Лабораторные работы по курсу «Человек и его здоровье. Повышенная физическая нагрузка для легких, последствия II. Измерение жизненной емкости

1. Во всех листьях есть жилки. Из каких структур они образованы? Какова их роль в транспорте веществ по растению?

Жилки образованы сосудисто-волокнистыми пучками, которые пронизывают всё растение, соединяя его части - побеги, корни, цветки и плоды. Их основу составляют проводящие ткани, которые осуществляют активное перемещение веществ, и механические. Вода и растворённые в ней минеральные вещества передвигаются в растении от корней к надземным частям по сосудам древесины, а органические вещества - по ситовидным трубкам луба из листьев в другие части растения.

Кроме проводящей ткани в состав жилки входит механическая ткань: волокна, придающие листовой пластине прочность и упругость.

2. Какова роль кровеносной системы?

Кровь разносит по организму питательные вещества и кислород, выносит углекислый газ и другие продукты распада. Таким образом, кровь выполняет дыхательную функцию. Белые кровяные клетки выполняют защитную функцию: они уничтожают попавшие в организм болезнетворные микроорганизмы.

3. Из чего состоит кровь?

Кровь состоит из бесцветной жидкости - плазмы и клеток крови. Различают красные и белые кровяные клетки. Красные кровяные клетки придают крови красный цвет, так как в их состав входит особое вещество - пигмент гемоглобин.

4. Предложите простые схемы замкнутой и незамкнутой кровеносных систем. Укажите на них сердце, сосуды и полость тела.

Схема незамкнутой кровеносной системы

5. Предложите опыт, доказывающий движение веществ по организму.

Докажем, что вещества движутся по организму на примере растения. Поставим в воду, подкрашенную красными чернилами, молодой побег какого-либо дерева. Через 2-4 суток вытащим побег из воды, смоем с него чернила и отрежем кусочек нижней части. Рассмотрим сначала поперечный срез побега. На срезе видно, что древесина окрасилась в красный цвет.

Затем разрежем вдоль оставшуюся часть побега. Красные полоски появились в местах окрасившихся сосудов, которые входят в состав древесины.

6. Садоводы размножают некоторые растения срезанными веточками. Они сажают веточки в землю и накрывают банкой до полного укоренения. Объясните значение банки.

Под банкой формируется за счет испарения высокая постоянная влажность. Поэтому растение меньше испаряет влаги и не завянет.

7. Почему срезанные цветы рано или поздно вянут? Как можно предотвратить их скорое увядание? Составьте схему транспорта веществ в срезанных цветах.

Срезанные цветы не являются полноценным растением, т. к. у них удалена коневая система, которая обеспечивала адекватное (задуманное природой) всасывание воды и минеральных веществ, а также и часть листьев, которые обеспечивали фотосинтез.

Увядает цветок главным образом потому, что в срезанном растении, цветке в связи с усиленным испарением не хватает влаги. Начинается это с момента срезки и особенно когда цветок и листья долго находятся без воды, имеют большую поверхность испарения (срезанная сирень, срезанная гортензия). Многим срезанным оранжерейным цветам трудно переносить разницу температур и влажности того места, где они выращивались, с сухостью и теплом жилых комнат.

Но цветок может отцветать, или стареть, процесс этот естественный и необратимый.

Чтобы избежать увядания и продлить срок жизни цветов, букет цветов должен быть в особой упаковке, служащей для предохранения от сминания, проникновения солнечных лучей, тепла рук. На улице букет желательно нести цветками вниз (влага всегда на время переноса цветов будет поступать непосредственно к бутонам).

Одна из основных причин увядания цветов в вазе - уменьшение содержания сахаров в тканях и обезвоживание растения. Происходит это чаще всего из-за закупорки сосудов пузырьками воздуха. Чтобы избежать этого, конец стебля опускают в воду и делают косой срез острым ножом или секатором. После этого цветок уже не вынимают из воды. Если же такая потребность возникает, то операцию повторяют снова.

Перед тем как поставить срезанные цветы в воду, удаляют со стеблей все нижние листья, а у роз - еще и шипы. Это уменьшит испарение влаги и предотвратит бурное развитие бактерий в воде.

