Гены, влияющие на старение. Управление геном обратило вспять старение организма Что именно определяет продолжительность жизни

Никто из нас не хочет стареть. Старение является символом смерти, внушает страх. Больше всего людей пугает внешнее проявление старости: одряхление кожи, выпадающие зубы, ухудшение всех функций организма. Однако ген старения присутствует в каждом живом организм. У кого-то получается стареть красиво, но для большинства людей увядание тела – большое испытание.

Есть ли какая-то возможность предотвратить этот процесс? Со времен своего существование человечество пытается найти ответ на этот волнующий умы вопрос, надеясь, что все-таки существует лекарство от старости и смерти.

Эту философскую загадку ученые пытаются разгадать долгое время. Множество историй, фильмов, научных работ создано на эту тему. Существует даже специальная наука о бессмертии, называемая «иммортология». Большинство религиозных течений считают, что душа бессмертна, но телу, увы, отведено лишь короткое время на земле.

Несмотря на то, что бессмертие рассматривается научными умами скорее как идея, попытки найти ответ на вопрос «можно ли жить вечно», делаются постоянно. На сегодня ученые провели огромное количество исследований относительно генетики старения. И мы можем ознакомиться с их находками, приоткрывающими тайну увядания и смерти организма человека.

Как остановить старение?

Существует около 500 теорий о том, как отсрочить и остановить старость. Самыми популярным в современной науке считаются 3 типа исследований относительно вечной жизнедеятельности человека:

  • стволовые клетки;
  • генетика старения;
  • нанотехнологии.

Вечная молодость вместе со стволовыми клетками

Стволовые клетки ответственны за обновление. Когда процесс их замены замедляется и ухудшается, организм дает сигнал о старении. Клетки не делятся и начинаются процессы увядания.


Полипотентные клетки (еще одно название стволовых клеток) помогают человеческому организму развиваться. Сегодня наука хорошо продвинулась в этом вопросе. Ученые научились выращивать из таких клеток ткани, органы и выработали их методы размножения в лабораторных условиях. Это немалый вклад на пути к вечной жизни. Самые первые открытия в этой сфере сделаны американскими учеными.

Ген продолжительности жизни. Теломеразная теория и ген P16

Несмотря на то, что стволовые клетки способны надолго продлить молодость, а также восстанавливают организм после любых повреждений, главным образом к старению и смерти приводят процессы в геноме человека. Активность генов с возрастом меняется. В начале жизни человек эффективнее противостоит вирусам, бактериям, чем в конце. Геном укорачивается. Из этих наблюдений происходит теломеразная теория.


Теломеры – участки ДНК, связанные с биологическими часами человека. Делясь, такие клетки становятся все короче и короче. И когда они достигают предела, происходит аппоптоз – гибель клетки.

Интересный факт: раковые клетки отличаются от обычных тем, что содержат теломеразу, фермент, препятсвующий уменьшению теломеров. Поэтому онкоклетки не стареют. Присутсвие ДНК кода теломеразы в здоровой клетке сделает ее раковой.

Существует еще одна генетическая причина старения клеток. Эта находка принадлежит китайским ученым. Предположение о присутствии гена старения существует давно и оно имеет основание. Ген старения называется P16. Этот ген напрямую связан с теломерами, он влияет на их длину.

Как продлить молодость, воздействуя на ген P16? Оказывается, сдерживание активности этого гена может увеличить жизнь клетки, способствовать уменьшению сокращения теломеров

Вывод прост: нужно заблокировать этот ген, и тогда клетка сможет жить вечно. Но возможно ли это? Ответ зависит от будущего медицины. На данном этапе развития науки ученые работают над вопросом. Существует предположение, что блокировка P16 станет возможно благодаря нанотехнологиям.

Нанотехнологии против возрастных изменений

ПрименениЕ нанотехнологий в сфере блокирования процессов старения организма, заключается в следующем. Ученые сделали предположения, что нанороботы смогут блокировать любые негативные изменения в клетках. Так, молекулярные роботы будут осуществлять своеобразную «починку» клеток, совершенствуя тело полностью. Но только будет ли тогда человек человеком?


