Клонирование человеческих тканей и органов. Стволовые клетки и клонирование Клонирование многоклеточных организмов

Клонирование стволовых клеток человека впервые. Почти два десятилетия назад, ученые смогли клонировать милую овечку Долли. Теперь тот же самый процесс, чтобы позволить им клонировать эмбриональные стволовые клетки человеческих зародышей в первый раз. Это революционное достижение было совершено Шукратом Малиповым в университете штата Орегон и использует метод, называемый перенос ядра. Проще говоря, это включает в себя прием клетки – в этом случае стволовые клетки вводятся в специальную яйцеклетку, чья ДНК была удалена.

Затем эта клетка стимулируется, чтобы начать делится. В результате растущей массы из стволовых клеток, которые если начали расти, могут стать клоном. Это метод, с помощью которого клонировали овцу Долли в 1996 году. Интересно, что этот метод до сих пор не сработал с человеческой клеткой.


Согласно сообщению в журнале Cell, его команда смогли повторить процедуру, используя человеческие стволовые клетки из кожи зародыша, чтобы “подкормить“ клетки-яйца. Успех эксперимента может привести к клонированию целого человека, хотя этические и моральные нормы принципиально вступают в конфликт с аналогичной идеей.

Именно по этой причине, Малипов и его команда не планируют производить клонов, а клонированные стволовые клетки будут предназначены исключительно для медицинских целей. Стволовые клетки являются панацеей в современной медицине и используется практически для лечения раковых заболеваний, пораженных нервных тканей и сердечно-сосудистых заболеваний.


Малипов придает успеху большое значение и определяет два фактора. Во-первых, для клетки-яйца используются здоровые клетки от донора, а в предыдущих попытках, это было сделано с остатками гинекологической клиники. Во-вторых, имеет немного другой подход к передаче ядра, с небольшими улучшениями здесь и там, в том числе использование кофеина в данный момент.

Ожидания Малипова продолжались долгие годы экспериментов и попыток, чтобы оптимизировать процесс клонирования так, что он работает с человеческими клетками, но при первой попытке его команда получила линии клонированных клеток всего за несколько месяцев. Это действительно огромный шаг в медицине, который может значительно уменьшить стоимость лечения стволовыми клетками и помочь ряду пациентов с дегенеративными и потенциально неизлечимыми заболеваниями. Кроме того, это дает надежду, чтобы обрести бессмертие путем постоянного клонирования тканей и жизненно важных органов. Но это уже научная фантастика. По крайней мере пока.

Одно из препятствий на пути к клонированию человека было успешно преодолено учёными, которые использовали кожу для генерации эмбриональных стволовых клеток.

На данном этапе, учитывая, что применения настоящих человеческих эмбрионов удалось избежать, от клонирования ожидается немалая помощь в терапиях, включающих в себя лечение стволовыми клетками.

По словам американских исследователей, в клонировании самого человека они не заинтересованы и не верят, что новую методику можно использовать в этом направлении. Однако чисто теоретически применённая ими техника терапевтического клонирования способна привести к началу воссоздания двойников – так что споров на эту тему в научно-религиозном мире не избежать. Впервые учёным удалось сотворить человеческий эмбрион таким способом.

Клонирование овечки Долли – первого млекопитающего, которое получило жизнь из взрослой клетки искусственным путём – в институте Розлин (Эдинбург) происходило на основе того же переноса ядер соматических клеток.

В течение этого процесса ядро клетки-донора переносится в яйцеклетку, чьё собственное ДНК удаляется. Вторая клетка развивается в ранний зародыш, являющийся клоном донора, поскольку содержит те же самые гены. Взятым от эмбриона стволовым клеткам учёные приписывают огромный потенциал: при верном подходе они обладают способностью развиться в любую, присутствующую в организме ткань – от мозговой до костной.

В новом исследовании, результаты которого опубликованы в журнале «Cell», команда учёных перенесла ядро из клеток человеческой кожи в человеческую же яйцеклетку. Были сформированы так называемые «бластокисты» - ранняя стадия зародыша, включающая в себя кластер из 150 клеток, откуда и были получены и выращены в лаборатории стволовые клетки.

До этого учёным уже удалось клонировать эмбрион обезьяны и «превратить» его в стволовые. Тем не менее, попытки повторить тот же процесс с человеческими клетками до сих пор оказывались неудачными. Первоначально эмбриональные клетки человека не развивались далее восьмого этапа – а он считался слишком ранним для обращения их в стволовые. Ключевая проблема заключалась в том, что наша яйцеклетка представляет собой структуру намного более хрупкую, чем у других видов.

