносно.

Жизненная емкость легких включает в себя дыхательный объем, а также резервные объемы вдоха и выдоха. Дыхательный объем – это количество воздуха, поступающее в легкие при 1-ом вдохе. Если после спокойного вдоха сделать усиленный вдох, в легкие поступит дополнительное количество воздуха, которое называется резервом объема вдоха. После спокойного выдоха можно выдохнуть еще некоторое количество воздуха (резервный объем выдоха). В целом, жизненная емкость легких составляет наибольшее количество воздуха, которое человек способен выдохнуть после глубокого вдоха.

Кровь, которая течет к легким от сердца (венозная), содержит мало кислорода и много углекислого газа; воздух в альвеолах, наоборот, содержит много кислорода и меньше углекислого газа. Вследствие этого через стенки альвеол и капилляров происходит двусторонняя диффузия -. кислород переходит в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином. Кровь, насыщенная кислородом, становится артериальной и по легочным венам поступает в левое предсердие.

У человека обмен газами завершается в несколько секунд, пока кровь проходит через альвеолы легких. Это возможно благодаря огромной поверхности легких, сообщающейся с внешней средой. Общая поверхность альвеол составляет свыше 90 м 3 .

Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.

Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

Газообмен в легких. Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа - 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше - 4-4.5%. Что же происходит с воздухом в легких?

Вы помните, что альвеолы легких образуют огромную поверхность. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом.

Дыхательные движения. Газообмен в организме возможен только при условии постоянной смены воздуха в легких. Поэтому дыхание происходит постоянно. Вдохнув первый раз во время рождения, человек дышит всю жизнь. Дыхательный цикл складывается из вдоха и выдоха, которые ритмично следуют один за другим. В легких нет мышц, которые могли бы попеременно сжимать и расширять их. Легкие растягиваются пассивно, следуя за движениями стенок грудной полости. Дыхательные движения совершаются с помощью дыхательных мышц. В выдохе и вдохе участвуют две группы мышц. Основные дыхательные мышцы - это межреберные мышцы и диафрагма.

При сокращении наружных межреберных мышц ребра поднимаются, а диафрагма, сокращаясь, становится плоской. Поэтому обьем грудной полости увеличивается. Легкие, следуя за стенками грудной полости, расширяются, давление в них уменьшается и становится ниже атмосферного. Поэтому воздух по воздухоносным путям устремляется в легкие - происходит вдох.

При выдохе внутренние межреберные мышцы опускают ребра, диафрагма расслабляется и становится выпуклой. Ребра под действием собственного веса и сокращения внутренних межреберных мышц, а также мышц живота, которые прикрепляются к ребрам, опускаются. Грудная полость возвращается в исходное состояние, легкие уменьшаются в обьеме, давление в них увеличивается, становится чуть выше атмосферного. Поэтому избыток воздуха выходит из легких - происходит выдох.

Так осуществляются спокойный вдох и выдох. В глубоком вдохе принимают участие мышцы шеи, стенок грудной полости и живота.

Дыхательные движения совершаются с определенной частотой: у подростков - 12-18 в минуту, у взрослых - 16-20.

Жизненная емкость легких. Важным показателем развития органов дыхания является жизненная емкость легких. Это наибольший объем воздуха, который может выдохнуть человек после глубокого вдоха. Ее измеряют с помощью специального прибора - спирометра. У взрослого человека жизненная емкость в среднем составляет 3500 мл.

У спортсменов этот показатель обычно на 1000-1500 мл больше, а у пловцов может достигать 6200 мл. При большой жизненной емкости легкие лучше вентилируются, организм получает больше кислорода.

У тучных людей жизненная емкость легких на 10-11% меньше, поэтому у них обмен газов в легких понижен.

Регуляция дыхания. Деятельностью дыхательной системы управляет дыхательный центр. Он расположен в продолговатом мозге. Идущие отсюда импульсы координируют мышечные сокращения при вдохе и выдохе. От этого центра по нервным волокнам через спинной мозг поступают импульсы, которые вызывают в определенном порядке сокращение мышц, ответственных за вдох и выдох.