Другие пути достижения бессмертия в науке

Ученые считают, что продлить себе жизнь можно и другими способами. К ним относятся:

  • пониженная температура тела. Эксперименты проводятся в Японии. Материалом для них служат мыши. Считается, понижение температуры тела на 1 градус удлиняет жизнь на 15-20 %.
  • трансплантология. Активно развивающийся метод, становящийся привычным явлением в мире. Совершено уже более 40 тысяч операций по трансплантологии. Замена органов не победит смерть, но существенно увеличивает длину жизни.
  • Смена носителя сознания (клонирование). В некоторых странах уже проводились опыты клонирования организмов и эмбрионов. На сегодня ученые пришли к выводу, что данная процедура в будущем даст много негативных результатов для человечества, но данный вывод не окончателен.
  • Крионика. Представляет собой замораживание тела, криохранение. Такой подход также получает все большее распространение. Некоторые ученые считают, что сама природа подсказывает этот секрет сохранения жизни. Ведь многие организмы выдерживают заморозку и живут дальше.

Что мы можем сделать сегодня для своего долголетия?

Важнейший орган, отвечающий за наше долголетие – это мозг. Именно его еще не научились пересаживать. Не зря говорят, что нужно беречь нервы. Ведь нейроны не имеют способности восстанавливаться и размножаться, в отличие, например, от клеток кишечника. С годами число нервных клеток в мозге уменьшается. Но этому органу в то же время свойственна пластичность. Нейроны не восстанавливаются, но мозг может перестраивать свою работу в уже существующей ситуации. Жизнеспособные клетки выполняют функцию погибших.


Чтобы наш мозг как можно дольше продолжал свою работу, нужно:

  1. Беречь нервные клетки, не подвергая их губительным воздействиям. Отрицательно воздействует на нейроны алкоголь, инфекционные заболевания, стрессы, непостоянное артериальное давление.
  2. Тренировать мозг, функции нервной системы. Упражнения включают в себя тренировку физических способностей (спорт, танцы, закаливание, бег, упражнения для дыхания), тренировку умственных способностей (развитие памяти, функций внимания, упражнения для логики).
  3. Немаловажным для долголетия является психологический фактор. Оказывается, если человек пережил какое-то заболевание и выздоровел благодаря своей силе воле, он скорее всего будет жить дольше, чем тот, кто жил спокойной размеренной жизнью, ничем не болея. Неспроста придумали такую науку, как психосоматика. Все процессы, происходящие в нашем теле связаны с нашими глубинными установками, переживаниями, процессами подсознания. Положительные мысли – эффективное, рекомендуемое врачами лекарство.

Оптимизм и вера также способствуют долголетию

Что будет, если люди будут жить вечно?

Наука развивается, с нею и возможности медицины. Вполне возможно, что человек сможет подчинить себе процессы старения. С одной стороны здесь есть плюсы. Продлив жизнь, люди смогут наслаждаться всеми ее процессами дольше, можно будет не торопиться с рождением детей. Но если говорить о бессмертии, то здесь есть другая сторона. Перенаселенность планеты может повлечь голод, безработицу и жизнь, которая не будет радовать никого. Поэтому вопрос о бессмертии надолго останется спорным и философским.

Также далеко не все жаждут вечной жизни. Вспомним уже пожилых людей, им свойственна усталость от существования. Прожив жизнь, люди понимают, что все не вечно, больше тяготея к спасению души.

В заключении отметим, что являясь высокоразвитым существом, человек может продлить свою жизнь, даже не прибегая к новейшим методам медицины. Тренировки, саморазвитие, забота о себе, позитивный настрой делают немало для здоровья, продления молодости и красоты. Все в наших руках. Креативные мысли, идеи, которые передаются другим, дети, обучение других людей продлевают нашу жизнь и дарят бессмертие на духовном уровне.