8. В чём заключается роль корневых волосков? Что такое корневое давление?

Вода поступает в растение через корневые волоски. Покрытые слизью, тесно соприкасаясь с почвой, они всасывают воду с растворёнными в ней минеральными веществами.

Корневое давление - это сила, вызывающая одностороннее движение воды от корней к побегам.

9. Каково значение испарения воды листьями?

Попав в листья, вода испаряется с поверхности клеток и в виде пара через устьица выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению: отдав воду, клетки мякоти листа, подобно насосу, начинают интенсивно поглощать её из окружающих их сосудов, куда вода поступает по стеблю из корня.

10. Весной садовод обнаружил два повреждённых дерева. У одного мыши повредили кору частично, у другого зайцы обгрызли ствол кольцом. Какое дерево может погибнуть?

Может погибнуть дерево, у которого зайцы обгрызли ствол кольцом. В результате этого будет уничтожен внутренний слой коры, который называют лубом. По нему перемещаются растворы органических веществ. Без их притока клетки, находящиеся ниже повреждения погибнут.

Между корой и древесиной залегает камбий. Весной и летом камбий энергично делится, и в результате в сторону коры откладываются новые клетки луба, а в сторону древесины - новые клетки древесины. Поэтому жизнь дерева будет зависеть от того, поврежден ли камбий.

Легкие человека обеспечивают важнейшую функцию организма – вентиляцию. Благодаря этому парному органу кровь и все ткани тела насыщаются кислородом, а углекислый газ выделяется во внешнюю среду. Во время повышенных физических нагрузок в органах дыхания происходят различные процессы и изменения. Именно об этом и пойдет речь сегодня. Повышенная физическая нагрузка для легких, последствия, то есть, как именно влияет на дыхательную систему физическая нагрузка – вот то, о чем на этой странице «Популярно о здоровье» детально мы и будем говорить далее.

Увеличение дыхательной активности при интенсивной физической работе - фазы

Всем известно, что когда наше тело активно двигается, усиливается и работа дыхательной системы. Говоря простым языком, во время бега, например, все мы чувствуем одышку. Вдохи становятся чаще и глубже. Но если рассмотреть этот процесс подробнее, что именно происходит в органах дыхания? Различают три фазы увеличения дыхательной активности во время тренировок или напряженной работы:

1. Дыхание становится более глубоким и учащается – такие изменения происходят в течение первых двадцати секунд после начала активной работы мышц. При сокращении мышечных волокон возникают нервные импульсы, которые сообщают мозгу информацию о необходимости увеличить приток воздуха, мозг сразу же реагирует – дает команду участить дыхание – в результате возникает гиперпноэ.

2. Вторая фаза не так скоротечна, как первая. На этой стадии при увеличении физической нагрузки вентиляция возрастает постепенно и отвечает за этот механизм отдел мозга, именуемый варолиев мост.

3. Третья фаза дыхательной активности характеризуется тем, что прирост вентиляции в легких замедляется и удерживается приблизительно на одном уровне, но при этом в процесс вступают терморегуляционные и иные функции. Благодаря им организм способен контролировать обмен энергией со внешней средой.

Как работают легкие при нагрузке средней и высокой интенсивности ?

В зависимости от степени тяжести физической работы вентиляция в организме происходит по-разному. Если человек подвергается нагрузкам средней тяжести, то его тело потребляет всего около 50 процентов кислорода от того количества, которое оно вообще способно усвоить. В таком случае организм усиливает потребление кислорода путем увеличения объема вентиляции легких. У людей, которые регулярно тренируются в спортзале, легочный объем вентиляции выше, чем у тех, кто не тренируется. Соответственно, и потребление кислорода на килограмм массы тела (VO2) у таких людей больше.

Приведем примеры: находясь в состоянии полного покоя, в среднем, человек потребляет около 5 литров воздуха за одну минуту, из которого клетки и ткани усваивают лишь пятую часть кислорода. При увеличении двигательной активности происходит учащение дыхания и увеличивается объем легочной вентиляции. В результате тот же человек уже потребляет около 35-40 литров воздуха за минуту, то есть, 7-8 литров кислорода. У людей, которые регулярно тренируются, эти показатели в 3-5 раз выше.