Руководитель исследования, профессор Шухрат Миталипов из орегонского университета Здоровья и Науки утверждает, что полученный результат открывает новые способы генерирования стволовых клеток для пациентов с дисфункциональными тканями и органами. Эти стволовые клетки способны самовосстанавливаться, заменять повреждённые клетки и ткани, а значит – напрямую способствовать облегчению течения и последствий множества заболеваний. Более того, поскольку перепрограммированные клетки могут быть взяты у самого пациента, опасность отторжения их его организмом даже не рассматривается.

На данном этапе стволовые клетки могут превращаться в несколько разных типов клеток, включая нервные, печёночные и сердечные.

Древние были уверены в существовании вечно возраждающейся из пепла птицы Феникс. Древнеегипетский бог Гор раз за разом собирал разбросанные по всем сторонам света куски тела своего отца Озириса и оживлял его с помощью матери Исиды. Не удивительно, что ученые называли гидрой кишечнополостное наших водоемов – ее способность к регенерации просто сказочна. Регенерация тканей наблюдается и у человека: срастание костей, заживление кожи и мышц, постоянно протекающий в нашем организме процесс «творения» крови.

Загадка кроветворения не давала покоя нашему выдающемуся ученому Александру Александровичу Максимову, который еще в 1916 г. начал использовать метод культуры ткани. Напомним, что за разработку данного метода француз А.Каррель, долго работавший за океаном, был удостоен в 1912 г. Нобелевской премии. В 1922 г. Максимов уехал из России и оказался в конечном итоге в Чикаго, где занимался исследованиями в области воспаления и кроветворения.

В 1908 г. Нобелевской премии за исследования процесса воспаления и открытие макрофагов был удостоен И.И. Мечников. Ученых начала века волновал вопрос: откуда при воспалении берутся многочисленные клетки соединительной ткани, в результате чего образуются припухлость, флюс и нарыв?

Максимов постулировал, что в соединительной ткани (крови, костном мозге, являющемся органом кроветворения) пожизненно сохраняются недифференцированные, так называемые мезенхимные, или камбиальные, клетки, которые могут превращаться в различные клетки крови, а также кости, сухожилия, связки и т.д. Он называл их еще «блуждающими клетками в покое». Наличием этих клеток он и объяснял образование новых клеток при воспалении.

Поясним некоторые слова. Дифференцировкой называется «специализация» клетки, в ходе которой та приобретает свойства, необходимые для выполнения возложенной на нее природой функции. Недифференцированная клетка не способна сокращаться, как мышечная, генерировать электрический сигнал, как нервная, и синтезировать гормон инсулин, как клетки островков Лангерганса поджелудочной железы. Говорят еще, что в процессе дифференцировки клетки созревают.

Обычно в названии незрелых клеток имеется слово «бласт», то есть «шар» (бластула – это шарообразная стадия развития эмбриона, при этом стенка шара представлена одним слоем клеток). Клетка – предшественник кости называется остеобластом; предшественник меланоцита, синтезирующего темный красящий пигмент меланин, благодаря которому мы темнеем при загаре, – меланобластом, а клетки нервной системы – нейробластами. Эти «первичные» клетки действительно похожи на шарики: нейро- и меланобласт не имеют характерных для взрослых стадий отростков, которые появляются только в ходе дифференцировки.

Нечто похожее видел в культурах и Максимов. Так «общим родоначальником кроветворения» он считал большой лимфоцит, который происходит от первичной мезенхимной клетки через стадию малого лимфоцита, представляющего относительно небольшую клетку с большим ядром.

Слово «мезенхима» греческого происхождения и означае «посредник». Максимов вслед за эмбриологами XIX в. считал, что мезенхима представляет собой средний (между экто- и эндодермой) зародышевый листок, из которого образуется затем соединительная ткань и ее производные в виде сосудов, крови, хряща и кости. Сегодня мы знаем, что мезенхимные клетки выселяются из верхней спинной (дорзальной) половины нервной трубки, так что тоже имеют эктодермальное происхождение. Вот почему у нейрона и лимфоцита так много сходных генов и свойств.