Если бы существовали гены целиком ответственные только за старение, и старение определялось (в большой степени) только ими, то в перспективе стала бы возможной коррекция генома и рождение (в результате искусственного оплодотворения) не стареющих детей, при этом их дети тоже не старели бы. В недалеком будущем станет возможно изменять гены и уже живущего человека, с помощью нанотехнологий

Определяется ли генами различие продолжительности жизни, это ключевой вопрос. Казалось бы, однозначно положительно решает его различие в продолжительности жизни животных земли, которое варьируются до 1-го миллиона раз, и от 10 до 50 раз внутри групп с одинаковым уровнем организации. При этом нет жестких правил, вроде - большие животные живут больше маленьких, да и внутри одного вида, например грызуны или птицы встречается очень большая вариабельность. Некоторые виды черепах живут в около 300-т лет, обыкновенная щука может прожить 250-т.

Хотя нет убедительных доказательств, свидетельствующих о влиянии наследственности на продолжительность жизни у человека, в пользу того, что такая зависимость существует, говорит ряд статистических исследований.

Недавно, нокаутировав ген простейшего червя, исследователи добились увеличения продолжительности его жизни в 6-ть раз. Эти черви, имеют длину менее одного миллиметра, состоят всего из тысячи клеток. Ни черви, ни мухи-дрозофилы (на которых тоже проводили подобные эксперименты) на старости лет не страдают от диабета, рака или болезни Альцгеймера, у них вообще нет костей. В отличие от человека это очень простые организмы. Пока таким способом удалось влиять лишь на старение отдельных примитивных организмов.

Старение человека обусловлено не одним, а многими сложными процессами, протекающими в организме. Поэтому найти один-единственный управляющий ген – например, ген старения или ген смерти от которого все зависит, вряд ли удастся, скорее это будет несколько генов.

Возможно, в процессе старения принимают участие не два-три, а все (или почти все) существующие гены человека. И каждый ген по-своему определяет количество лет, отпущенных организму. При этом искать самый главный, ответственный за старение ген (или несколько таких генов) все равно что искать в муравейнике того главного муравья который раздает управляющие приказы своим сородичам:)

Есть мнение, что генетические факторы старения все же существуют, и процесс старения регулируется наследственностью для обычного человека в диапазоне примерно 25%.

Гены, определяющие МЕЖВИДОВЫЕ различия продолжительности жизни действительно гены долголетия. Пока невозможно какой-либо ген определенно отнести к этой категории, но предполагается что эти гены должны регулировать течение множества процессов развития и дегенерации.

Выводы

Несмотря на то, что полной ясности пока нет, (оптимистичные утверждения отдельных геронтологов в расчет не берутся), в последние десятилетия действительно достигнуто существенное продвижение в понимании ряда механизмов старения.

Есть серьёзные основания ожидать в ближайшие десятилетия перехода в стадию практического применения накопленных знаний. Можно ожидать достижения уровня науки и техники, необходимого для многократного увеличения продолжительности жизни, ближе к середине 21-го века.

Для этого требует совместная работа больших коллективов ученых, анализ систем организма связанных со старением, а также, возможно, моделирование таких систем при помощи высокопроизводительных компьютеров. Расшифровка генома человека, и расчет сворачиваемости белков, это небольшие шаги в направлении конечной цели.

Как бы мне, ребята, телом не стареть?

Ученые утверждают: человеческий организм запрограммирован на 120-150 лет. Но прожить такую долгую жизнь можно только в идеальных условиях. Мечтать о таких условиях не вредно, но сделать мечту явью вряд ли получится, ведь самый сильный раздражающий фактор для человека — его же собрат: сосед по дому, даче, спутники в автобусе, коллеги по работе и т.п. Поэтому взоры ученых мужей обращены внутрь человеческого организма. Медики, биологи, генетики и другие специалисты упорно ищут, какие изменения в наших внутренностях смогут обеспечить долгую и счастливую жизнь. А может, все-таки надо менять не человеческий организм, а окружающий нас мир? Как только находится ответ на один из вопросов, тут же разгораются научные и околонаучные споры. И что нам, простым обывателям делать? Наверное, выслушать всех и… Правильно, набраться терпения и начать следовать хотя бы одному рецепту продления жизни. А там, глядишь, то, что казалось сказкой, станет былью.