Каковы могут быть последствия для легких, если человек постоянно подвергается сильным физическим перегрузкам? Не вредно ли это для дыхательной системы и для здоровья человека в целом? Для людей, которые не тренируются регулярно, интенсивные упражнения, такие как бег на большие дистанции или восхождение на крутую гору, могут представлять опасность. Когда наступает вторая и третья фаза дыхательной активности, такие люди ощущают нехватку кислорода, несмотря на то, что его потребление организмом резко увеличивается. Почему это происходит?

Тело вынуждено вырабатывать огромное количество энергии, для этого требуется большое количество кислорода. Дыхание становится чаще и глубже, но поскольку у человека нетренированного объем легочной вентиляции невелик, то кислорода (О2) все равно не хватает. Чтобы выработать энергию, включается дополнительный механизм – сахара распадаются за счет молочной кислоты, которая выделяется при работе мышц, без участия О2. Организм ощущает в такой ситуации нехватку глюкозы, поэтому вынужден производить ее, расщепляя жиры.

Для этого процесса опять же нужен запас кислорода, его расход снова увеличивается. После чего наступает гипоксия. Таким образом, повышенная нагрузка на легкие при физически тяжелой работе опасна и имеет последствия в виде гипоксии, в итоге это может привести к потере сознания, судорогам и другим проблемам со здоровьем. Однако людям, которые регулярно тренируются, это не грозит. Их объем легочной вентиляции и другие показатели дыхательной системы намного выше, поэтому даже при самой интенсивной работе мышц в течение длительного времени они не ощущают .

Как избежать гипоксии при сильных нагрузках ?

Чтобы организм научился приспосабливаться к гипоксии, необходимо как минимум в течение 6 месяцев постоянно заниматься физическими упражнениями. Со временем показатели дыхательной системы станут выше – увеличится объем легочной вентиляции, дыхательный объем, показатель максимального потребления О2 и другие. За счет этого при активной деятельности мышц кислородного запаса будет достаточно, чтобы вырабатывать энергию, а мозг не пострадает от гипоксии.

Ольга Самойлова, www.сайт
Google

- Уважаемые наши читатели! Пожалуйста, выделите найденную опечатку и нажмите Ctrl+Enter. Напишите нам, что там не так.
- Оставьте, пожалуйста, свой комментарий ниже! Просим Вас! Нам важно знать Ваше мнение! Спасибо! Благодарим Вас!

ОТВЕТ: Образование энергии для обеспечения мышечной работы может осуществляться анаэробным бескислородным и аэробным окислительным путем. В зависимости от биохимических особенностей протекающих при этом процессов принято выделять три обобщенных энергетических системы, обеспечивающих физическую работоспособность человека:

алактная анаэробная, или фосфагенная, связанная с процессами ресинтеза АТФ преимущественно за счет энергии другого высокоэнергетического фосфатного соединения - креатинфосфата КрФ

гликолитическая лактацидная анаэробная, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты МК

аэробная окислительная, связанная с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.
Почти вся энергия, выделяемая в организме в процессе метаболизма питательных веществ, в итоге превращается в тепло. Во-первых, максимальный коэффициент полезного действия превращения энергии питательных веществ в мышечную работу, даже при самых лучших условиях, составляет лишь 20-25%; остальная энергия питательных веществ конвертируется в тепло в ходе внутриклеточных химических реакций.

Во-вторых, почти вся энергия, которая действительно идет на создание мышечной работы, тем не менее, становится теплом тела, поскольку эта энергия, кроме ее небольшой части, используется на: 1 преодоление вязкостного сопротивления движения мышц и суставов; 2 преодоление трения крови, текущей через кровеносные сосуды; 3 другие подобные эффекты, в результате которых энергия мышечных сокращений превращается в тепло. Включаются механизмы терморегуляции потоотделение и т.д., человек у жарко.

Лекарственный препарат убинон (кофермент Q) используется в качестве антиоксиданта, оказывающего антигипоксическое действие. Препарат применяется для лечения заболеваний сердечно-сосудистой системы, для повышения работоспособности при физических нагрузках. Используя знания по биохимии энергетического обмена, объясните механизм действия этого препарата.

ОТВЕТ: Убихиноны - это жирорастворимые коферменты, представленные преимущественно в митохондриях эукариотических клеток. Убихинон является компонентом цепи переноса электронов и принимает участие в окислительном фосфорилировании. Максимальное содержание убихинона в органах с наибольшими энергетическими потребностями, например, в сердце и печени.

Комплекс 1 тканевого дыхания.катализирует окисление НАДН убихинон.

С НАДН и Сукцината в 1 и 2 комплексе дыхательной цепи происходит перенос е на убинон.

А затем с убинона на цитохром с.

Провели 2 эксперимента: в первом исследовании митохондрии обработали олигомицином – ингибитором АТФ-синтазы, а во втором – 2,4-динитрофенолом – разобщителем окисления и фосфорилирования. Как изменится синтез АТФ, величина трансмембранного потенциала, скорость тканевого дыхания и количество выделенного СО2? Объясните, почему эндогенные разобщители жирные кислоты и тироксин обладают пирогенным действием?

ОТВЕТ: Синтез АТФ-уменьшится; величина трансмембранного потенциала-уменьшится; скорость тканевого дыхания и количество выделенного СО2-уменьшится.

Некоторые химические вещества могут переносить протоны или другие ионы, минуя протонные каналы АТФ-синтазы мембраны, их называют протонофоры и ионофоры. При этом исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. Количество АТФ снижается, АДФ увеличивается, а энергия выделяется в виде теплоты, следовательно наблюдается повышение температуры,выявляются пирогенные свойства.

56.Апоптоз – запрограммированная гибель клеток. При некоторых патологических состояниях (например, вирусная инфекция) может происходить преждевременная гибель клеток. В организме человека вырабатываются защитные белки, предотвращающие преждевременный апоптоз. Один из них – белок Bcl-2, который увеличивает соотношение NADH / NAD+ и ингибирует освобождение Са 2+ из ЭПР. В настоящее время известно, что вирус СПИДа содержит протеазу, разрушающую Bcl-2. Скорость каких реакций энергетического обмена при этом меняется и почему? Как вы думаете, почему эти изменения могут оказаться губительными для клеток?

ОТВЕТ: Увеличивает соотношения NADH / NAD+ следовательно увеличение скорости ОВР реакций циксла Кребса.

При этом ускорится реакция окислительного декарбоксилирования,так как Са2+ учавствует в активации ПДГ неактивной.Так как будет уменьшено соотношение NADH / NAD+ во время заболевания СПИДОМ,то уменьшится скорость ОВР реакций цикла Кребса.

Барбитураты (амитал натрия и др.) используют в медицинской практике как снотворные средства. Однако передозировка этих лекарств, превышающая в 10 раз лечебную дозу, может привести к летальному исходу. На чем основано токсическое действие барбитуратов на организм?

Ответ: Барбитураты, группа лекарственных веществ, производных барбитуровой кислоты, обладающих снотворным, противосудорожным и наркотическим действием, обусловленным угнетающим влиянием на центральную нервную систему.Принятые внутрь барбитураты всасываются в тонком кишечнике. При попадании в кровяное русло связываются с белками и метаболизиру-ются в печени. Приблизительно 25 % барбитуратов выделяется с мочой в неизменном виде.

Основной механизм действия барбитуратов связан с тем, что они проникают во внутренние липидные слои и разжижают мембраны нервных клеток, нарушая их функцию и нейротрансмиссию. Барбитураты блокируют возбуждающий нейротрансмиттер - ацетилхолин, в то же время стимулируя синтез и повышая тормозящие эффекты ГАМК. В процессе развития зависимости холинергическая функция усиливается, в то время как синтез ГАМК и ее связывание уменьшаются. Метаболический компонент заключается в индуцировании ферментов печени,снижает печеночный кровоток. Ткани становятся менее чувствительными к барбитуратам. Барбитураты могут вызывать со временем повышение устойчивости мембран нервных клеток. В целом барбитураты оказывают тормозящее действие на ЦНС, что клинически проявляется снотворным, седативным действием. в токсических дозах угнетают внешнее дыхание, деятельность сердечно-сосудистой системы (вследствие угнетения соответствующего центра в продолговатом мозге). иногда нарушения сознания: оглушение, сопор и кома. Причины смерти: дыхательная недостаточность, острая печеночная недостаточность, шоковая реакция с остановкой деятельности сердца.

Одновременно, в связи с нарушениями в дыхании, происходит повышение уровня углекислоты и снижение уровня кислорода в тканях и плазме крови. Происходит ацидоз - нарушение кислотно-щелочного баланса в организме.

Действие барбитуратов нарушает обмен веществ: тормозит окислительные процессы в организме, уменьшает образование тепла. При отравлении сосуды расширяются, и тепло отдается в большей степени. Поэтому у больных снижается температура

58.При сердечной недостаточности назначают инъекции кокарбоксилазы, содержащей тиаминдифосфат. Учитывая, что сердечная недостаточность сопровождается гипоэнергетическим состоянием, и, используя знания о влиянии коферментов на активность ферментов, объясните механизм терапевтического действия препарата. Назовите процесс, который ускоряется в клетках миокарда при введении этого препарата

Ответ: Кокарбоксилаза - витаминоподобный препарат, кофермент, улучшающий обмен веществ и энергообеспечение тканей. Она улучшает обменные процессы нервной ткани, нормализует работу сердечно-сосудистой системы,помогает нормализовать работу сердечной мышцы..

В организме кокарбоксилаза образуется из витамина В1 (тиамина) и играет роль кофермента. Коферменты – это одна из частей ферментов – веществ, во много раз ускоряющих все биохимические процессы. Кокарбоксилаза является коферментом ферментов, участвующих в процессах углеводного обмена. В соединении с белком и ионами магния она входит в состав фермента карбоксилазы, который оказывает активное влияние на углеводный обмен, снижает в организме уровень молочной и пировиноградной кислоты, улучшает усвоение глюкозы. Все это способствует увеличению количества выделяемой энергии, а значит, улучшению всех обменных процессов в организме,а так как у нас у пациента гипоэнергетическим состоянием.те.Состояния, при которых синтез АТФ снижен,причиной которых и может быть гиповитаминоз витамина В1,то при принятии такого лекарственного средства как кокарбоксилазы,состояние средечной деятельности улучшится.

Кокарбоксилаза улучшает усвоение глюкозы, обменные процессы в нервной ткани, способствует нормализации работы сердечной мышцы. Дефицит кокарбоксилазы вызывает повышение уровня кислотности крови (ацидоз), что приводит к тяжелым нарушениям со стороны всех органов и систем организма, может закончиться комой и гибелью больного.

ПО ПОВОДУ КАКОЙ ПРОЦЕСС УСКОРЯЕТСЯ В МИОКАРДЕ ПРИ ВВЕДЕНИИ ЭТОГО ПРЕПАРАТА НИЧЕГО ТАКОГО НЕ НАШЛА..НУ ТОЛЬКО ЕСЛИ ВСЕ ОБМЕННЫЕ ПРОЦЕССЫ УСКОРЯЮТСЯ И ДЕЯТЛЕЬНОСТЬ СЕРДЦА ВОССТАНАВЛИВАЕТСЯ...

59 Известно, что Hg 2+ необратимо связывается с SH-группами липоевой кислоты. К каким изменениям в энергетическом обмене может привести хроническое отравление ртутью?

Ответ: По современным представлениям ртуть и, особенно ртутно-органические соединения относятся к ферментным ядам, которые, попадая в кровь и ткани даже в ничтожных количествах, проявляют там свое отравляющее действие. Токсичность ферментных ядов обусловлено их взаимодействием с тиоловыми сульфгидрильными группами (SH) клеточных протеинов,в данном случае липоевая кислота,кторая участвует в окислительно-восстановительных процессах цикла трикарбоновых кислот (цикл Кребса) в качестве кофермента, оптимизируя реакции окислительного фосфорилирования,также липоевая кислота играет важную роль в утилизации углеводов и осуществлении нормального энергетического обмена, улучшая "энергетический статус" клетки. В результате такого взаимодействия нарушается активность основных ферментов, для нормального функционирования которых необходимо наличие свободных сульфгидрильных групп. Пары ртути, попадая в кровь, циркулируют вначале в организме в виде атомной ртути, но затем ртуть подвергается ферментативному окислению, и вступает в соединения с молекулами белка, взаимодействуя, прежде всего с сульфгидрильными группами этих молекул. Ионы ртути поражают в первую очередь многочисленные ферменты, и, прежде всего тиоловые энзимы, играющие в живом организме основную роль в обмене веществ, вследствие чего нарушаются многие функции, особенно нервной системы. Поэтому при ртутной интоксикации нарушения нервной системы являются первыми признаками, указывающими на вредное воздействие ртути.

Сдвиги в таких жизненно важных органах, как нервная система, связаны с нарушениями тканевого обмена, что в свою очередь приводит к нарушению функционирования многих органов и систем, проявляющемуся в различных клинических формах интоксикации.

60. Как отразится на энергетическом обмене организма дефицит витаминов РР, В1, В2? Ответ поясните. Для «работы» каких ферментов необходимы эти витамины?

Ответ: Причиной гипоэнергетического состояния могут являться гиповитаминозы, так как в реакциях вит РР Является составной частью коферментов; Достаточно сказать, что в состав ряда коферментных групп, катализирующих тканевое дыхание, входит амид никотиновой кислоты. Отсутствие никотиновой кислоты в пище приводит к нарушению синтеза ферментов, катализирующих окислительно-восстановительные реакции(оксидоредуктазы: алкогольдегидрогеназа)), и ведёт к нарушению механизма окисления тех или иных субстратов тканевого дыхания. Витамин PP (никотиновая кислота) также входит в состав ферментов, участвующих в клеточном дыхании.пищеварения.Никотиновая кислота в тканях амидируется, затем соединяется с рибозой, фосфорной и адениловой кислотами, образуя коферменты, а последнии со специфическими белками образуют ферменты дегидрогеназы, участвующие в многочисленных окислительных реакциях в организме. Витамин В1 – важнейший витамин в энергетическом обмене, важен для поддержания активности митохондрий. В целом, он нормализует деятельность центральной, периферической нервных систем, сердечно-сосудистой и эндокринной систем. Витамин В1, являясь коферментом декарбоксилаз, участвует в окислительном декарбоксилировании кетокислот (пировиноградной, α-кетоглютаровой), является ингибитором фермента холинэстеразы, расщепляющей медиатор ЦНС ацетилхолин, участвует в контроле транспорта Na+ через мембрану нейрона.

Доказано, что витамин В1 в виде тиаминпирофосфата является составной частью минимум четырёх ферментов, участвующих в промежуточном обмене веществ. Это две сложные ферментные системы: пируват- и α-кетоглутаратдегидрогеназный комплексы, катализирующие окислительное декарбоксилирование пировиноградной и α-кетоглутаровой кислот (ферменты: пируватдегидрогеназа, α-кетоглутаратдегидрогеназа). витамин В2 В соединении с белками и фосфорной кислотой в присутствии микроэлементов, например магния, он создает ферменты, необходимые для обмена веществ сахаридов или для транспортировки кислорода, а значит, для дыхания каждой клетки нашего организма.Витамин В2 необходим для синтеза серотонина, ацетилхолина и норадреналина, являющихся нейромедиаторами, а также гистамина, который выделяется из клеток при воспалении. Кроме того, рибофлавин участвует в синтезе трех незаменимых жирных кислот: линолевой, линоленовой и арахидоновой.Рибофлавин необходим для нормального метаболизма аминокислоты триптофана, который превращается в организме в ниацин.

Дефицит витамина В2 может вызвать снижение способности вырабатывать антитела, которые повышают сопротивляемость болезням.