Интерес к клеткам-предшественникам (прекурсорам) возродился в 1960-е гг., когда Дж.Гердон, эмбриолог из Оксфордского университета, поразил весь мир клонированными лягушками. Гердон придумал метод переноса ядра одной клетки в цитоплазму другой.

Для своих опытов он взял икринки, видимые невооруженным глазом, и удалил из них ядра. Таким образом, он получил «энуклеированную» цитоплазму, в которую и пересадил диплоидные ядра (с двойным набором хромосом) соматических клеток, которые и в обычных условиях постоянно делятся (клетки слизистой кишечного эпителия). Таким образом для своих экспериментов по клонированию Гердон, возможно, использовал стволовые клетки кишечного эпителия. Но тогда так никто проблему не рассматривал.

Практически одновременно с работами Гердона стали появляться статьи, посвященные описанию нейрогенеза в гиппокампе мозга. Сначала образование новых нервных клеток видели просто под микроскопом, затем наблюдения стали подтверждать с помощью авторадиографии, которая свидетельствовала о синтезе новых молекул ДНК. В конечном итоге процесс был подтвержден и с помощью электронного микроскопа. Но народ и поныне убежден, что «нервные клетки не восстанавливаются».

Гердон задавался вопросом, каким образом цитоплазма яйцеклетки перепрограммирует соматическое ядро, т.е. ядро дифференцированной клетки. Созревает клетка не сразу. Для этого она должна пройти несколько клеточных циклов.

Стволовая клетка в процесс созревания не вступает. Ранее полагали, что она при этом и не делится, находясь в состоянии «ареста» клеточного цикла, т.е. как бы в «замороженном» состоянии. Однако сейчас выясняется, что все намного сложнее, по крайней мере в клеточных культурах. Но об этом ниже.

В самое последнее время экспериментаторы, возможно, под влиянием экологов, выдвинули концепцию ниши. Ниша – это клеточное окружение, в котором клетка не только живет, но и выходит из состояния ареста, чтобы начать развитие.

Классическим примером ниши является граафов пузырек яичника, в котором яйцеклетка может пребывать в состоянии клеточного ареста в течение всей жизни женской особи. Кстати заметим, что яйцеклетка до самого момента оплодотворения содержит – в отличие от спермия – двойной набор хромосом (второй набор удаляется только после внедрения спермия). Таким образом, чисто теоретически яйцеклетка до образования зиготы по набору хромосом ничем не отличается от любой другой соматической клетки.

Еще одной нишей является дно волосяного фолликула, где «обитают» стволовые клетки, из которых образуются меланоциты. Нишей же нейрогенеза, помимо гиппокампа, является также субвентрикулярная зона. Это слой клеток, окружающих мозговые желудочки – полости в глубине полушарий, заполненные жидкостью, похожей на лимфу. Именно в этой зоне постоянно образуются новые нервные клетки, которые затем мигрируют в направлении носа. Это открытие было сделано в начале 1990-х гг. и доказано экспериментально!

Обонятельные нейроны постоянно контактируют с разного рода летучими веществами атмосферы. Это для нас они означают ароматы и запахи, а для обонятельных нейронов они токсичны, особенно в больших концентрациях. Вот и приходится постоянно генерировать новые нервные клетки, чтобы восполнить их дефицит.

Но дело не только в химикатах. Обонятельные нейроны располагаются ближе к поверхности слизистой носа, чем все другие нервные клетки. От внешней среды их отделяют какие-то несколько микронов слизи, выделяемой слизистым эпителием. И гораздо большую опасность для обонятельных нейронов представляют постоянные вирусные атаки, особенно во время эпидемий респираторных заболеваний. Вот почему слизистая носоглотки представляет собой третью нишу постоянного нейрогенеза.

В первом номере журнала Science за 1995 г. была опубликована статья о выделении и определении свойств гематопоэтических стволовых клеток человека. Частота встречаемости стволовых клеток составляет около 1 на 105 клеток костного мозга. Незадолго до того, в середине ноября 1994 г., журнал Nature напечатал статью об изоляции из эмбрионального мозга крыс самообновляющихся мультипотентных стволовых клеток мозговой коры. Так занималась заря экспериментального изучения стволовых клеток в их естественных нишах и изолированных культурах.

Параллельно этому разворачивались исследования процессов перепрограммирования. Выше уже говорилось о перепрограммировании самой яйцеклетки и ядра соматической клетки, помещенного в ее цитоплазму. Сегодня мы знаем, что перепрограммирование может быть осуществлено путем добавления ядерного и цитоплазматического экстракта яйцеклеток, а также «первичных» Т-лимфоцитов человека.