Возбуждение самого центра зависит от возбуждений, идущих от различных рецепторов, и от химического состава крови. Так, прыжок в холодную воду или обливание холодной водой вызывает глубокий вдох и задержку дыхания. Резко пахучие вещества также могут вызвать задержку дыхания. Это связано с тем, что запах раздражает обонятельные рецепторы в стенках носовой полости. Возбуждение передается в дыхательный центр, и его деятельность затормаживается. Все эти процессы осуществляются реф-лекторно.

Слабое раздражение слизистой оболочки полости носа вызывает чихание, а гортани, трахеи, бронхов- кашель. Это защитная реакция организма. При чихании, кашле инородные частицы, попавшие в дыхательные пути, удаляются из организма.

В дыхательном центре находятся клетки, чувствительные к малейшему изменению содержания углекислого газа в межклеточном веществе. Избыток углекислого газа возбуждает дыхательный центр, это, в свою очередь, вызывает учащение дыхания. Лишний углекислый газ быстро удаляется, и, когда его концентрация возвращается к норме, частота дыхания снижается.

Как вы видите, регуляция дыхания происходит рефлекторно, но под контролем коры полушарий большого мозга. Это легко доказать; ведь каждый из нас может по собственному желанию изменить частоту дыхательных движений.

Краткая история курения

Один из самых распространенных пороков человека - курение табака - имеет 500-летнюю историю. В Европу листья и семена табака были привезены из Америки моряками экспедиции Христофора Колумба. Сначала табак был объявлен всеисцеляющей лечебной травой. Вот как описывались его чудодейственные свойства в одной испанской книге: «Табак вызывает сон, избавляет от усталости, успокаивает боль, вылечивает головную боль...»

Поэтому нет ничего удивительного в том, что уже в XVI в. табак прочно завладел аристократическими салонами. Особенно популярным стало курение в XVII и XVIII вв. Мужчины, женщины и молодые люди начали курить, нюхать и жевать табак.

Рекомендуемый вначале как лекарственное средство, табак, однако, очень скоро приобрел плохую славу. Борьбу с табакокурением начала испанская королева Изабелла. Ее примеру последовал французский король Людовик XIV, а русский царь Михаил Федорович Романов приказал отрезать нос каждому, кто курит. Однако уже ничто не могло остановить распространение этой «дымящейся отравы». Курение табака превратилось в новую статью дохода для многих торговцев. Приблизительно в середине XVIII в. в Бразилии начали делать папиросы, а в начале XIX в. - производить сигареты.

Так за сравнительно короткое время были созданы все условия для быстрого распространения курения табака. Этот порок постепенно охватил все слои населения. В настоящее время курение - самый распространенный вид наркомании во всем мире.

Состав табачного дыма и его действие на организм

Для тканей легких очень опасно курение. Ведь смола, образующаяся при сгорании табака и бумаги, не может выводиться из легких и в течение многих лет оседает на стенках воздухоносных путей, буквально убивая клетки их слизистой оболочки. Легкие курильщика теряют свой естественный розовый цвет, становятся черными. Такие легкие чаще подвержены различным заболеваниям, в том числе и онкологическим. В настоящее время наука располагает тысячами доказательств, подтверждающих тот факт, что табак содержит губительные для организма человека вещества. Их около 400! Вредные вещества, содержащиеся в табачном дыме, могут быть объединены в четыре группы: ядовитые алкалоиды, раздражающие вещества, ядовитые газы, канцерогенные вещества.

Одним из самых известных веществ является никотин, получивший свое название по имени французского посланника в Лиссабоне Ж. Нико, который во второй половине XVI в. преподнес Марии Медичи эту «всеисцеляющую» травку для лечения мигрени. Никотин содержится в листьях различных растений: табака, индийской конопли, польского хвоща, некоторых плаунов и др. Одной капли чистого никотина (0,05 г) достаточно, чтобы умертвить человека. Никотин из крови матери легко проникает через плаценту в кровеносную систему плода.