Ген старения: то ли выдумка, то ли реальность

Несколько лет назад мир пришел в необычайное волнение: бельгийские ученые открыли гены, отвечающие за старение организма . Ученые опирались на открытие американских коллег, которые утверждали: так называемые теломеры — участки ДНК, сосредоточенные на концах хромосом, имеют связь с продолжительностью жизни. С каждым делением клетки они постепенно уменьшаются, поэтому, чем больше их изначальный, заложенный генами размер, тем дольше может прожить человек. Причем фактор наследуется вместе с Х-хромосомой (половой хромосомой).

Тут же, правда, ученые мужи оговорились: возможно, старение определяется целым набором генов, а тот ген, что они обнаружили, лишь один из многих.

В ту же дуду подули и американские исследователи из клиники, расположенной в штате Миннесота. Они сосредоточились на функциях генов р16 и р19, которые способны затормозить рост раковых опухолей. Как известно, ген «отвечает» за производство в клетке определенного белка. Так вот если белок, за который «отвечает» ген р16, производится в неимоверных количествах, ткани начинают стремительно стареть. Такой же эффект наблюдается и с белком, кодируемым геном р19. Китайские ученые тут же предположили: чтобы остановить процесс старения, надо ген р16 просто заблокировать.

Казалось бы, чего проще. Но не может организм без этого гена существовать — эксперименты на мышах это убедительно продемонстрировали. Экспериментируя и так, и этак, ученые сделали вывод: ген р16 запускает процесс старения, а р19 его останавливает. Механизм же старения клеток таков: под «руководством» гена р16 клетки вырабатывают слишком много белка, избыток которого повреждает окружающие клетки, отрицательно воздействует на функции органов и тканей и вызывает характерные симптомы старения. Если это открытие и не сможет существенно продлить годы нашей жизни, но задержать дряхление (утрату мышечной массы) организма и помутнение хрусталика глаза поспособствует.

Вы обрадовались? Рановато . Вслед за этим открытием, последовало заявление директора Института исследования поблеем старения и здоровья при Ньюкаслском университете профессора Томаса Кирквуда. По его мнению, в человеческом геноме, особого гена, включающего в нашем организме механизм старения, не существует. Да и как он мог появиться, если в процессе эволюции человеку приходилось приспосабливаться к поиску пищи, искать способы, как избежать многочисленных опасностей. Увы, но в задачах первобытных людей поддержание клеток своего тела в идеальном состоянии не значилось. В первобытные времена люди умирали насильственной смертью, она являлась в образе саблезубого тигра, пещерного медведя, а то и представителя враждебного племени. И жил человек тогда от силы 25–30 лет.

Поэтому необходимости в возникновении гена, регулирующего численность населения планеты, просто не было.

Тем не менее профессор все-таки признал, что генетический фактор старения регулируется наследственностью человека, но всего лишь на 25%. 75% определяется состоянием окружающей среды, уровнем стресса, состоянием иммунной системы, предпочтениями в области диеты и образом жизни.

Надо меньше есть!

Кстати, о диете. Есть на ночь действительно вредно для жизни. Медики на полном серьезе говорят, что плотный ужин перед самым сном — главный враг человека.

Дело в том, что в организме каждого индивидуума работают так называемые «большие биологические часы» . Теорию эту впервые выдвинул еще в советские времена ленинградский профессор Владимир Михайлович Дильман. Физиологическими процессами в организме управляет особый отдел мозга — гипоталамус. Он же руководит работой гипофиза, особой железой, где вырабатываются многие гормоны, влияющие на рост и старение организма. Изменить работу внутренних органов по своему хотению и велению мы не можем. И это очень даже хорошо — кто знает, что взбредет в голову современному уставшему после долгого рабочего дня клерку? Но за это мы расплачиваемся механизмом старения.

После 20-25 лет чувствительность гипоталамуса снижается и начинается самое интересное. Гипоталамус, как ни в чем не бывало, продолжает давать команды на выработку гормонов — кортизола (гормона стресса), половых и отвечающих за аппетит. Уровень таких гормонов в крови постоянно увеличивается и, в конце концов, начинает зашкаливать. Вот тут-то и запускаются процессы старения. Гормоны же роста, которые способствуют росту мышечной ткани и двигательной активности, чем дальше, тем больше угнетаются жирами. Вечерний голод как раз и растормаживает выработку гормонов роста. Голодный организм экономит глюкозу и начинает перерабатывать свой собственный жир. В итоге — правильно, жиров становится меньше, а значит и нужные нам гормоны ничто не угнетает.

Вывод: хочешь жить долго — ложись спать голодным.

Наука против старения

Теорий, как продлить человеческий век, существует не один десяток. Интернет просто завален советами, как лет до ста расти нам без старости. Умных, заумных и просто бредовых идей полно.

На этом фоне выделяются мысли, высказанные одним из самых экстравагантных ученых — британским геронтологом Обри ди Греем. Он прославился тем, что обещает продлить нашу жизнь лет этак до тысячи. Это не бред, а стройная научная теория, сторонники которой есть и в России.

Суть такова: чтобы научиться лечить все старческие болезни и заменять состарившиеся части тела, надо объединить усилия исследователей чуть ли не во всех отраслях современной науки и медицины . Проект называется SENS (Strategies for Engineered Negligible Senescence — стратегии достижения пренебрежимого старения инженерными методами). Ди Грей утверждает, что надо лишь разорвать цепочки старения организма в самых «слабых звеньях» — там, где ученые могут это сделать. За счет этого мы получим дополнительные 20-30 лет здоровой жизни, пока мы ее будем проживать, наука продвинется вперед и отвоюет у природы еще несколько десятилетий. Так, по чуть-чуть отыгрывая годы у смерти, мы и получим вечную жизнь.

Дело за малым — создать доступную для каждого человека технологию, которая сможет восстанавливать организм до любой степени омоложения и поддерживать его в таком состоянии в течение любого времени.

Одни работами этого ученого восхищаются, другие относятся к ним с немалой долей скептицизма, но то, что они во всем мире вызывают интерес, бесспорно. А значит, не так уж мысли Обри ди Грея фантастичны. В самом деле, стоит познакомиться с отдельными элементами стратегии SENS поближе, как вы убедитесь: нет ничего невозможного. Ведь на каждый негативный процесс, происходящий в нашем организме на молекулярном уровне, авторы концепции имеют если не готовое решение, то идею — как можно процесс изменить.

Вот, например, митохондрии — энергетические фабрики клеток . Собственную ДНК имеют лишь митохондрии да еще ядро клетки. Как и все на этом свете, митохондрии могут неправильно работать или выключаться из-за генетических мутаций или повреждений. К счастью, большинство различных белков, которые нужны для правильной работы митохондрии, образуются вне ее. Поступают же они в митохондрию благодаря комплексу TIM/TOM. В собственной же ДНК митохондрии закодированы только 13 составляющих клеточную «электростанцию» белков. Так почему бы не сделать копии 13 генов и поместить их в хромосомы в ядре? Тогда, если из-за повреждения ДНК митохондрии не сможет синтезировать нужный белок, этот белок начнет поступать в митохондрию извне. Так как гены в наших хромосомах довольно надежно защищены от мутаций, не в пример тем генам, что находятся в ДНК митохондрии, то на хромосомные копии вполне можно положиться.

Тут, конечно, еще исследовать и исследовать. В частности, нужно еще понять, как пресловутый комплекс TIM/TOM сможет доставлять дополнительные белки в митохондрии. Но, как признаются сами ученые, ничего принципиально невозможного здесь нет.

Так же авторы проекта SENS предлагают разобраться и с другими проблемами старения. Всего Ди Грей выделил семь самых слабых звеньев организма. И определил, каким путем можно их усилить. Вот основные проблемы, над которыми, по мысли британского геронтолога, должны биться ученые мужи: восполнение потери клеток, исключение хромосомных мутаций, исключение мутаций в митохондриях, избавление от ненужных клеток, избавление от внеклеточных перекрестных связей, очистка организма от внеклеточного и внутриклеточного мусора. Кое-что в этом направлении уже делается. В двух лабораториях идут успешные опыты со специальными бактериями, разлагающими «плохой» холестерин. Обри предлагает пересадить к нам в организм ген — пожиратель такого холестерина. Это не фантастика. Ведь медики научились заменять гены при некоторых редких болезнях. По такому же принципу работают с ферментами, расщепляющими вещества, которые «виноваты» в старческой слепоте. А в Париже научились переносить в клеточное ядро копии здоровых генов. И таким образом борются с мутациями.

Ди Грей считает, что с помощью современных технологий можно добиться продолжительности жизни до 150 лет. Через десять лет технологии будут опробованы на мышах, путь от мыши к человеку займет лет 15. Если современный 60-летний человек проживет еще 15 лет, он получит шанс опробовать подобную терапию на себе. Медики уберут все вредные накопления, «почистят» дедулин организм, и пожилой человек вернется лет на 30 назад. Это, конечно, не полная победа над старением, а дополнительные годы жизни. Но лиха беда начало.

Россияне только «за»

В России сторонники теории ди Грея объединились в общественную организацию и основали фонд «"Наука за увеличение продолжительности жизни». Цель — выработать единый научный план по изучению процесса старения. Старение междисциплинарная проблема, изучаемая не только молекулярными биологами, генетиками и биохимиками, но и цитологами, и физиологами, математиками и специалистами многих других областей. Руководителем общественной организации стал Михаил Батин.

По мнению основателей фонда и общественной организации, развивать медицину — значит изучать механизм старения человека, искать способы его замедления и омоложения организма . Исследования в области генетики, цитологии, биохимии, биофизики жизненно необходимы для каждого человека. Сторонники идей ди Грея ратуют за создание математической модели человеческого организма. Увы, без серьезного государственного финансирования подобные исследования невозможны. Поэтому, говорится в программном заявлении, «наша общая задача — добиться выделения бюджетных средств для поиска лекарства от старости».

Заявление заявлением, но втихомолку авторы уповают больше не на государство (у него и других дел хватает), а на деньги частных инвесторов. И тогда… Каждые пять лет мы сможем проходить «техосмотр». Ну, прямо как автомобили. Если какой-то орган барахлит, его можно будет заменить на аналогичный. Нужный орган «вырастят» при помощи генной инженерии, и его можно будет «распечатать» на особом «принтере». Скажете — бред? А как насчет того, что в средние века 50-летний человек считался глубоким стариком, а сейчас мы говорим про такой возраст «в самом расцвете сил"?

Но, как пишут в официальных документах, в связи со всем вышеизложенным возникает вопрос: если вечная жизнь не за горами, может, стоит задуматься над проблемой вечной любви? Государство на такие исследования уж точно не раскошелится. Ау, частные инвесторы, где вы?

03 Декабря 2015

Учёные выявили гены, определяющие старение человека

Изучив около 40 тысяч генов трёх различных организмов, учёные из Швейцарской высшей технической школы Цюриха обнаружили гены, задействованные в процессе физического старения (Peter Rüegg, Genes for a longer, healthier life found). Причём оказалось, что, если повлиять лишь на один из этих генов, увеличивается продолжительность здоровой жизни лабораторных животных. Вероятно, аналогичный подход окажется действенным, если применить его к человеку, делают вывод исследователи.

В поисках вечной молодости человечество столетиями пыталось найти ответ на вопрос, как и почему мы стареем. Достижения последних десятилетий, особенно в области молекулярной генетики, позволило значительно ускорить поиск генетической основы процесса старения.

До сих пор эксперименты ограничивались отдельными модельными организмами, например, червями нематодами C. elegans. Исследования показали, что на продолжительность жизни этого существа влияет около 1% его генов. Однако исследователи уже давно предполагали, что подобные гены возникли в процессе эволюции у всех живых существ – от дрожжей до человека.

Учёные из Цюриха совместно с консорциумом JenAge из Йены (Германия) систематизировали геномы трёх различных организмов в поисках генов, связанных с процессом старения и присутствующих у всех трёх видов, и таким образом выделили ген общего предка.

Несмотря на то, что такие гены (их называют ортологичными) находятся в различных организмах, они тесно связаны друг с другом. Также они обнаружены и в организме человека.

Для обнаружения этих генов учёным пришлось изучить данные по 40 тысячам нематод, рыбок данио рерио и мышей. В ходе скрининга учёные стремились определить, какие из генов регулируются одинаковым образом во всех трёх организмах во время каждой из стадий жизни – молодости, зрелости и старости (то есть они либо активируются, либо подавляются в процессе старения).

В качестве параметра, определяющего активность генов, исследователи измерили количество молекул мРНК, обнаруженных в клетках этих животных. мРНК транскрибирует ген и выработку соответствующего белка.

«В случае, если в организме много копий мРНК конкретного гена, это свидетельствует о его высокой активности. Напротив, если копий мРНК мало, значит, активность гена низкая, – объясняет профессор Майкл Ристоу (Michael Ristow) из Швейцарской высшей технической школы Цюриха. – Мы использовали статистические модели для установления пересечений генов, которые регулируются одинаковым образом у червей, рыб и мышей. Как оказалось, у трёх этих видов живых существ присутствует всего 30 общих генов, значительно влияющих на процесс старения».

Проведя эксперименты, в ходе которых мРНК соответствующих генов были выборочно заблокированы, учёные точно определили их влияние на процесс старения у нематод. Блокировка десятка генов продлила жизнь червей по меньшей мере на 5%.

«Один из этих генов оказался особенно влиятельным: ген bcat-1. Его отключение увеличило среднюю продолжительность жизни нематод до 25%», – рассказывает Ристоу (см. график из статьи в Nature Communications – ВМ).

Исследователи также нашли этому явлению объяснение: ген bcat-1 кодирует фермент с таким же названием, снижающий количество так называемых аминокислот с разветвлённой цепью (L-лейцин, L-изолейцин и L-валин).

Когда исследователи ослабили активность гена bcat-1, аминокислоты с разветвлённой цепью начали накапливаться в тканях. Этот процесс увеличил не только продолжительность жизни червей, но и тот отрезок времени, в течение которого существо остаётся здоровым (учёные замеряли накопление старящих пигментов, скорость движения нематоды, а также успешное воспроизводство).

Исследователи также достигли эффекта продления жизни при добавлении трёх аминокислот с разветвлённой цепью в пищу нематод, но эффект был менее выражен, так как ген был всё ещё активен.

Ристоу уверен, что тот же механизм характерен и для организма человека.

«Мы рассматривали лишь те гены, что сохранились в процессе эволюции, так что они существуют во всех живых организмах», – отмечает учёный.

В настоящее время такого рода исследований на человеке проведено не было (хотя они и планируются). Впрочем, учёные полагают, что измерить влияние подобных манипуляций на продолжительность жизни человека будет проблематично по многим очевидным причинам.

Вместо этого Ристоу и его коллеги планируют сосредоточиться на влиянии генетического редактирования на различные параметры здоровья, в числе которых уровень холестерина и сахара в крови.

Также учёные подметили, что несколько аминокислот с разветвлённой цепью уже используются в медицинских целях (например, для лечения повреждений печени) и входят в продукты спортивного питания. Однако для человека главное не прожить дольше, а дольше сохранить здоровье, позже достигнуть возраста, характеризующегося хроническими заболеваниями. В перспективе подобные исследования помогут каждому, и в том числе государству, сократить затраты на здравоохранение.

Научная статья швейцарских учёных (Mansfeld et al., Branched-chain amino acid catabolism is a conserved regulator of physiological ageing) была опубликована журналом Nature Communications.