Перепрограммированию способствует также добавление ростовых факторов – специальных белков, которые стимулируют рост и размножение клеток. О действии ростовых факторов ученые знают довольно давно, поэтому в культуры клеток обычно добавляют сыворотку телячьей крови, которая их содержит. Можно действовать более целенаправленно, например, культивировать клетки с «представителями» других тканей. Это приводит к смене клетками типа ткани. Так, если взять фибробласты кожи и добавить в культуральную среду экстракт предшественников (прекурсоров) нейрональных клеток, то фибробласты начинают синтезировать нехарактерный для них белок нервных волокон. Дело доходит даже до того, что у фибробластов появляются нервные отростки – дендриты.

Но все эти воздействия были ненаправленными. Преимуществом современного подхода является четко направленное воздействие, которое включает нужные гены, позволяя тем самым управлять развитием клеток. Уже относительно давно в ходе онкологических исследований был выделен так называемый ФИЛ – фактор подавления лейкемии. Этот белок, который является транскрипционным (активирующим транскрипцию) фактором, подавляет развитие мезодермальных, в частности мышечных, клеток и стимулирует начало нейрональной дифференцировки. Можно сказать, что он перепрограммирует стволовые клетки на путь развития нервных клеток.

ФИЛ, можно надеяться, позволит решить одну важную проблему клонирования. Дело в том, что эмбриональные стволовые клетки при всей своей плюрипотентности обладают одним неприятным свойством – они образуют тератомы, т. е. уродливые разрастания. В этом отношении гораздо лучше использовать стволовые клетки взрослого организма, тем более что ученые уже научились «расширять» пределы тканевой специфичности, т. е. получать потомство клеток одних тканей с характеристиками других тканей.

Но у взрослых свои проблемы, одной из которых является небольшой пролиферативный потенциал (клетки довольно быстро перестают делиться). Так вот добавление ФИЛа приводит к снятию этого ограничения: мезенхимальные стволовые клетки, выделенные из костного мозга взрослой мыши, претерпевали в культуре более 80 делений! По внешнему виду клетки точь-в-точь максимовские: диаметром 8–10 мкм, округлые, с большим сферическим ядром и тонким ободком цитоплазмы. Способность к делению подтверждается и сохранностью теломер. Напомним, что это концевые участки хромосом, которые имеют одноцепочную ДНК. При каждом делении 200–300 нуклеотидов этой ДНК «отрезаются», в результате чего длина теломер сокращается. По достижении определенного предела клетка теряет способность делиться и подвергается апоптозу.

Стволовые клетки после переноса их облученному животному восстанавливают гемопоэз, печеночный эпителий, а также клетки легких и кишечника. У них нет характерных для взрослых клеток иммунологических мембранных белков, запускающих в норме реакцию отторжения. Кроме того, в них высока активность теломеразы – фермента, который синтезирует теломерную ДНК. Средняя длина теломер составляет у клеток культуры 27 килобаз, т. е. тысяч «букв» ген-кода. Такая величина «устанавливается» после 40 клеточных делений и остается неизменной и после 102!

Для направления развития клеток костного мозга по пути нейронов ученые ввели в культуру так называемый «Нурр» – «нуклеарный (ядерный) рецептор», – представляющий собой транскрипционный фактор, специфичный для предшественников среднего мозга, «направляющимся» по пути развития допаминовых нейронов (гибель которых приводит к развитию паркинсонизма). Полученные таким образом допаминовые нейроны имеют те же электрофизиологические характеристики, что и нормальные. После пересадки таких нейронов крысе с моделью паркинсонизма у нее восстанавливаются нормальные движения лап.

В других экспериментах было показано, что процесс перепрограммирования состоит как минимум из пяти стадий. На первом этапе с помощью цитомегаловируса (естественно модифицированного, чтобы он не мог размножаться в клетках) был перенесен ген Нурр, в результате чего был простимулирован ген тирозин-гидроксилазы. Этот фермент добавляет группу –ОН к аминокислоте тирозину, в результате чего начинает вырабатываться допамин. Помимо этого Нурр «открыл» и ген тубулина – белка, из которого делаются тубулы, микротрубочки, без которых нельзя себе представить нервную клетку: по микротрубочкам, как известно, идет транспорт нейротрансмиттеров, например того же допамина, к синапсам, где они и выделяются.

На ранних этапах эмбриональные стволовые клетки могут превращаться и в инсулинсинтезирующие клетки. Тем самым открывается путь помощи миллионам диабетиков, которые так нуждаются в этом белковом гормоне (только в США этот диагноз ставят ежегодно 800 пациентов).

Можно на одной из стадий направить развитие стволовых клеток и по пути серотониновых нейронов. Серотонин также является одним из важнейших нейротрансмиттеров, недостаток его ведет к различным психическим расстройствам, начинающимся с депрессии. Интересно, что развитие нейронов зависит от действия ростового фактора фибробластов, т. е. клеток соединительной (мезодермальной) ткани. Этим лишний раз подтверждается факт «единства» происхождения нейро- и мезодермы. Добавление фактора роста фибробластов вызывает увеличение количества серотониновых нейронов в 2,5 раза. При этом уменьшается количество клеток с тирозингидроксилазой, т. е. допаминовых.

Если в клетки внести побольше копий гена Нурр, то доля допаминовых нейронов культуры возрастает с 5 до 50%. Если же на 4-й стадии добавить еще пару стимуляторов развития именно допаминовой «ветви», то число таких клеток возрастает почти до 80%.

Сейчас задача – постараться как можно быстрее перенести опыты с мышей на человека. Во многом эта проблема связана с самой техникой культивирования стволовых клеток: их «высаживают» на фидерные (питающие) мышиные клетки и добавляют плазму крови телят (сыворотку). Это потенциально опасно тем, что клетки человека можно заразить ретровирусами животных. Такие клетки не могут использоваться для лечения человека. Это позволяет проверить все продукты с помощью стандартных тестов на СПИД, герпес, гепатит и т.д.

Однако недавно запатентован метод, в котором в качестве фидерных клеток используются мышечные клетки человека, а для стимуляции роста добавляется сыворотка крови человека.

Пока же опыты в основном идут на животных. Для решения многих практических и теоретических проблем необходимо получение как можно более «чистого» в генетическом отношении материала.


1 – удаление ядра из яйцеклетки; 2 – «внесение» диплоидного ядра лимфоцита; 3 – стадия бластоциста с эмбриональными стволовыми клетками; 4 – культура стволовых клеток и эмбрион из них; 5 – суррогатная мать и мышонок; 6 – взятие лимфоцита у обычной мыши

Тут следует сделать одно теоретическое отступление. Дело в том, что в лимфоцитах постоянно происходят так называемые генные реаранжировки, или перестройки, «тасование» генных участков, отвечающих за синтез антител. Благодаря этому «тасованию» иммунные клетки получают возможность отвечать на разнообразие белков постоянно меняющихся болезнетворных агентов. В норме в обычных тканях вне иммунной системы такие аранжировки не происходят. Это позволяет хотя бы частично решить проблему перепрограммирования, которое во многом зависит от цитоплазмы яйцеклетки. Лимфоциты хорошо подходят для решения этой проблемы, поскольку все их потомство есть клон, сохраняющий одни и те же генные маркеры.

Были получены две линии мышей: одна из В-клетки, а вторая была потомком Т-лимфоцита. Надо отметить, что лимфоциты довольно плохо поддаются перепрограммированию. В-лимфоцитарные мыши имели реаранжировки гена иммуноглобулина во всех тканях и были жизнеспособны. А вот потомство Т-лимфоцита оказалось с жизнью «несовместимым» – эмбрионы гибли внутриутробно, а единственный родившийся оказался мертвым. Таким образом, попытка получить моноклональное потомство показало разный потенциал со стороны клеток, их способность или неспособность перепрограммироваться, а также наличие других проблем. Так что придется все же вернуться к стволовым клеткам костного мозга, о которых писал Максимов, хотя потенциал их и довольно ограничен, если речь идет об организме, а не о культуре, где можно вводить разные гены на разных стадиях дифференцировки.

В одном из экспериментов облученным мышам одной линии (с убитым костным мозгом) перенесли 2 тыс. костномозговых клеток другой линии. Последние несли генетический маркер, благодаря которому при действии одного из веществ окрашивались в синий цвет. Через 12 недель окрашивалось от 80 до 95% кровяных клеток реципиента. Через 4 месяца мышек забили. На срезах головного мозга нервных клеток, окрашивающихся в синий цвет, ученым увидеть так и не удалось. А те, что окрасились (менее 5 клеток), имели округлую форму и не несли никаких отростков. Таким образом, превращения клеток костного мозга в клетки головного мозга в организме не происходит.

Поскольку стволовые клетки сохраняются в организме в течение всей жизни, мы должны были бы жить дольше и при этом не болеть, так как стволовые клетки должны заменять умершие и заболевшие в наших органах. Однако этого, как все знают, нет.

Сейчас во многом внимание ученых сконцентрировано на теломерах, как главных регуляторах клеточного деления, без которого не бывает дифференцировки. При дефектах в теломерах вернее находящихся с ними в комплексе белков, возникает состояние ускоренного укорачивания их длины. Один из белков получил название Est, что является сокращенным английским выражением «постоянно укорачивающиеся теломеры» (Evershortening telomeres ). Такое состояние быстро приводит к преждевременной смерти клеток.

Est стимулирует теломеразу, которая удлиняет ДНК теломер, задерживая тем самым достижение предела жизни клетки. Казалось бы, к чему все эти детали, если ученые уже научились управлять дифференцировкой стволовых клеток в культуре? Тут можно возразить.

Во-первых, стволовые клетки разных линий мышей по-разному сопротивляются повреждению ДНК, например ультрафиолетом. Скрещивание разных линий выявило в 11-й хромосоме локус «ремонта ДНК», который ответствен за «починку» молекулы жизни, если в ней образуются одно- и двуцепочные разрывы после облучения или действия свободных радикалов кислорода. Такой же локус есть и в 11-й хромосоме человека. Вполне возможно, что все это имеет отношение к теломерам, поскольку там тоже есть дву- и одноцепочная ДНК...

С точки зрения дифференцировки, как эмбриональные, так и взрослые стволовые клетки представляют собой поезд, который уже ушел. Гораздо проще было бы разобраться во многих вопросах клеточной биологии, если бы могли анализировать процессы с самого начала, а именно с гамет. Но культуры гамет до сих пор не было...

И вот два самых свежих сообщения. Прежде всего, удалось наладить дифференцировку в культуре сперматогониев – стволовых клеток семенников, из которых образуются спермии. Достигнуто это с помощью переноса в сперматогонии каталитической единицы теломеразы (это вторая причина, почему ученые так интересуются теломерами).

Сперматогонии выделяли у 6-дневного мышонка, после чего в них с помощью ретровируса вносился ген теломеразы. При этом были получены стволовые клетки – с большим округлым ядром и небольшим ободком цитоплазмы (опять Максимов!). И через год культивирования эти стволовые клетки имели «свежую» морфологию.

В них появляется РНК-связывающий белок, который характерен для стволовых клеток, а также транскрипционный фактор Oct, который необходим для развития плюрипотентных эмбриональных клеток. Известно, что у самцов Oct сохраняется до начала дифференцировки сперматогониев и начала сперматогенеза.

Похоже, что многие неудачи ученых, с которыми им приходилось сталкиваться до сих пор, связаны с... выделением яйцеклетки из фолликула! Дело в том, что она окружена тремя слоями питающих и защитных клеток, которые, в частности, накладывают на нее «арест», о котором говорилось выше. Ученые Коннектикутского университета решили выделить весь фолликул, после чего «зажали» его между двумя покровными стеклами. Размер фолликула 260–470 мкм, поэтому с ним удобнее и легче работать, нежели с «голой» яйцеклеткой.

Для того чтобы понять, что является причиной ареста, ученые ввели микропипеткой под мембрану ооцита моноклональные антитела против так называемой стимулирующей субъединицы Г-белка. Г-белки – это ферменты, добывающие энергию при расщеплении не АТФ, а гуанозинтрифосфата (ГТФ). Тратят эту энергию они на разные вещи, в том числе и на стимуляции мембранного фермента аденилатциклазы, которая из ATФ «делает» циклический аденозинмонофосфат (цАМФ).

Мембрана клетки с различными рецепторами, ионными каналами (Ca2+, Na+) и ферментами

Циклический AMФ является важнейшим регулятором процессов в цитоплазме, вызывая в том числе и арест жизненного цикла яйцеклетки. Введение моноклональных антител против Г-белка приводит к блоку аденилатциклазы и падению уровня цАМФ, в результате чего арест преодолевается, и клетка вступает в мейоз. Тем самым смоделировано действие лютеинизирующего гормона гипофиза, который то же самое делает каждый месяц с той или иной яйцеклеткой в яичниках. Так что вполне возможно, что скоро мы услышим и о культуре ооцитов, с помощью которой исследователям удастся разобраться в тех процессах, которые происходят на самых первых этапах развития (еще до оплодотворения).

И последнее. Удалось, по всей видимости, понять и причину других неудач, связанных с клонированном. Дело в том, что для начала клонирования и получения стволовых клеток необходимо «изъять» ядро ооцита из цитоплазмы и на его место ввести ядро диплоидной соматической клетки. При этом через разрыв мембраны яйцеклетки вытекает до трети цитоплазмы с ее питательными и регуляторными веществами и протеинами. Из-за этого клоны и оказываются нежизнеспособными.

Уже относительно давно было предложено «делить» цитоплазму ооцита на две половинки – содержащую ядро и без него. Последняя получила название «цитопласт». Теперь Габор Байта из Сельскохозяйственного института в Копенгагене предложил вообще не изымать ядро соматической клетки, а просто «сливать» ее с одним или двумя цитопластами. При этом не нужны дорогостоящие манипуляторы и высококвалифицированные специалисты – все может делаться буквально в полевых условиях студентами или лаборантами.

Метод уже опробовали австралийские ученые, которые с его помощью резко повысили «выход» клонированных телят: из 7 бластоцистов – «шариков» из эмбриональных клеток, – перенесенных в матки коров, шесть имплантировались в слизистой и привели к беременности, в результате которой родились бычки и телки. Напомним, что овечка Долли родилась в результате более чем 300 неудачных попыток.

По материалам журналов Nature и Science .

Сразу две генетических новости пришло из незалежной Японии.
Первая, интересная с точки зрения будущего человека, заключается в удачном опыте получения функционирующих тканей головного мозга из стволовых клеток. Изначально, целью эксперимента было воссоздание тканей коры головного мозга (который, как завещал И.П.Павлов: «Высший распорядитель и распределитель функции организма животного и человека»), но в итоге исследователям удалось получить клетки различных тканей. Что примечательно, ученым страны восходящего солнца удалось создать экземпляры тканей не только из эмбриональных стволовых клеток (как это обычно бывает), но и из «взрослых» клеток, присутствующих в кожном покрове и волосах.

У пересадки клонированных тканей самые радужные перспективы, т.к. в регенеративной терапии лишь несколько заболеваний можно вылечить пересадкой клеток, и куда больше - пересадкой функционирующих, «живых», тканей: начиная от наращивания потерянных конечностей и заканчивая раком.

Выращенные ткани, на данный момент, еще слишком малы для их практического применения, но, как заявлено в пресс-релизе исследовательского института, исследования направленные на создание тканей взрослого человека будут продолжаться. Кроме экспериментов с человеческими стволовыми клетками, японцы успешно проделали то же самое с клетками лабораторных мышей, даже создав на основе их тканей сеть нейронов, отвечающую на стимулирование.


Не заканчивая лабораторными крысами, продолжаем дальше: на основе мертвой клетки, 16 лет пролежавшей в замороженном состоянии (-20 по Цельсию, температура схожая с мерзлой почвой, в которой был найден известный мамонтенок Дима), была успешно клонирована мышь.

Исследователи института Riken выделили клеточное ядро из органа мертвой мыши и привили его к яйцеклетке живой мыши, результатом чего стало появление на свет клона, способного к репродукции. Это не просто новость, а Новость с большой буквы, ведь подобные опыты открывают дорогу к восстановлению вымерших видов животных на планете, таких как мамонты, саблезубые тигры и… отправляйтесь пересматривать Парк Юрского Периода.

И если еще до недавнего времени подобные опыты не заканчивались успехом и казались скорее фантастикой, нежели реальностью, у ученых впереди решение еще одного сложнейшего вопроса: скрещивание с ныне существующими видами. Тысячи лет назад не существовало как минимум половины распространенных ныне заболеваний, инфекций, вирусов и всего прочего, что способно убить «новое-старое» существо еще до рождения.

Для клонирования мамонта (который пока представляется наиболее безопасным, вероятным и реализуемым существом) исследователям нужно найти способ привить ядро клетки мамонта яйцеклетке слонихи, после чего имплантировать ее. Тем не менее, даже если «родить» живое существо не удастся - в процессе могут получиться клонированые эмбриональные стволовые клетки, что даст еще один толчок к работам в этой области.

Человек со времен своего разумного существования стремился быть молодым, здоровым и жить долго, а лучше - вечно. Не только древние колдуны, шаманы, целители стремились раскрыть тайну вечной жизни, изобрести но и советские врачи работали над созданием Кремлёвской таблетки бессмертия. К сожалению, пока, человек бессилен в этой проблеме. А вот продлить жизнь становится вполне реально. С появлением и развитием генной инженерии становится возможным клонирование живых органов , что само по себе является ступенью к здоровью и долголетию.

Что такое клонирование, думаю, знает каждый. Клонирование многоклеточных организмов или медицинских органов – точное воссоздание, появление на свет искусственным путём (без полового размножения) живых организмов или создание его частей путём определённых воздействий на клеточное ядро.

Создавая определённые условия и воздействуя на ядро клетки можно заставить её развиваться в нужном направлении вплоть до полного воспроизведения умершего организма при наличии его генетического материала. И сегодня подобные работы уже не тайна.

Научный мир замахнулся на великое: клонирование человека после беспрецедентного появления на свет из пробирки в 1996 году всем известной шотландской овечки по имени Долли.

Однако, принятая в 2005 году ООН «Конвенция о запрете клонирования человека» по социально-этическим и этико-религиозным соображения приостановила на неопределённый срок все работы в этом направлении. Да и сама Долли была усыплена в 2003 году по причине заболевания.

Кстати, чучело Долли выставлено в Шотландском национальном музее.

В России действует Федеральный закон «О временном запрете на клонирование человека» от 20 мая 2002 г. № 54-ФЗ.

Однако не все страны подписались под Конвенцией, одной из них стал Китай. Буквально вчера 18 сентября 2015г ученые из лондонского Института Великобритании запросили у государственного регулятора разрешение на модификацию генов человеческих эмбрионов. Если разрешение будет получено, то Великобритания станет второй страной после Китая, где будут проводится подобные работы.

Это то, что касается клонирования человека. Однако научные работы в области стволовых клеток успешно продолжаются во всём мире и сегодня.

Что такое стволовые клетки?

В человеческом организме существует два вида стволовых клеток: обычные клетки, которые всю жизнь выполняют только отведённую им роль по воспроизводству тканей, а есть такие, которые способны превращаться в другие виды клеток, их называют универсальными . Первые живут во взрослом организме, а вот вторые можно взять только из эмбриона и потом выращивать в пробирке. Вот эти клетки и способы заменить поражённые (больные клетки) в организме. Однако, первая проблема в том, что далеко не каждому организму они могут подойти. Вторая: есть случаи в опытах, когда введённые в организм эмбриональные стволовые клетки начинают неконтролируемо делиться, формируя опухоли-тератомы.

Эти проблемы были решены японскими медиками в ходе выполненного ими важного научного исследования в 2012 году, за что они и получили Нобелевскую премию. Установлено, все мы теоретически независимо от возраста можем быть клонами сами для себя, то есть для наших органов. Мельчайший кусочек кожи, волос или даже кровь могут служить материалом для получения тех самых ценных универсальных клеток, которые и послужат основой для любого органа, будь то кость, хрящ или зрачок глаза.

Конечно, всё это пока чисто научные наработки, должны пройти годы, чтобы биоматериал легко выращивался в любой лаборатории лечебного центра и столь же легко возвращался назад в свой организм. Прежде чем будут возможны подобные операции по замене «заболевших» или вовсе вышедших из строя человеческих органов, нужно решить много промежуточных вопросов. Но их решение не за горами! И тогда любая генетическая поломка в больных клетках будет легко исправлена.

И радует, что и в России научные исследования стволовых клеток успешно развиваются. Так в Российском институте Общей генетики им Вавилова совсем недавно была получена кровь из стволовых клеток кожи, зачаток глаза, там первыми вырастили мини-сердце и продолжаются работы по его совершенствованию…

Голландцы вырастили кишку, японцы - зачаток зуба, а чуть ранее ими был получены клетки сетчатки глаза, сейчас ведутся работы по созданию клеток, вырабатывающих инсулин. Задача очень сложная. Но представьте, сколько людей в мире будут избавлены от тяжёлого недуга - сахарного диабета, болезни Альцгеймера и Паркинсона.

И пусть теория очень далека от практики, всё равно радует факт столь бурного развития клонирования, как отрасли биомедицины и возможности спасения жизни людей, особенно маленьких детей.