В табачных листьях, кроме никотина, содержится еще 11 алкалоидов, важнейшие из которых: норникотин, никотирин, никотеин, никотимин. Все они сходны с никотином по строению и свойствам и поэтому имеют похожие названия.

Печальная статистика раковых заболеваний курильщиков достаточно красноречива. Канцерогенным действием обладают различные ароматические углеводороды, которые содержатся в табачном дыму (например, бензопирен), некоторые содержащиеся в дыму фенолы, а также нитрозамин, гидразин, винилхлорид и др. Из неорганических веществ - это в первую очередь соединения мышьяка и кадмия, радиоактивный полоний, олово и висмут-210.

Из табачного дыма выделен десяток веществ, оказывающих раздражающее действие на слизистую оболочку. Наиболее важным из них является ненасыщенный альдегид пропеналь. Он обладает высокой химической и биологической активностью, вызывая у курильщиков кашель.

В газовой фракции табачного дыма содержится большое число неорганических соединений, обладающих высокой химической и биологической активностью, таких как оксид углерода, сероводород, цианид водорода и др.

  • Когда больной гриппом или другим недугом чихает, микроскопические капельки слюыы и слизи, содержащие бактерии и вирусы, летят на расстояние до 10 м, причем некоторое время эти капельки способны «висеть» в воздухе, заражая окружающих.

Проверьте свои знания

  1. Расскажите, какие процессы происходят в легочных альвеолах.
  2. Каков механизм газообмена в тканях?
  3. Каким образом совершаются дыхательные движения?

Подумайте

  1. Чем отличается легочный газообмен от тканевого?
  2. Что выгоднее для ныряльщика - сделать перед погружением несколько вдохов и выдохов или набрать в легкие как можно больше воздуха?

В альвеолах легких происходит газообмен: кровь насыщается кислородом и выделяет углекислый газ. В тканях происходит обратный процесс. Вентиляция легких происходит благодаря вдоху и выдоху, которые осуществляются при сокращении и расслаблении диафрагмы и межреберных мышц. Деятельностью дыхательной системы руководит нервная система. Изменение концентрации углекислого газа в крови влияет на частоту дыхательных движений.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4% (табл. 13).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%).

И , входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Таблица 13

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давление и напряжение газов

В легких из альвеоляр ного воздуха переходит в , а углекислый газ из крови поступает в легкие. Переход газов из воздуха вжидкость и из жидкости ввоздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости.

Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, - смесь газов. В этой смеси газов кислорода содержится 20,94%, углекислого газа - 0,03% и азота - 79,03%. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм, азота - 79,03% от 760 мм, т. е. около 600 мм, углекислого газа в атмосферном воздухе мало - 0,03% от 760 мм-0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100-105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 40 мм рт. ст., поэтому в легких из альвеолярного воздуха переходит в .

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением.

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам И. М. Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Такие условия есть в легких. При глубоком вдохе альвеолы растягиваются и их поверхность достигает 100-150 м 2 . Так же велика и поверхность капилляров в легких. Есть и достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови (табл. 14).

Таблица 14

Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови (в мм рт. ст.)

Из таблицы 14 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110-40 = 70 мм рт. ст., а для углекислого газа 47-40=7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 см 3 кислорода в минуту. Следовательно, разность давлений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода - крови. Каждый грамм гемоглобина связывает 1,34 см 3 кислорода. обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При этих условиях 97% гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород кровью приносится к тканям. Здесь парциальное давление кислорода низкое и оксигемоглобин - соединение непрочное - высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом. Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар «Зенит», на борту которого находились три воздухоплавателя, достиг высоты 8000 м. Когда шар приземлился, в живых остался только один человек. Причиной гибели людей было резкое снижение величины парциального давления кислорода на большой высоте. На больших высотах (7-8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток кислорода, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м, как правило, требует пользования специальными кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется